JPS6144807B2 - - Google Patents

Info

Publication number
JPS6144807B2
JPS6144807B2 JP14595181A JP14595181A JPS6144807B2 JP S6144807 B2 JPS6144807 B2 JP S6144807B2 JP 14595181 A JP14595181 A JP 14595181A JP 14595181 A JP14595181 A JP 14595181A JP S6144807 B2 JPS6144807 B2 JP S6144807B2
Authority
JP
Japan
Prior art keywords
barium sulfate
particle size
present
barium
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14595181A
Other languages
Japanese (ja)
Other versions
JPS57145031A (en
Inventor
Kyoshi Shinozuka
Koichi Ootsu
Hiroshi Fukumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onahama Sakai Kagaku KK
Original Assignee
Onahama Sakai Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onahama Sakai Kagaku KK filed Critical Onahama Sakai Kagaku KK
Priority to JP14595181A priority Critical patent/JPS57145031A/en
Publication of JPS57145031A publication Critical patent/JPS57145031A/en
Publication of JPS6144807B2 publication Critical patent/JPS6144807B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は硫酸バリウムの製造方法に関し、詳し
くは一次粒子の平均粒径が0.01〜0.08μである超
微細硫酸バリウムの製造方法に関する。 従来、硫酸バリウムは一般的には硫酸ナトリウ
ム水溶液と硫化バリウム水溶液とを反応させる水
溶液反応により製造されているが、このようにし
て得られる硫酸バリウムは、通常、その平均粒径
が0.3〜0.8μと大きく、且つ、その粒径分布も広
い。従つて、従来の硫酸バリウムは一般に隠蔽力
が大きいために、これを配合した樹脂組成物から
シート、フイルム、容器、工業部品、装飾品等の
各種成形品を製造した場合、その成形品は透明性
に劣る欠点がある。また、同様に塗料や印刷イン
キにおいて透明顔料又は体質顔料として用いた場
合にも、硫酸バリウム粒子の光散乱のために一般
に透明性や表面光沢にすぐれる乾燥被膜を得難
い。更に、例えば濃色塗料の場合には、硫酸バリ
ウムが光散乱により塗膜を白濁させると共に、有
色顔料自体が分散性が悪いために、二次凝集を起
こしやすく、鮮明で光沢する濃度の塗膜を得るこ
とができない。 このために平均粒径が約0.1μの硫酸バリウム
の製造方法が既に提案されているが(特公昭50−
33984号公報)、この方法によつて得られる硫酸バ
リウムもその用途によつては尚粒径が大きいうえ
に、粒径分布も広い。 本発明は上記した種々の問題を解決するために
なされたものであつて、平均粒径が従来品より遥
かに小さく、且つ、粒径分布が非常に狭い超微細
硫酸バリウムの製造方法を提供することを目的と
する。 本発明による硫酸バリウムの製造方法は、硫化
バリウム水溶液と硫酸水溶液とを硫酸に対して硫
化バリウム濃度が常に過剰となるように連続的に
反応槽に導き、激しく撹拌しながら、10分以下の
平均滞留時間にて反応させることを特徴とする。
このようにして得られる硫酸バリウムは一次粒子
の平均粒径が0.01〜0.08μであり、しかも粒径0.1
μ以下の一次粒子数が全体の90%以上、好ましく
は95%以上を占めるような粒径分布を有する。 本発明の方法においては、硫化バリウム水溶液
と硫酸水溶液とを反応させる水溶液反応におい
て、硫化バリウムが硫酸に対して常に0.05〜100
%、好ましくは0.1〜20%過剰となるように反応
させる。反応途中で硫酸が硫化バリウムに対して
一時的に過剰になると、生成硫酸バリウム粒子が
相互に付着、凝集するので、目的とする粒径の硫
酸バリウムを得難く、上記範囲より多いときは反
応後の処理液量が徒らに多くなつて実用的でない
からである。本発明において、反応槽に供給する
硫酸水溶液の濃度は0.2〜5モル/、好ましく
は0.5〜2モル/であり、余りに濃度の小さい
硫酸水溶液を用いると、上記と同様に反応後の処
理に難点があり、濃度の大きい硫酸水溶液を用い
ると、反応時に反応温度が上昇し、得られる硫酸
バリウムの粒径が大きくなる傾向があるので好ま
しくない。反応槽に供給する硫化バリウム水溶液
の濃度は、反応温度にもよるが、0.1〜2モル/
、好ましくか0.2〜1.2モル/が適当である。
反応温度も特に制限されないが、通常、30〜100
℃、好ましくは50〜80℃である。 本発明においては、硫化バリウム水溶液と硫酸
水溶液との水溶液反応を連続的に反応槽に導き、
激しく撹拌するために、反応槽としては例えばイ
ンペラを備えたポンプが好適である。原料水溶液
の反応槽内の平均滞留時間は特に制限されない
が、通常、10分以下でよく、好ましくは10秒以
下、特に好ましくは1秒以下である。硫化バリウ
ムの平均反応率は、特に制限されないが、80%以
上、特に90%以上が好適である。反応後、例えば
ポンプ吐出液を過、水洗し、スラリー化して噴
霧乾燥すれば一次粒子の平均粒径が0.01〜0.08μ
である粒径50〜500μ程度の硫酸バリウムを得る
ことができる。必要ならば、これをハンマー粉砕
する。 可視光の波長は380〜780nmであるから、粒径
が光の半波長以下、即ち、0.19μ以下であれば、
理論的には光はその粒子を透過する。本発明によ
る超微細硫酸バリウムは、上記のように、一次粒
子の平均粒径が0.01〜0.08μであり、且つ、一次
粒子の粒径分布は後に説明するように、実質的に
すべてが光の半波長以下にあるから、樹脂や樹脂
溶液に一次粒子として分散させた場合に実質的に
透明である。従つて、本発明の超微細硫酸バリウ
ムは種々の樹脂製品に有利に用いられる。 例えば、シート、フイルム、容器等の各種の樹
脂成形品を得る場合に、本発明の硫酸バリウムを
充填剤又は透明顔料として用いることにより、透
明性が極めてすぐれた成形品を得ることができ
る。 本発明の超微細硫酸バリウムは熱硬化性樹脂の
成形品の製造にも透明顔料又は充填剤として好適
に用いることができ、更に、塗料、印刷インキ
等、樹脂乾燥被膜を形成するためのすべての樹脂
組成物に透明顔料、体質顔料、分散助剤等の種々
の目的のために有利に用いることができる。即
ち、本発明の硫酸バリウムは塗料、印刷インキ等
の通常の顔料分散条件下に容易に一次粒子に分散
するので、得られる樹脂被膜は硫酸バリウムの光
散乱に基づく白濁が起こらず、従つて、これを体
質顔料として多量に用いても、極めて透明で且つ
表面光沢のよい被膜を得ることができるのであ
る。濃色の有色塗料に体質顔料として用いれば、
そのすぐれた透明性のゆえに、鮮明な色調の被膜
が得られる。特に、有色有機顔料は濃色顔料とし
てよく用いられるが、これは一般にビヒクルへの
分散性が良好でなく、更に、従来の硫酸バリウム
を体質顔料として用いた場合には、その光散乱の
ために塗膜が白味を帯びるので、到底、鮮明で光
沢ある濃色被膜を得ることができないが、本発明
の硫酸バリウムによれば、透明性のみならず、そ
のすぐれた分散性のために、有色有機顔料の分散
助剤としても作用し、かくして従来に比較して著
しく色調が鮮明で光沢ある濃色の樹脂被膜が得ら
れるのである。 更に、本発明の方法に従つて、水溶液反応後、
過、水洗し、200〜600g/の濃度にスラリー
化した超微細硫酸バリウムは、一次粒子が相互に
連なつて立体的な三次元網目構造を形成し、かく
してスラリーは非ニユートン粘性を示す。このよ
うなスラリーを噴霧乾燥して造粒した硫酸バリウ
ムは、一次粒子が相互に連なつた立体構造を保持
しており、これをインキや塗料組成物に分散させ
ると、硫酸バリウムは一次粒子にまで容易に分散
すると共に、組成物中においても上記のような立
体構造を形成し、組成物に非ニユートン粘性を与
える。この結果、塗料、インキ等の場合に問題と
なることが多い所謂「たれ」を防いで塗膜の肉も
ちを良好にする。このため、前記したように顔料
の分散性を高める効果と相俟つて、作業性にすぐ
れた樹脂組成物を得ることができる。 本発明の方法は、以上のように、従来の水溶液
反応と異なり、硫化バリウム水溶液と硫酸水溶液
とを硫化バリウム濃度が常に過剰となるように制
御しつつ、連続的に反応槽に導き、効果的な撹拌
の下に好ましくは短時間反応させて、反応系にお
ける生成硫酸バリウムの粒子成長を抑制するの
で、一次粒子径が従来品より遥かに小さく、且つ
粒径分布の狭い硫酸バリウムが得られるのであ
る。また、硫化バリウムを硫酸に対して過剰とし
て反応させるので、得られる硫酸バリウムはPH調
整することなく、種々の用途に供することができ
る。 以下に実施例を挙げて本発明を説明するが、本
発明はこれら実施例により限定されるものではな
い。 実施例 吸込口径1.5インチ、吐出口径1インチ、内容
積850c.c.、インペラー回転数2380rpmのニツソワ
ーマンポンプ(太平洋金属(株)製)を反応槽として
用い、このポンプに濃度11g/(1.1モル/
)、温度20℃の硫酸水溶液を700/時の一定割
合にて吸込ませると共に、ポンプ吐出液の硫化バ
リウム濃度が6g/となるように、濃度120g/
(0.71モル/)、温度50℃の硫化バリウム水
溶液をその吸込量を制御しつつ約1200/時の割
合にてポンプに吸込ませ(硫化バリウム濃度約10
%過剰)、平均滞留時間0.17秒、硫化バリウムの
平反応率92%にてポンプから吐出させた。 ポンプ吐出液をフイルタープレスにて濾過水洗
後、得られたケーキを水中に高速撹拌して、濃度
500g/のスラリーとし、スプレードライヤー
にて乾燥させた。以下、これを本発明品という。 比較のために、上記と同一の反応装置を用い、
