JPS6144846B2 - - Google Patents

Info

Publication number
JPS6144846B2
JPS6144846B2 JP53092131A JP9213178A JPS6144846B2 JP S6144846 B2 JPS6144846 B2 JP S6144846B2 JP 53092131 A JP53092131 A JP 53092131A JP 9213178 A JP9213178 A JP 9213178A JP S6144846 B2 JPS6144846 B2 JP S6144846B2
Authority
JP
Japan
Prior art keywords
lactose
content
drying
humidity
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53092131A
Other languages
Japanese (ja)
Other versions
JPS5519237A (en
Inventor
Takeshi Wakimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOA IYAKUHIN KOGYO KK
Original Assignee
TOA IYAKUHIN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOA IYAKUHIN KOGYO KK filed Critical TOA IYAKUHIN KOGYO KK
Priority to JP9213178A priority Critical patent/JPS5519237A/en
Publication of JPS5519237A publication Critical patent/JPS5519237A/en
Publication of JPS6144846B2 publication Critical patent/JPS6144846B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)

Description

【発明の詳細な説明】 本発明は賦形剤として有用なβ乳糖含有率の高
い結晶乳糖の製法に関する。 従来より、α乳糖一水和物、α乳糖無水物、β
乳糖などの乳糖を賦形剤として用いることは知ら
れている。しかしながら、α乳糖一水和物は圧縮
成形性が劣り、α乳糖無水物はα乳糖一水和物に
くらべて圧縮成形性はすぐれているが、吸湿によ
る体積増加が大きく、このため吸湿により錠剤の
ひび割れなどを生じるという欠点がある。またβ
乳糖は圧縮成形性がすぐれかつ吸湿による体積増
加が小さく、賦形剤としてすぐれているが、その
製造が困難であり大量供給に難点がある。 しかるに本発明者は、圧縮成形性がすぐれかつ
吸湿による体積増加が小さく、賦形剤としてすぐ
れており、しかも製造が容易な乳糖をうるべく鋭
意研究を重ねた結果、無定形乳糖を出発原料と
し、これを特定条件下で処理することによりβ乳
糖含有率の高い結晶乳糖がきわめて容易にえら
れ、かつ該結晶乳糖が賦形剤としてすぐれている
というまつたく新たな事実を見出し、本発明を完
成するにいたつた。 すなわち本発明は、無定形乳糖を30〜50℃の温
度で湿度65%RH以上の湿度雰囲気にさらして一
旦β乳糖結晶の110面の成長を示すX線回折角2
θ=10.5゜におけるピークが最大となる状態にも
たらし、ついでこれを乾燥することを特徴とする
β乳糖含有率の高い結晶乳糖製法に関する。 つぎに本発明のβ乳糖含有率の高い結晶乳糖の
製法を図面を参照しながら説明する。図面は無定
形乳糖を湿度雰囲気にさらしついで乾燥したばあ
いにおいて、全乳糖の含水量(吸着水および水和
水を含む)およびβ乳糖の生成量が処理時間とと
もにどのように変化するかを示す説明図である。
図面において、曲線Aは全乳糖の含水量の変化を
示すカーブ、曲線Bはβ乳糖の生成量の変化を示
すカーブである。曲線B上のX印はここでβ乳糖
の生成量が最大になることを示す。一点鎖線は乳
糖一水和物に相当する含水量を示す。 無定形乳糖を湿度65%以上の湿度雰囲気中にさ
らすと曲線Aに示されるごとく水分をどんどん吸
収してついに飽和に達する。無定形乳糖は吸着水
にミクロ的に溶解し、これからβ乳糖が曲線Bで
示されるごとく結晶化しはじめる。β乳糖は無水
物であつて吸湿しにくい物質であるから、無定形
乳糖がβ乳糖結晶に変換するにつれて系全体の含
水量は低下する。生成したβ乳糖結晶の一部は吸
着水に溶解し、これからα乳糖一水和物が生じ
る。したがつてβ乳糖結晶の生成量はある時点か
ら減少する。このためX線回折法によりβ乳糖結
晶の生成量を追跡し、β乳糖結晶の生成量が最大
となる時点で湿度処理を停止し、つぎの乾燥工程
にうつる。乾燥工程は一部生成したα乳糖一水和
物の水和水のみを残してβ乳糖およびα乳糖一水
和物に吸着している水分を除去する工程である。 本発明において出発原料として用いる無定形乳
糖は、たとえばα乳糖一水和物の飽和水溶液を室
温下に調製し、これをスプレードライヤーによつ
て噴霧乾燥することによつてうることができる。
その際乾燥湿度は160℃以下にならないようにす
るのが好ましい。乾燥温度が160℃以下になると
α乳糖無水物が生じ、好ましくない。 湿度処理は65%RH以上の湿度下で行なわれ
る。生成速度が大きい点から、とくに100%RHに
近い湿度が好ましい。湿度処理時の温度条件は30
〜50℃の範囲の温度が採用される。湿度処理は通
常無定形乳糖を前記湿度条件下に放置することに
よつて行なわれるが、適宜撹拌してもよい。 β乳糖結晶の生成量が最大となる時点の確認
は、湿度処理時に試料を適宜の時間間隔でサンプ
リングし、これをX線回折装置にかけてβ乳糖結
晶の110面に対応する回折角2θ=10.5゜のピー
クが最大となる時点を求めることによつて行なわ
れる。 β乳糖結晶の生成量が最大となつた時点で湿度
処理を停止し、つぎの乾燥工程にうつる。乾燥手
段としては、大気条件下での自然放置、加熱乾
燥、低湿度下での放置、減圧乾燥などの手段がい
ずれも採用され、これら手段を組合わせて用いて
もよい。加熱乾燥するばあいは、乾燥温度は90℃
以下が好ましい。乾燥温度が90℃を超えるとα乳
糖無水物が再生される惧れがある。なお乾燥時に
は適宜撹拌してもよい。 かくして本発明のβ乳糖含有率の高い結晶乳糖
がえられる。本発明の結晶乳糖におけるβ乳糖含
有率は通常55%(重量%、以下同様)以上であ
り、残部は実質的にα乳糖一水和物である。 本発明の結晶乳糖はβ乳糖にそれほど遜色なく
圧縮成形性にすぐれかつ吸湿による体積増加が小
さく、賦形剤としてすぐれている。しかもβ乳糖
にくらべて製造が容易であり、大量供給が可能で
あるという利点を有する。 本発明の結晶乳糖は医薬、食品など錠剤として
使用されるあらゆる物質を錠剤化する際の賦形剤
として好適に使用されうる。錠剤化に際しては被
錠剤化物質1部(重量部、以下同様)に対して通
常1〜10部程度用いられる。本発明の賦形剤を用
いて錠剤化する際の方法、条件はとくに制限され
ず、従来の方法、条件がそのまま採用されうる。 つぎに実施例、応用例および比較例をあげて本
発明のβ乳糖含有率の高い結晶乳糖の製法を説明
する。 実施例 1 無定形乳糖粉末(100メツシユ)100部を湿度
100%RH、温度40℃の条件下においてゆつくり撹
拌した。一定時間ごとに試料をサンプリングし、
X線回折装置(日本電子(株)製JDX−7S型)でCu
−Kα線により回折角2θ=10.5゜のピークの強
度を測定した。反応開始後約1時間で回折角2θ
=10.5゜のピークの強度が最大となつた。ついで
大気条件下において90℃で6時間乾燥して、結晶
乳糖95部をえた。 えられた結晶乳糖中のβ乳糖含有率は55%であ
つた。β乳糖含有率の測定はつぎのごとくして行
なつた。試料を五酸化リン上で減圧下に80℃で乾
