JPS6145412B2 - - Google Patents

Info

Publication number
JPS6145412B2
JPS6145412B2 JP13824984A JP13824984A JPS6145412B2 JP S6145412 B2 JPS6145412 B2 JP S6145412B2 JP 13824984 A JP13824984 A JP 13824984A JP 13824984 A JP13824984 A JP 13824984A JP S6145412 B2 JPS6145412 B2 JP S6145412B2
Authority
JP
Japan
Prior art keywords
converter
bit
bit linear
companding
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13824984A
Other languages
Japanese (ja)
Other versions
JPS6062728A (en
Inventor
Koichi Yoshida
Hideyuki Kurosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13824984A priority Critical patent/JPS6062728A/en
Publication of JPS6062728A publication Critical patent/JPS6062728A/en
Publication of JPS6145412B2 publication Critical patent/JPS6145412B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/68Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits

Description

【発明の詳細な説明】 本発明は、μ=255圧伸則15折線近似法に基い
て回路構成した圧伸DA変換器の素子精度の軽減
を図るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to reduce the element accuracy of a companding DA converter having a circuit configuration based on μ=255 companding rule 15-fold line approximation method.

アナログ信号、例えば音声周波信号の圧伸則と
して、入力アナログ信号Xおよびそのフルスケー
ル値Aに対して、圧縮出力Yを、 但し、sgn(X)は信号Xの極性を示す。
As a companding rule for an analog signal, for example, an audio frequency signal, for an input analog signal X and its full scale value A, the compressed output Y is However, sgn(X) indicates the polarity of the signal X.

の形式で求めることが知られており、ここでμ=
255に定めた場合がμ=255圧伸則と称されてい
る。かかるμ=255圧伸則を用い、出力Yに符号
化処理を施してPCM信号を得る方式がすでに
PCM―24B方式として商用化されている。
It is known that it can be found in the form of , where μ=
255 is called the μ=255 companding rule. There is already a method to obtain a PCM signal by applying encoding processing to the output Y using the μ = 255 companding rule.
It has been commercialized as the PCM-24B system.

ここで、μ=255圧伸則を15折線近似する場
合、第1区間のステツプ電圧、すなわち最小ステ
ツプ電圧はフルスケール電圧の(1/2)12倍であ る。そのため、圧伸DA変換器を12ビツト直線DA
変換器により構成すると、その素子精度が厳しく
なり、現在の技術では素子のトリミングなしで
LSI化することが困難であるという欠点がある。
その他のDA変換方式として計数形DA変換方式が
ある。この場合の素子精度は時間域の精度に変換
され受動素子精度を軽減することができるが、計
数クロツクが高くなり、演算増幅器の動作速度を
高速にしなければならないという欠点がある。
Here, when the companding law of μ=255 is approximated by a 15-fold line, the step voltage in the first section, that is, the minimum step voltage is (1/2) 12 times the full-scale voltage. Therefore, the companding DA converter can be converted into a 12-bit linear DA converter.
When configured with a converter, the accuracy of the element becomes strict, and current technology does not require trimming of the element.
The disadvantage is that it is difficult to implement into LSI.
Another DA conversion method is the counting type DA conversion method. In this case, the element accuracy is converted to time domain accuracy and the passive element accuracy can be reduced, but there is a drawback that the counting clock becomes high and the operating speed of the operational amplifier must be increased.

本発明の目的は、素子精度をトリミングなしで
LSI化できるまでに軽減でき、しかもアナログ回
路の動作速度を計数型などに比して低く定めるこ
とのできる圧伸DA変換器を提供することにあ
る。
The purpose of the present invention is to improve element accuracy without trimming.
It is an object of the present invention to provide a companding DA converter that can be reduced to the point where it can be implemented as an LSI, and in which the operating speed of an analog circuit can be set lower than that of a counting type.

本発明では、6ビツトと8ビツトの直線DA変
換器により圧伸DA変換器を構成し、入力デイジ
タル信号から、極性が正負いずれであるか判定
し、第1ないし第5区間の各々における復号化
を、上記8ビツト直線DA変換器からの外部基準
電圧を供給される6ビツト直線DA変換器で行な
い、第6ないし第8区間の各復号化を上記8ビツ
ト直線DA変換器で行なう。
In the present invention, a companding DA converter is configured with 6-bit and 8-bit linear DA converters, and it is determined from the input digital signal whether the polarity is positive or negative, and decoding is performed in each of the first to fifth sections. is performed by a 6-bit linear DA converter supplied with an external reference voltage from the 8-bit linear DA converter, and each decoding of the 6th to 8th sections is performed by the 8-bit linear DA converter.