ポンプの吐出液のPHが1.5となるように硫化バリ
ウム水溶液の流量を制御する以外は、上記と同一
の条件下に硫酸と硫化バリウムとを反応させた。
得られたスラリーを水酸化ナトリウム水溶液にて
PH7に中和し、更に、水酸化ナトリウム濃度が
10g/となるように水酸化ナトリウムを添加
し、70℃にて4時間熟成した。次いで、このスラ
リーをフイルタープレスにて濾過水洗した後、上
記本発明品と同様に処理し、スプレードライヤー
にて乾燥した。以下、これを比較品1という。 更に比較のために、特公昭50−33984号公報に
記載された方法に従つて超微細硫酸バリウムを製
造した。即ち、1.4モル/の硫酸ナトリウム水
溶液1を50℃の温度で5容積の反応槽に仕込
み、この中にヘキサメタリン酸ナトリウム3.3gを
添加、溶解させた。この混合溶液を撹拌しつつ、
これに0.8モル/の硫化バリウム水溶液1.75
を滴下し、50℃の温度で1時間反応させた。滴下
終了後、更に30分間撹拌した。得られたスラリー
をフイルムープレスにて濾過水洗し、含水ケーキ
を100℃の温度で24時間乾燥後、粉砕して微細硫
酸バリウムを得た。以下、これを比較品2とい
う。 以上のようにして得た本発明品、比較品1及び
2のそれぞれ300個の粒子について、10万倍の電
子顕微鏡写真により、定方向の粒径を測定して粒
径分布を求めた、結果を第1表に示す。尚、例え
ば、粒径が0.02μとは、実際の粒径が0.015μ以
上、0.025μ未満の粒径である。 また、第1図に本発明品、比較品1及び2の粒
径分布をグラフ化して示す。第2図、第3図及び
第6図はそれぞれ本発明品、比較品2及び1の上
記電子顕微鏡写真である。第5図には低下に比較
The present invention relates to a method for producing barium sulfate, and more particularly to a method for producing ultrafine barium sulfate whose primary particles have an average particle size of 0.01 to 0.08μ. Conventionally, barium sulfate has generally been produced by an aqueous reaction in which an aqueous sodium sulfate solution and an aqueous barium sulfide solution are reacted, but the barium sulfate obtained in this way usually has an average particle size of 0.3 to 0.8μ. It is large and has a wide particle size distribution. Therefore, since conventional barium sulfate generally has a large hiding power, when various molded products such as sheets, films, containers, industrial parts, and decorative items are manufactured from resin compositions containing this barium sulfate, the molded products are transparent. There are disadvantages that are inferior to gender. Similarly, when used as a transparent pigment or extender pigment in paints or printing inks, it is generally difficult to obtain a dry film with excellent transparency and surface gloss due to light scattering of barium sulfate particles. Furthermore, in the case of dark-colored paints, for example, barium sulfate causes the paint film to become cloudy due to light scattering, and the colored pigments themselves have poor dispersibility, which tends to cause secondary aggregation, resulting in a clear and glossy paint film. can't get it. For this purpose, a method for producing barium sulfate with an average particle size of approximately 0.1μ has already been proposed (Tokuko Kokō 50-
33984), the barium sulfate obtained by this method also has a large particle size depending on its use, and also has a wide particle size distribution. The present invention was made to solve the various problems described above, and provides a method for producing ultrafine barium sulfate whose average particle size is much smaller than conventional products and whose particle size distribution is extremely narrow. The purpose is to The method for producing barium sulfate according to the present invention involves continuously introducing a barium sulfide aqueous solution and a sulfuric acid aqueous solution into a reaction tank so that the barium sulfide concentration is always in excess of the sulfuric acid, and stirring vigorously for an average of 10 minutes or less. It is characterized by the reaction being carried out over a residence time.
The barium sulfate obtained in this way has an average primary particle size of 0.01 to 0.08 μ, and a particle size of 0.1
It has a particle size distribution in which the number of primary particles of μ or less accounts for 90% or more, preferably 95% or more of the total. In the method of the present invention, in the aqueous reaction in which a barium sulfide aqueous solution and a sulfuric acid aqueous solution are reacted, barium sulfide always has a ratio of 0.05 to 100% relative to sulfuric acid.
%, preferably 0.1 to 20% excess. If sulfuric acid temporarily becomes excessive with respect to barium sulfide during the reaction, the barium sulfate particles produced will adhere to each other and aggregate, making it difficult to obtain barium sulfate of the desired particle size. This is because the amount of processing liquid becomes unnecessarily large and is not practical. In the present invention, the concentration of the sulfuric acid aqueous solution supplied to the reaction tank is 0.2 to 5 mol/, preferably 0.5 to 2 mol/; if a sulfuric acid aqueous solution with too low concentration is used, it will be difficult to process after the reaction as described above. If a highly concentrated sulfuric acid aqueous solution is used, the reaction temperature will rise during the reaction and the particle size of the resulting barium sulfate will tend to increase, which is not preferable. The concentration of the barium sulfide aqueous solution supplied to the reaction tank is 0.1 to 2 mol/min, depending on the reaction temperature.