燥し、その一定量をとりカールフイツシヤー法に
より水分を定量した。この水分量をα乳糖一水和
物の水和水と推定し(β乳糖は無水物であるか
ら)、α乳糖一水和物の含有率を求め、残部をβ
乳糖と推定してβ乳糖含有率を求めた。 実施例 2 湿度処理時の湿度を75%RHにかえたほかは実
施例1と同様にして実験を行なつた。このばあい
X線回折角2θ=10.5゜におけるピークの強度は
反応開始後2時間で最大となつた。結晶乳糖の収
量は97部であり、β乳糖含有率は55%であつた。 比較例 1 湿度処理時の湿度を45%RHにかえたほかは実
施例1と同様に実験を行なつた。このばあいX線
回折角2θ=10.5゜におけるピークの強度は反応
開始後4時間で最大となつた。結晶乳糖の収量は
97部であり、β乳糖含有率は40%と低かつた。 応用例1〜2および比較例2〜4 実施例1〜2でえられた各結晶乳糖100部をデ
ンプン50部とよく混合し、その0.5gを精秤し、
圧縮圧1ton/cm2で直径16mm、厚さ1.92mmに静的圧
縮して錠剤をえた。 えられた錠剤について錠剤硬度を測定した。さ
らに錠剤を室温で63%RHの湿度下に7日間放置
したものについて吸湿率および体積増加率を測定
し、かつ異常の有無を観察した。錠剤硬度はイン
ストロン型材料試験機を用いてたわみ引張り試験
法にしたがつて測定した。結果を次表に示す。 なお比較のために、α乳糖一水和物、α乳糖無
水物およびβ乳糖について前記と同様な実験を行
なつた。結果を次表に併記する。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing crystalline lactose with a high beta-lactose content useful as an excipient. Conventionally, α-lactose monohydrate, α-lactose anhydride, β-lactose
It is known to use lactose, such as lactose, as an excipient. However, α-lactose monohydrate has poor compression moldability, and α-lactose anhydride has superior compression moldability compared to α-lactose monohydrate, but the volume increase due to moisture absorption is large. It has the disadvantage of causing cracks, etc. Also β
Lactose has excellent compression moldability and a small increase in volume due to moisture absorption, making it an excellent excipient, but it is difficult to manufacture and difficult to supply in large quantities. However, as a result of extensive research into lactose, which has excellent compression moldability, a small increase in volume due to moisture absorption, is excellent as an excipient, and is easy to produce, the present inventor has developed a method using amorphous lactose as a starting material. We have discovered the new fact that by processing this under specific conditions, crystalline lactose with a high β-lactose content can be obtained very easily, and that this crystalline lactose is excellent as an excipient, and has developed the present invention. It was about to be completed. That is, in the present invention, amorphous lactose is exposed to a humidity atmosphere of 65% RH or higher at a temperature of 30 to 50°C, and once the X-ray diffraction angle 2 is
This invention relates to a method for producing crystalline lactose with a high β-lactose content, which is characterized by bringing the peak to a maximum at θ=10.5° and then drying it. Next, the method for producing crystalline lactose having a high β-lactose content according to the present invention will be explained with reference to the drawings. The figure shows how the water content of total lactose (including adsorbed water and hydration water) and the amount of β-lactose produced change with processing time when amorphous lactose is exposed to a humid atmosphere and dried. It is an explanatory diagram.
In the drawings, curve A is a curve showing changes in the water content of total lactose, and curve B is a curve showing changes in the amount of β-lactose produced. The X mark on curve B indicates that the amount of β-lactose produced is at its maximum here. The dashed line indicates the water content corresponding to lactose monohydrate. When amorphous lactose is exposed to a humid atmosphere of 65% or higher, it absorbs more and more water as shown in curve A, finally reaching saturation. Amorphous lactose is microscopically dissolved in the adsorbed water, and from this point β-lactose begins to crystallize as shown by curve B. Since