以下に図面により本発明を詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.

第1図AおよびBは本発明において用いる圧伸
DA変換器のμ=255圧伸則の15折線近似特性の一
部を示し、ないしは折線の番号、すなわち区
間番号を示し、Δi(i=1〜8)は第i区間の
ステツプサイズを示す。ここで、最小ステツプ電
圧(第1区間のステツプ電圧)を2とすれば第1
区間ないし第8区間の最大出力値はそれぞれ31,
94,220,472,976,1984,4000,8032となる。
第1区間から第5区間までの各ステツプ出力は、
6ビツトの直線DA変換器の外部基準電圧とし
て、それぞれ、64,128,256,512,1024とする
ことにより得られる。これらの外部基準電圧およ
び第6区間から第8区間までの各ステツプ電圧は
8ビツトの直線DA変換器に対して8192の値を有
する外部基準電圧を与えることにより得られる。
したがつて、μ=255圧伸則を有する圧伸DA変換
器は6ビツトおよび8ビツトの直線DA変換器に
より構成することが可能である。
Figures 1A and B are drawings used in the present invention.
A part of the 15-fold line approximation characteristics of the μ=255 companding rule of the DA converter is shown, or the number of the broken line, that is, the section number is shown, and Δi (i=1 to 8) is the step size of the i-th section. Here, if the minimum step voltage (step voltage in the first section) is 2, then the first
The maximum output value of the section to the 8th section is 31, respectively.
94, 220, 472, 976, 1984, 4000, 8032.
Each step output from the 1st section to the 5th section is
These are obtained by setting the external reference voltages of the 6-bit linear DA converter to 64, 128, 256, 512, and 1024, respectively. These external reference voltages and each step voltage from the sixth section to the eighth section are obtained by applying an external reference voltage having a value of 8192 to an 8-bit linear DA converter.
Therefore, a companding DA converter having the μ=255 companding rule can be constructed from 6-bit and 8-bit linear DA converters.

第1図A,Bに示したμ=255圧伸則の15折線
近似特性に基いて構成した本発明圧伸DA変換器
の回路構成の一実施例を第2図に示す。
FIG. 2 shows an embodiment of the circuit configuration of the companding DA converter of the present invention, which is constructed based on the 15-fold line approximation characteristics of the μ=255 companding rule shown in FIGS. 1A and 1B.

第2図の圧伸DA変換器において符号1は極性
が正の基準電圧入力端子、2は極性が負の基準電
圧入力端子、3はデイジタル入力端子、4はスタ
ートパルス入力端子、5は圧伸DA変換出力端
子、6および7はそれぞれ外部基準電圧により動
作可能な6ビツトおよび8ビツトの直線DA変換
器、8はバツフア増幅器、9および10はアナロ
グスイツチ、11はクロツクパルス発生器、12
はクロツクパルス発生器11からのクロツクパル
スのタイミングで動作する逐次近似レジスタを有
する論理制御回路である。このDA変換器の動作
にあたつては、入力端子4のスタートパルスによ
り入力端子3から論理制御回路12にデイジタル
入力を続み込む。そのデイジタル入力の極性符号
が正ならばスイツチ9を端子1に接続し、極性符
号が負ならばスイツチ9を端子2に接続する。次
に論理制御回路12ではデイジタル入力中の3ビ
ツトの区間コードを解読し、その区間コードが第
1ないし第5区間のいずれかに該当する場合に
は、スイツチ10を6ビツト直線DA変換器6の
出力端子に接続し、同じく第6ないし第8区間の
いずれかに該当する場合にはスイツチ10を8ビ
ツトDA変換器7の出力端子に接続する。更に、
論理制御回路12により、デイジタル入力中の区
間内4ビツトのコードに対して、第1ないし第5
区間のいずれかの場合には8ビツト直線DA変換
器7の出力をそれぞれ64,128,256,512,1024
に選び、これら出力を6ビツト直線DA変換器6
の外部基準電圧として供給し、第1ないし第5区
間のそれぞれについて、6ビツト直線DA変換器
26のステツプのうち2ステツプから32ステツ
プ、18ステツプから48ステツプ、26ステツプから
56ステツプ、30ステツプから60ステツプ、32ステ
ツプから62ステツプを用いて復号化する。ただ
し、6ビツト直線DA変換器6のデイジタル入力
の最下位ビツト(LSB)は常に1に設定しておく
ものとする。第6ないし第8区間の区間内4ビツ
トのコードについては8ビツト直線DA変換器7
により直接復号化する。
In the companding DA converter shown in Fig. 2, 1 is a reference voltage input terminal with positive polarity, 2 is a reference voltage input terminal with negative polarity, 3 is a digital input terminal, 4 is a start pulse input terminal, and 5 is a companding terminal. DA conversion output terminals, 6 and 7 are respectively 6-bit and 8-bit linear DA converters that can be operated by external reference voltages, 8 is a buffer amplifier, 9 and 10 are analog switches, 11 is a clock pulse generator, 12
is a logic control circuit having a successive approximation register that operates at the timing of the clock pulse from the clock pulse generator 11. In operation of this DA converter, digital input is continued from the input terminal 3 to the logic control circuit 12 in response to a start pulse at the input terminal 4. If the polarity sign of the digital input is positive, switch 9 is connected to terminal 1, and if the polarity sign is negative, switch 9 is connected to terminal 2. Next, the logic control circuit 12 decodes the 3-bit section code in the digital input, and if the section code corresponds to one of the first to fifth sections, the switch 10 is switched to the 6-bit linear DA converter 6. The switch 10 is connected to the output terminal of the 8-bit DA converter 7 when the switch 10 corresponds to any of the sixth to eighth sections. Furthermore,
The logic control circuit 12 controls the first to fifth codes for the 4-bit code within the interval during digital input.
In any of the sections, the output of 8-bit linear DA converter 7 is 64, 128, 256, 512, 1024, respectively.
and convert these outputs into a 6-bit linear DA converter 6.
For each of the first to fifth sections, from 2 steps to 32 steps, from 18 steps to 48 steps, and from 26 steps of the steps of the 6-bit linear DA converter 26.
Decode using 56 steps, 30 steps to 60 steps, and 32 steps to 62 steps. However, it is assumed that the least significant bit (LSB) of the digital input of the 6-bit linear DA converter 6 is always set to 1. For the 4-bit code in the 6th to 8th sections, the 8-bit linear DA converter 7
Decrypt directly by