, preferably 0.2 to 1.2 mol/.
The reaction temperature is also not particularly limited, but is usually between 30 and 100°C.
℃, preferably 50 to 80℃. In the present invention, an aqueous reaction between a barium sulfide aqueous solution and a sulfuric acid aqueous solution is continuously introduced into a reaction tank,
For vigorous stirring, a pump equipped with an impeller, for example, is suitable as the reaction tank. The average residence time of the raw material aqueous solution in the reaction tank is not particularly limited, but it is usually 10 minutes or less, preferably 10 seconds or less, particularly preferably 1 second or less. The average reaction rate of barium sulfide is not particularly limited, but is preferably 80% or more, particularly 90% or more. After the reaction, for example, if the pump discharge liquid is filtered, washed with water, slurried, and spray-dried, the average particle size of the primary particles will be 0.01 to 0.08μ.
It is possible to obtain barium sulfate with a particle size of about 50 to 500μ. If necessary, crush this with a hammer. Since the wavelength of visible light is 380 to 780 nm, if the particle size is less than half the wavelength of light, that is, less than 0.19μ,
In theory, light can pass through the particles. As mentioned above, the ultrafine barium sulfate according to the present invention has an average primary particle size of 0.01 to 0.08μ, and as will be explained later, substantially all of the primary particles are transparent to light. Since it is less than half a wavelength, it is substantially transparent when dispersed as primary particles in a resin or resin solution. Therefore, the ultrafine barium sulfate of the present invention can be advantageously used in various resin products. For example, when obtaining various resin molded products such as sheets, films, containers, etc., by using the barium sulfate of the present invention as a filler or transparent pigment, molded products with extremely excellent transparency can be obtained. The ultrafine barium sulfate of the present invention can be suitably used as a transparent pigment or filler in the production of thermosetting resin molded products, and can also be used in all applications for forming resin dry coatings, such as paints and printing inks. It can be advantageously used in resin compositions for various purposes such as transparent pigments, extender pigments, and dispersion aids. That is, since the barium sulfate of the present invention is easily dispersed into primary particles under normal pigment dispersion conditions for paints, printing inks, etc., the resulting resin coating does not become cloudy due to light scattering of barium sulfate, and therefore, Even if a large amount of this is used as an extender pigment, an extremely transparent film with good surface gloss can be obtained. If used as an extender pigment in dark colored paints,
Due to its excellent transparency, coatings with vivid colors can be obtained. In particular, colored organic pigments are often used as dark pigments, but they generally do not have good dispersibility in vehicles, and furthermore, when conventional barium sulfate is used as an extender pigment, its light scattering Since the coating film has a whitish tinge, it is impossible to obtain a clear, glossy, dark-colored coating. However, the barium sulfate of the present invention not only has transparency but also has excellent dispersibility, making it impossible to obtain a colored coating. It also acts as a dispersion aid for organic pigments, thus making it possible to obtain a deep-colored resin coating with a much clearer and glossier color tone than in the past. Furthermore, according to the method of the present invention, after the aqueous reaction,
Ultrafine barium sulfate, which is filtered, washed with water, and slurried to a concentration of 200 to 600 g/min, has primary particles interconnected to form a three-dimensional three-dimensional network structure, and thus the slurry exhibits non-Newtonian viscosity. Barium sulfate, which is granulated by spray-drying such a slurry, has a three-dimensional structure in which primary particles are interconnected, and when this is dispersed in an ink or paint composition, barium sulfate becomes primary particles. In addition to being easily dispersed, it also forms the above-mentioned three-dimensional structure in the composition, giving the composition non-Newtonian viscosity. As a result, so-called "sag", which