β-lactose is an anhydrous substance that does not easily absorb moisture, the water content of the entire system decreases as amorphous lactose converts to β-lactose crystals. A part of the generated β-lactose crystals is dissolved in the adsorbed water, and α-lactose monohydrate is generated from this. Therefore, the amount of β-lactose crystals produced decreases after a certain point. For this reason, the amount of β-lactose crystals produced is tracked by X-ray diffraction, and when the amount of β-lactose crystals produced reaches the maximum, the humidity treatment is stopped and the next drying step is started. The drying step is a step in which water adsorbed on β-lactose and α-lactose monohydrate is removed, leaving only the hydration water of partially produced α-lactose monohydrate. The amorphous lactose used as a starting material in the present invention can be obtained, for example, by preparing a saturated aqueous solution of α-lactose monohydrate at room temperature and spray-drying it with a spray dryer.
At that time, it is preferable that the drying humidity does not fall below 160°C. If the drying temperature is lower than 160°C, α-lactose anhydride will be produced, which is not preferable. Humidity treatment is performed at a humidity of 65% RH or higher. In particular, a humidity close to 100% RH is preferable because the production rate is high. The temperature condition during humidity treatment is 30
Temperatures in the range ~50°C are employed. The humidity treatment is usually carried out by leaving the amorphous lactose under the above-mentioned humidity conditions, but it may also be stirred as appropriate. To confirm the point at which the amount of β-lactose crystals produced reaches its maximum, sample the sample at appropriate time intervals during humidity treatment, and apply it to an X-ray diffraction device to obtain a diffraction angle of 2θ = 10.5° corresponding to the 110 planes of the β-lactose crystal. This is done by determining the point in time when the peak of When the amount of β-lactose crystals produced reaches the maximum, the humidity treatment is stopped and the next drying step is started. As the drying means, any means such as natural leaving under atmospheric conditions, heat drying, leaving under low humidity, reduced pressure drying, etc. may be employed, and a combination of these means may be used. When drying by heating, the drying temperature is 90℃.
The following are preferred. If the drying temperature exceeds 90°C, there is a risk that α-lactose anhydride will be regenerated. Note that during drying, it may be appropriately stirred. In this way, the crystalline lactose of the present invention with a high β-lactose content can be obtained. The β-lactose content in the crystalline lactose of the present invention is usually 55% (weight %, the same applies hereinafter) or more, and the remainder is substantially α-lactose monohydrate. The crystalline lactose of the present invention is comparable to β-lactose, has excellent compression moldability, and has a small increase in volume due to moisture absorption, making it excellent as an excipient. Furthermore, it has the advantage that it is easier to produce and can be supplied in large quantities compared to β-lactose. The crystalline lactose of the present invention can be suitably used as an excipient for tabletting any substance used in tablet form, such as medicines and foods. In tabletting, it is usually used in