一般に、μ=255圧伸則を15折線近似すると最
小ステツプサイズΔはフルスケールの約4000分
の1となり12ビツトの精度が必要であるが、以上
説明したように本発明の圧伸DA変換器は6ビツ
トおよび8ビツトの直線DA変換器により圧伸則
を満たすように回路構成するから、これら変換器
の素子精度を従来のDA変換器の場合よりも軽減
することができる利点がある。本発明の圧伸DA
変換器は、電話音声を復号化する装置およびその
装置をLSI化する場合に極めて有用である。
Generally, when the companding rule of μ=255 is approximated by a 15-fold line, the minimum step size Δ1 is approximately 1/4000 of the full scale, and 12-bit precision is required. However, as explained above, the companding DA conversion of the present invention Since the circuit is configured to satisfy the companding law using 6-bit and 8-bit linear DA converters, there is an advantage that the element precision of these converters can be reduced compared to the case of conventional DA converters. Companding DA of the present invention
The converter is extremely useful for devices that decode telephone audio and for converting the devices into LSI.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図AおよびBは本発明で用いるμ=255圧
伸則の15折線近似の正出力の場合の圧伸DA変換
器出力―復号化ステツプ数特性を示す特性線図、
第2図は本発明における圧伸DA変換器の回路構
成例を示すブロツク線図である。 1…正基準電圧入力端子、2…負基準電圧入力
端子、3…デイジタル入力端子、4…スタートパ
ルス入力端子、5…DA変換器出力端子、6…6
ビツト直線DA変換器、7…8ビツト直線DA変換
器、8…バツフア増幅器、9,10…アナログス
イツチ、11…クロツクパルス発生器、12…論
理制御回路。
FIGS. 1A and 1B are characteristic diagrams showing the companding DA converter output-decoding step number characteristic in the case of positive output of the 15-fold line approximation of the μ=255 companding rule used in the present invention,
FIG. 2 is a block diagram showing an example of the circuit configuration of the companding DA converter according to the present invention. 1...Positive reference voltage input terminal, 2...Negative reference voltage input terminal, 3...Digital input terminal, 4...Start pulse input terminal, 5...DA converter output terminal, 6...6
Bit linear DA converter, 7... 8-bit linear DA converter, 8... Buffer amplifier, 9, 10... Analog switch, 11... Clock pulse generator, 12... Logic control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 μ=255圧伸則の15折線近似特性を有し、極
性を示す1ビツトの極性符号、前記入力アナログ
信号のレベルが前記15折線特性の正または負側の
第1ないし第8区間のいずれの区間に該当するか
を指定する3ビツトの区間符号および当該区間の
区間内レベルを示す4ビツトの区間内符号からな
る8ビツトのデイジタル信号をアナログ信号に復
号化する圧伸DA変換器において、外部基準電圧
を供給される入力端子を有する6ビツト直線DA
変換器および8ビツト直線DA変換器を具え、入
力デイジタル信号中の極性を判定した後に、該極
性に応じた外部基準電圧を前記8ビツト直線DA
変換器に加え、前記入力アナログ信号中の前記区
間符号が第1ないし第5区間のいずれかの区間を
指定する場合には、前記8ビツト直線DA変換器
からのアナログ出力を前記6ビツト直線DA変換
器に外部基準電圧として加え、しかも該6ビツト
直線DA変換器の最下位ビツトを常に1に設定し
ておき、前記6ビツト直線DA変換器からは指定
された区間に対応する範囲においてアナログ出力
を取り出し、および第6ないし第8区間のいずれ
かであると区間判定されたときには前記8ビツト
直線DA変換器からのアナログ出力を取り出して
前記入力アナログ信号に対応するアナログ信号を
形成することを特徴とする圧伸DA変換器。
1 It has a 15-fold line approximation characteristic of the μ=255 companding rule, a 1-bit polarity sign indicating polarity, and whether the level of the input analog signal is in the first to eighth sections on the positive or negative side of the 15-fold line characteristic. In a companding DA converter that decodes into an analog signal an 8-bit digital signal consisting of a 3-bit interval code specifying whether the data corresponds to the interval and a 4-bit intra-interval code indicating the intra-interval level of the interval, 6-bit linear DA with input terminal supplied with external reference voltage
converter and an 8-bit linear DA converter, and after determining the polarity in the input digital signal, an external reference voltage corresponding to the polarity is applied to the 8-bit linear DA converter.
In addition to the converter, if the interval code in the input analog signal specifies any one of the first to fifth intervals, the analog output from the 8-bit linear DA converter is converted to the 6-bit linear DA converter. It is applied as an external reference voltage to the converter, and the least significant bit of the 6-bit linear DA converter is always set to 1, and the 6-bit linear DA converter outputs an analog output within the range corresponding to the specified section. and when it is determined that the interval is one of the sixth to eighth intervals, the analog output from the 8-bit linear DA converter is extracted to form an analog signal corresponding to the input analog signal. Companding DA converter.
JP13824984A 1984-07-04 1984-07-04 Companding digital-analog converter Granted JPS6062728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13824984A JPS6062728A (en) 1984-07-04 1984-07-04 Companding digital-analog converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13824984A JPS6062728A (en) 1984-07-04 1984-07-04 Companding digital-analog converter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4669778A Division JPS6013579B2 (en) 1978-04-21 1978-04-21 Companding AD converter