is often a problem with paints, inks, etc., is prevented and the durability of the coating film is improved. Therefore, in combination with the effect of improving the dispersibility of the pigment as described above, a resin composition with excellent workability can be obtained. As described above, the method of the present invention differs from conventional aqueous solution reactions in that an aqueous barium sulfide solution and an aqueous sulfuric acid solution are continuously introduced into a reaction tank while controlling the barium sulfide concentration to always be in excess. The reaction is preferably carried out for a short period of time under thorough stirring to suppress the particle growth of the barium sulfate produced in the reaction system, so barium sulfate with a primary particle size much smaller than conventional products and a narrow particle size distribution can be obtained. be. Furthermore, since barium sulfide is reacted in excess of sulfuric acid, the obtained barium sulfate can be used for various purposes without adjusting the pH. The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples. Example A Nitsuso Warman pump (manufactured by Taiheiyo Kinzoku Co., Ltd.) with a suction port diameter of 1.5 inches, a discharge port diameter of 1 inch, an internal volume of 850 c.c., and an impeller rotation speed of 2380 rpm was used as a reaction tank. /
), a sulfuric acid aqueous solution at a temperature of 20°C is sucked in at a constant rate of 700 g/hour, and the barium sulfide concentration of the pump discharge liquid is 6 g/hour, and the concentration is 120 g/hour.
(0.71 mol/hour), a barium sulfide aqueous solution at a temperature of 50°C is sucked into the pump at a rate of approximately 1200/hour while controlling the suction amount (barium sulfide concentration approximately 10
% excess), an average residence time of 0.17 seconds, and an average reaction rate of barium sulfide of 92%. After filtering the pump discharge liquid with a filter press and washing with water, the resulting cake was stirred at high speed in water to determine the concentration.
A 500 g slurry was prepared and dried using a spray dryer. Hereinafter, this will be referred to as the product of the present invention. For comparison, using the same reactor as above,
Sulfuric acid and barium sulfide were reacted under the same conditions as above, except that the flow rate of the barium sulfide aqueous solution was controlled so that the pH of the pump discharge liquid was 1.5.
The obtained slurry was added to an aqueous sodium hydroxide solution.
Neutralizes to pH7, and further increases sodium hydroxide concentration.
Sodium hydroxide was added to the mixture at a concentration of 10 g, and the mixture was aged at 70°C for 4 hours. Next, this slurry was filtered and washed with water using a filter press, treated in the same manner as the above-mentioned product of the present invention, and dried using a spray dryer. Hereinafter, this will be referred to as comparative product 1. Furthermore, for comparison, ultrafine barium sulfate was produced according to the method described in Japanese Patent Publication No. 50-33984. That is, 1.4 mol/aqueous sodium sulfate solution 1 was charged into a 5-volume reaction tank at a temperature of 50°C, and 3.3 g of sodium hexametaphosphate was added and dissolved therein. While stirring this mixed solution,
To this, 0.8 mol/barium sulfide aqueous solution 1.75
was added dropwise, and the mixture was reacted for 1 hour at a temperature of 50°C. After the addition was completed, the mixture was stirred for an additional 30 minutes. The obtained slurry was filtered and washed with water using a film press, and the water-containing cake was dried at a temperature of 100° C. for 24 hours and then ground to obtain fine barium sulfate. Hereinafter, this will be referred to as comparative product 2. For each of the 300 particles of the present invention product and comparative products 1 and 2 obtained as described above, the particle size in a certain direction was measured using an electron micrograph at a magnification of 100,000 times, and the particle size distribution was determined. are shown in Table 1. Note that, for example, the particle size of 0.02μ means that the actual particle size is 0.015μ or more and less than 0.025μ. Further, FIG. 1 shows a graph of the particle size distribution of the product of the present invention and comparative products 1 and 2. FIGS. 2, 3, and 6 are electron micrographs of the inventive product and comparative products 2 and 1, respectively. Figure 5 shows the decrease compared to