an amount of about 1 to 10 parts per 1 part (by weight, the same applies hereinafter) of the substance to be tabletted. The method and conditions for tabletting using the excipient of the present invention are not particularly limited, and conventional methods and conditions may be employed as they are. Next, the method for producing crystalline lactose having a high β-lactose content according to the present invention will be explained with reference to Examples, Application Examples, and Comparative Examples. Example 1 Humidify 100 parts of amorphous lactose powder (100 mesh)
The mixture was gently stirred under conditions of 100% RH and a temperature of 40°C. Sampling samples at regular intervals,
Cu using an X-ray diffraction device (JDX-7S model manufactured by JEOL Ltd.)
The intensity of the peak at a diffraction angle of 2θ=10.5° was measured using -Kα radiation. The diffraction angle 2θ changes about 1 hour after the start of the reaction.
The intensity of the peak at =10.5° was the maximum. It was then dried at 90° C. for 6 hours under atmospheric conditions to yield 95 parts of crystalline lactose. The β-lactose content in the crystalline lactose obtained was 55%. The β-lactose content was measured as follows. The sample was dried over phosphorus pentoxide under reduced pressure at 80°C, and a certain amount of the sample was taken to determine the water content by Karl Fischer method. This water content is estimated to be the hydration water of α-lactose monohydrate (because β-lactose is anhydrous), the content of α-lactose monohydrate is determined, and the remaining
The β-lactose content was determined by assuming that it was lactose. Example 2 An experiment was conducted in the same manner as in Example 1 except that the humidity during the humidity treatment was changed to 75% RH. In this case, the intensity of the peak at an X-ray diffraction angle of 2θ=10.5° reached its maximum 2 hours after the start of the reaction. The yield of crystalline lactose was 97 parts, and the β-lactose content was 55%. Comparative Example 1 An experiment was conducted in the same manner as in Example 1 except that the humidity during the humidity treatment was changed to 45% RH. In this case, the intensity of the peak at an X-ray diffraction angle of 2θ=10.5° reached its maximum 4 hours after the start of the reaction. The yield of crystalline lactose is
97 parts, and the β-lactose content was as low as 40%. Application Examples 1 to 2 and Comparative Examples 2 to 4 100 parts of each crystalline lactose obtained in Examples 1 to 2 were thoroughly mixed with 50 parts of starch, and 0.5 g of the mixture was accurately weighed.
Tablets were obtained by static compression to a diameter of 16 mm and a thickness of 1.92 mm at a compression pressure of 1 ton/cm 2 . The tablet hardness of the obtained tablets was measured. Furthermore, the moisture absorption rate and volume increase rate of the tablets left at room temperature and humidity of 63% RH for 7 days were measured, and the presence or absence of abnormalities was observed. Tablet hardness was measured using an Instron type material testing machine according to the deflection tensile test method. The results are shown in the table below. For comparison, experiments similar to those described above were conducted using α-lactose monohydrate, α-lactose anhydride, and β-lactose. The results are also listed in the table below. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