Publications (2)

Publication Number Publication Date
JPS6062728A JPS6062728A (en) 1985-04-10
JPS6145412B2 true JPS6145412B2 (en) 1986-10-08

Family

ID=15217547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13824984A Granted JPS6062728A (en) 1984-07-04 1984-07-04 Companding digital-analog converter

Country Status (1)

Country Link
JP (1) JPS6062728A (en)

Also Published As

Publication number Publication date
JPS6062728A (en) 1985-04-10

Similar Documents

Publication Publication Date Title
JP2689689B2 (en) Series-parallel analog / digital converter
JPS63215223A (en) Analog/digital converter
JPS58104526A (en) Two-stage a/d converter
US4594576A (en) Circuit arrangement for A/D and/or D/A conversion with nonlinear D/A conversion
KR100235465B1 (en) Flash type a/d converter
US4369433A (en) Digital-to-analog converter and PCM encoder using the converter
US4143363A (en) Nonuniform translation between analog and digital signals by a piece-wise linear process
US5084701A (en) Digital-to-analog converter using cyclical current source switching
JP2001345700A (en) Analog-to-digital converter circuit
JPS6145412B2 (en)
JPS5841691B2 (en) Hisencapalus Fugou Henchyoushingouno Digital Shiyori Kairomou
JPS6243571B2 (en)
USRE32313E (en) Digital-to-analog converter and PCM encoder using the converter
JPS6013579B2 (en) Companding AD converter
JP3513809B2 (en) Pulse encoding type A / D converter
JP2877983B2 (en) A / D converter circuit
JPH0511445B2 (en)
JPS60108046U (en) analog digital conversion circuit
JP3141561B2 (en) Analog / digital conversion circuit
JPH0683071B2 (en) A / D converter
SU885947A1 (en) Device for regulating digitizing level
SU651475A1 (en) Analogue-digital converter
JPS6255732B2 (en)
JPS6166411A (en) Analog-digital converter
JPS6251826A (en) Adaptive delta modulator-demodulator