【表】【table】

【表】 用微細炭酸カルシウムと称する炭酸カルシウムの
電子顕微鏡写真を併せて示す。比較用微細炭酸カ
ルシウムの平均粒径は0.08μである。 第1表から明らかなように、本発明の硫酸バリ
ウムは、一次粒子の平均粒径が0.05μであり、粒
径0.1μ以下の粒子が全体の96.0%を占めてい
る。方、比較品1及び2の硫酸バリウムは、一次
粒子の平均粒径がそれぞれ0.09μ及び0.10μであ
り、また、粒径0.1μ以下の粒子はそれぞれ全体
の71.6%及び64.5%にすぎない。このように、本
発明の方法による硫酸バリウムは、従来品に比較
して平均粒径が著しく小さく、且つ、その粒径分
布が著しく狭い。 次に、第5図に本発明の方法により得られた一
次粒子の平均粒径が0.05μである硫酸バリウムの
400g/濃度のスラリーの電子顕微鏡写真
(5000倍)を示す。一次粒子が相互に連なつて立
体的な三次元網目構造を形成していることが明ら
かである。 以下には本発明の方法による超微細硫酸バリウ
ムの利用を示す参考例を挙げる。 参考例 1 焼付型アルキド樹脂(ベツコゾールJ−524、
非揮発分60%、大日本インキ化学工業(株)製)18.2
重量部とメラミン樹脂(スーパーベツカミンJ−
820、非揮発分50%、大日本インキ化学工業(株)
製)9.3重量部からなる混合ワニス(アルキド樹
脂/メラミン樹脂固形分比7/3)にキシレン5.1重
量部及び実施例で得た本発明品25重量部を添加、
分散させ、顔料容積濃度30%の塗料を得た。これ
に上記ワニスを加えて、顔料容積濃度が20%及び
10%の塗料を得た。比較のために、本発明品硫酸
バリウムの代わりに、前記比較品1及び2を25重
量部、また、前記比較用微細炭酸カルシウム15.8
重量部をそれぞれ用いて塗料を調製した。 このようにして得た塗料をそれぞれガラス板上
に6ミルのアプリケーターを用いて並列塗布し、
常温で乾燥後、140℃の温度で20分間焼付け、膜
厚68μの塗膜を形成した。この塗膜について、グ
ロスメーターにて20゜/20゜鏡面反射率を測定し
て、塗膜の表面光沢を評価し、また、垂直光線の
透過率をハンター系し値にて測定し、塗膜の透明
度を評価した。結果を第2表及び第3表に示す。 上記から明らかなように、本発明品硫酸バリウ
ムによれば、顔料容積濃度が30%(樹脂100重量
部当り160重量部)に至つても、得られる塗膜の
表面光沢及び透明度は、樹脂単独の塗膜と殆ど変
わらない。一方、比較品1,2及び比較用微細炭
酸カルシウムの場合には、添加量の増加に伴う光
沢と透明度の低下が顕著である。 参考例 2 焼付型アクリル樹脂(アクリデイツクA−
405、非揮発分50%、大日本インキ化学工業(株)
製)98.0重量部とメラミン樹脂(スーパーベツカ
ミンJ−820、前出)42.0重量部とからなる混合
ワニス(アクリル樹脂/メラミン樹脂固形分比7/
3)にキシレン24.5重量部及び前記実施例で得た
本発明品70重量部を市販マヨネーズ瓶に秤量し、
径1.5mmのガラスビーズ330gを加え、ペイントコ
ンデイシヨナーで1時間分散させて塗料を得た。 比較のために、本発明品の代わりに、前記比較
品1,2、比較用微細炭酸カルシウム及び市販ホ
ワイトカーボンをそれぞれ用いて、上記と同様に
して塗料を得た。但し、ホワイトカーボンについ
ては、上記条件では粘度が高くなり、塗料化が困
難であつたので、樹脂100重量部当りの配合量を
20重量部とした。 このようにして調製したそれぞれの塗料につい
て塗料粘度を測定した。非ニユートン粘性は、回
転粘度計においてそのローターを一定とし、回転
数6rpm及び60rpmのときの粘度(cps)をそれぞ
れ測定し、この比をチキソトロピー性(TF)と
して評価した。 また、各塗料をそれぞれガラス板上に6ミルの
アプリケーターを用いて塗布し、参考例1と同様
にして塗膜を形成し、この塗膜について、参考例
1と同様にして表面光沢及び透明度を評価した。
[Table] Electron micrographs of calcium carbonate, which is referred to as fine calcium carbonate, are also shown. The average particle size of the comparative fine calcium carbonate is 0.08μ. As is clear from Table 1, in the barium sulfate of the present invention, the average particle size of primary particles is 0.05μ, and particles with a particle size of 0.1μ or less account for 96.0% of the total. On the other hand, in the barium sulfate of Comparative Products 1 and 2, the average particle size of the primary particles is 0.09μ and 0.10μ, respectively, and the particles with a particle size of 0.1μ or less account for only 71.6% and 64.5% of the total, respectively. As described above, barium sulfate produced by the method of the present invention has a significantly smaller average particle size and a significantly narrower particle size distribution than conventional products. Next, Fig. 5 shows barium sulfate whose primary particles have an average particle size of 0.05μ obtained by the method of the present invention.
An electron micrograph (5000x magnification) of a slurry with a concentration of 400 g is shown. It is clear that the primary particles are interconnected to form a three-dimensional three-dimensional network structure. Reference examples showing the use of ultrafine barium sulfate according to the method of the present invention are listed below. Reference example 1 Baking type alkyd resin (Betsukosol J-524,
Non-volatile content 60%, manufactured by Dainippon Ink & Chemicals Co., Ltd.) 18.2
Weight parts and melamine resin (Supervecamine J-