図面は無定形乳糖を湿度雰囲気にさらしついで
乾燥したばあいにおける、全乳糖の含水量および
β乳糖の生成量と処理時間との関係を示す説明図
である。 (図面の符号)、A:全乳糖の含水量の変化を
示すカーブ、B:β乳糖の生成量を示すカーブ。
The drawing is an explanatory diagram showing the relationship between the water content of total lactose, the amount of β-lactose produced, and the processing time when amorphous lactose is exposed to a humid atmosphere and dried. (Symbols in drawings), A: Curve showing changes in water content of total lactose, B: Curve showing production amount of β-lactose.

Claims (1)

【特許請求の範囲】 1 無定形乳糖を30〜50℃の温度で湿度65%RH
以上の湿度雰囲気にさらして一旦β乳糖結晶の
110面の成長を示すX線回折角2θ=10.5゜にお
けるピークが最大となる状態にもたらし、ついで
これを乾燥することを特徴とするβ乳糖含有率の
高い結晶乳糖の製法。 2 乾燥を90℃以下で行なう特許請求の範囲第1
項記載のβ乳糖含有率の高い結晶乳糖の製法。 3 β乳糖含有率が55重量%以上である特許請求
の範囲第1項記載のβ乳糖含有率の高い結晶乳糖
の製法。
[Claims] 1. Amorphous lactose at a temperature of 30 to 50°C and a humidity of 65% RH.
Once exposed to the above humidity atmosphere, the β-lactose crystals
A method for producing crystalline lactose with a high β-lactose content, which is characterized by bringing the crystalline lactose to a state where the peak at an X-ray diffraction angle of 2θ = 10.5°, which indicates the growth of 110 planes, is maximum, and then drying the state. 2 Claim 1 in which drying is carried out at 90°C or lower
A method for producing crystalline lactose with a high β-lactose content as described in . 3. The method for producing crystalline lactose with a high β-lactose content according to claim 1, wherein the β-lactose content is 55% by weight or more.
JP9213178A 1978-07-27 1978-07-27 Crystalline lactose with high beta-lactose content and diluent comprising it Granted JPS5519237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9213178A JPS5519237A (en) 1978-07-27 1978-07-27 Crystalline lactose with high beta-lactose content and diluent comprising it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9213178A JPS5519237A (en) 1978-07-27 1978-07-27 Crystalline lactose with high beta-lactose content and diluent comprising it

Publications (2)

Publication Number Publication Date
JPS5519237A JPS5519237A (en) 1980-02-09
JPS6144846B2 true JPS6144846B2 (en) 1986-10-04

Family

ID=14045868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9213178A Granted JPS5519237A (en) 1978-07-27 1978-07-27 Crystalline lactose with high beta-lactose content and diluent comprising it

Country Status (1)

Country Link
JP (1) JPS5519237A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3577656D1 (en) * 1984-07-23 1990-06-21 Lilly Co Eli PHARMACEUTICAL COMPOSITIONS OF CEFTAZIDIM.
DE60130657T2 (en) * 2000-07-20 2008-07-03 Campina Nederland Holding B.V. METHOD FOR PREPARING A CRYSTALLINE TABLETANT AID, THE AGENT THEREOF, AND ITS USE
GB0030074D0 (en) * 2000-12-08 2001-01-24 Univ London Pharmacy Particulate inhalation carrier
JP5156397B2 (en) 2005-02-10 2013-03-06 グラクソ グループ リミテッド Method for producing lactose using preclassification technology and pharmaceutical preparation formed from the lactose

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885746A (en) * 1972-02-18 1973-11-13
JPS51146411A (en) * 1975-06-10 1976-12-16 Meiji Milk Prod Co Ltd Preparation of beta-lactose

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885746A (en) * 1972-02-18 1973-11-13
JPS51146411A (en) * 1975-06-10 1976-12-16 Meiji Milk Prod Co Ltd Preparation of beta-lactose

Also Published As

Publication number Publication date
JPS5519237A (en) 1980-02-09

Similar Documents

Publication Publication Date Title
Bhuiyan et al. Study of crystalline behavior of heat-treated wood cellulose during treatments in water
JP2014532639A (en) Crystalline and amorphous forms of SGLT2 inhibitors
JPS6144846B2 (en)
JPS6055495B2 (en) Solid lithium lactate containing a large amount of lactic acid and its production method
SU751333A3 (en) Method of preparing beta-dextrose
Katzbeck et al. Amylose complexes
US3907869A (en) Method of producing calcium pangamate
SU387997A1 (en) METHOD OF SORPTION OF ALKALOIDS BY IONITES
NO143346B (en) PROCEDURE FOR THE PREPARATION OF THYMOSIN ALFA / 1
CN108558676B (en) Preparation method of N, N-dibenzylethylenediamine diacetate
GB734377A (en) Improvements in or relating to the manufacture of reductic acid
SU93723A1 (en) The method of obtaining 3-cyan-4-urea-6-methyl-2-pyridone
DE847148C (en) Process for the production of highly active catalysts for the thermal production of vinyl esters or ethers
JPS5735548A (en) Drying method of amino acid crystal
JP2568341B2 (en) Preparation of trisodium phosphonoformate hexahydrate
JPH07103155B2 (en) Method for producing stable α-L-aspartyl-L-phenylalanine methyl ester
SU1281507A1 (en) Method of producing harmless calcium peroxide
US3016385A (en) Method of preparing glyoxal hydrate
JPS51143605A (en) Process for preparation of 1,3- propanediols
SU133886A1 (en) Method for preparing 4-amino-2,4-dimethyl-delta-2-tetrahydro-6-pyridone-4-carboxyl amide
SU576884A1 (en) Method of obtaining dextrin
JPS60200824A (en) Magnesia and its production
CA1089446A (en) Sodium cefamandole crystalline forms
Erhardt et al. Facile formation of quaternary azetidinium compounds during triflation of dialkylaminopropanols
SU99024A1 (en) The method of obtaining the finished dressing