820, non-volatile content 50%, Dainippon Ink & Chemicals Co., Ltd.
5.1 parts by weight of xylene and 25 parts by weight of the product of the present invention obtained in Example were added to a mixed varnish (alkyd resin/melamine resin solids ratio 7/3) consisting of 9.3 parts by weight (manufactured by Manufacturer).
The mixture was dispersed to obtain a paint with a pigment volume concentration of 30%. Add the above varnish to this to achieve a pigment volume concentration of 20% and
Got 10% paint. For comparison, instead of the barium sulfate product of the present invention, 25 parts by weight of the comparative products 1 and 2, and 15.8 parts by weight of the comparative fine calcium carbonate.
Paints were prepared using each part by weight. Each of the paints thus obtained was applied in parallel onto a glass plate using a 6 mil applicator.
After drying at room temperature, it was baked at 140°C for 20 minutes to form a coating film with a thickness of 68μ. Regarding this paint film, the 20°/20° specular reflectance was measured using a gloss meter to evaluate the surface gloss of the paint film, and the perpendicular light transmittance was measured using a Hunter system value. The transparency was evaluated. The results are shown in Tables 2 and 3. As is clear from the above, according to the barium sulfate product of the present invention, even when the pigment volume concentration reaches 30% (160 parts by weight per 100 parts by weight of resin), the surface gloss and transparency of the resulting coating film are lower than that of the resin alone. It is almost the same as the coating film. On the other hand, in the case of Comparative Products 1 and 2 and Comparative Fine Calcium Carbonate, there is a remarkable decrease in gloss and transparency as the amount added increases. Reference example 2 Baking type acrylic resin (acrylic resin A-
405, non-volatile content 50%, Dainippon Ink & Chemicals Co., Ltd.
Mixed varnish (acrylic resin/melamine resin solid content ratio 7/
3) Weighed 24.5 parts by weight of xylene and 70 parts by weight of the product of the present invention obtained in the above example into a commercially available mayonnaise bottle,
330 g of glass beads with a diameter of 1.5 mm were added and dispersed with a paint conditioner for 1 hour to obtain a paint. For comparison, paints were obtained in the same manner as above, using Comparative Products 1 and 2, comparative fine calcium carbonate, and commercially available white carbon, respectively, in place of the product of the present invention. However, the viscosity of white carbon increased under the above conditions and it was difficult to make it into a paint, so the amount of white carbon added per 100 parts by weight of resin was changed.
The amount was 20 parts by weight. The paint viscosity of each paint thus prepared was measured. The non-Newtonian viscosity was determined by measuring the viscosity (cps) at rotational speeds of 6 rpm and 60 rpm using a rotational viscometer with the rotor held constant, and the ratio was evaluated as thixotropy (TF). In addition, each paint was applied onto a glass plate using a 6 mil applicator to form a coating film in the same manner as in Reference Example 1, and the surface gloss and transparency of this coating film was evaluated in the same manner as in Reference Example 1. evaluated.

【表】【table】

【表】【table】

【表】【table】

【表】 結果を第4表に示す。 上表から明らかなように、本発明品を添加した
塗料は、比較品2や比較用微細炭酸カルシウムに
比較して著しく高いチキソトロピー性を示し、一
方において、その塗膜の光沢と透明度も著しくす
ぐれている。比較品1や市販ホワイトカーボン
は、比較的高いチキソトロピー性を示すが、比較
品1は光沢、透明性共に本発明品に劣り、ホワイ
トカーボンは塗膜の光沢低下が著しい。
[Table] The results are shown in Table 4. As is clear from the above table, the paint containing the product of the present invention exhibited significantly higher thixotropy than Comparative Product 2 and Comparative Fine Calcium Carbonate, and on the other hand, the gloss and transparency of the paint film were also significantly superior. ing. Comparative product 1 and commercially available white carbon exhibit relatively high thixotropy, but comparative product 1 is inferior to the product of the present invention in both gloss and transparency, and white carbon has a significant reduction in the gloss of the coating film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明品、比較品1及び2の粒径分布
を示すグラフ、第2図、第3図及び第4図はそれ
ぞれ本発明品、比較品2及び比較用微細炭酸カル
シウムの電子顕微鏡写真(倍率10万倍)、第5図
は本発明の方法により得られた硫酸バリウムスラ
リーを示す電子顕微鏡写真(倍率5000倍)、第6
図は比較品1の電子顕微鏡写真(倍率10万倍)で
ある。
Figure 1 is a graph showing the particle size distribution of the invention product, comparative products 1 and 2, and Figures 2, 3, and 4 are electron micrographs of the invention product, comparison product 2, and comparative fine calcium carbonate, respectively. Photograph (100,000x magnification), Figure 5 is an electron micrograph (5000x magnification) showing barium sulfate slurry obtained by the method of the present invention, Figure 6
The figure is an electron micrograph (100,000x magnification) of comparative product 1.

Claims (1)

【特許請求の範囲】[Claims] 1 硫化バリウム水溶液と硫酸水溶液とを硫酸に
対して硫化バリウム濃度が0.05〜100%の範囲で
常に過剰となるように連続的に反応槽に導き、急
速に混合すると共に1秒以下の平均滞留時間にて
反応させて、一次粒子の平均粒径が0.01〜0.08μ
mである硫酸バリウムを得ることを特徴とする超
微細硫酸バリウムの製造方法。
1. Continuously introduce a barium sulfide aqueous solution and a sulfuric acid aqueous solution into a reaction tank so that the barium sulfide concentration is always in excess of sulfuric acid in the range of 0.05 to 100%, mix rapidly, and maintain an average residence time of 1 second or less. The average particle size of the primary particles is 0.01 to 0.08μ.
A method for producing ultrafine barium sulfate, characterized by obtaining barium sulfate having m.
JP14595181A 1981-09-16 1981-09-16 Preparation of barium sulfate Granted JPS57145031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14595181A JPS57145031A (en) 1981-09-16 1981-09-16 Preparation of barium sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14595181A JPS57145031A (en) 1981-09-16 1981-09-16 Preparation of barium sulfate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55126488A Division JPS5751119A (en) 1980-09-11 1980-09-11 Ultrafine barium sulfate

Publications (2)

Publication Number Publication Date
JPS57145031A JPS57145031A (en) 1982-09-07
JPS6144807B2 true JPS6144807B2 (en) 1986-10-04

Family

ID=15396802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14595181A Granted JPS57145031A (en) 1981-09-16 1981-09-16 Preparation of barium sulfate

Country Status (1)

Country Link
JP (1) JPS57145031A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733292B2 (en) * 1985-12-06 1995-04-12 株式会社村田製作所 Method for producing powder for ceramic raw material
DE69612390T2 (en) * 1995-08-28 2001-10-31 Advanced Nano Technologies Pty METHOD FOR PRODUCING ULTRAFINE PARTICLES
DE10026791A1 (en) * 2000-05-31 2001-12-06 Solvay Barium Strontium Gmbh Micronized barium sulfate
CA2564808C (en) * 2004-05-04 2012-07-03 Michael Berkei Process for preparing dispersible sulfate, preferably barium sulfate nanoparticles
CN101326124B (en) 2005-12-16 2014-09-10 堺化学工业株式会社 Ultrafine barium sulfate particle, water-based coating composition and water-based ink composition
JP2008050261A (en) * 2007-09-28 2008-03-06 Dowa Holdings Co Ltd Barium sulfate and its producing method
JP5924463B1 (en) * 2014-11-10 2016-05-25 堺化学工業株式会社 Method for producing barium sulfate powder and barium sulfate powder

Also Published As

Publication number Publication date
JPS57145031A (en) 1982-09-07

Similar Documents

Publication Publication Date Title
US5509960A (en) Composite pigmentary material
JP3495048B2 (en) Pigment particles coated with precipitated calcium carbonate and method for producing the same
KR100459800B1 (en) Flaky aluminium oxide and pearlescent pigment, and production thereof
JP5199894B2 (en) Titanium dioxide pigment coated with hollow body and method for producing the same
US5554215A (en) Composite pigmentary material
JP2515377B2 (en) Organic pigment coated with metal oxide
EP2571943B1 (en) Functionalized particles and use thereof
JPS63130673A (en) Water-resistant pearlescent pigment and manufacture thereof
KR20090099066A (en) Method of surface-treating particulate solids, more particularly titanium dioxide pigment particles
KR20010012561A (en) A Method for Making a Photodurable Aqueous Titanium Dioxide Pigment Slurry
US4448609A (en) Process for the production of aqueous dispersions of pigmentary titanium dioxide
US4346178A (en) Structured kaolin agglomerates and methods of making the same
JPS6144807B2 (en)
JP2002275389A (en) Amorphous silica particle having increased oil- absorption, producing method and use thereof
AU661582B2 (en) Composite pigmentary material
JP2515376B2 (en) Organic pigment coated with metal oxide fixed with ethyl cellulose
US5112402A (en) Pigment system for paints
JPS6327293B2 (en)
JP3004184B2 (en) Matted silica for top coat
JPS6028766B2 (en) Method for producing ultrafine barium sulfate
US20030234304A1 (en) Superfine powders and methods for manufacture of said powders
JPH09156924A (en) Barium sulfate and its production and resin composition
CN1076372C (en) Process for preparing pigment for coated paper
JP3786727B2 (en) Pigment composition of modified diketopyrrolopyrrole and aminoalkyl acrylate resin
KR102038917B1 (en) Preparation Method and Application of Pearlescent Pigment