JPS6143868B2 - - Google Patents

Info

Publication number
JPS6143868B2
JPS6143868B2 JP2424877A JP2424877A JPS6143868B2 JP S6143868 B2 JPS6143868 B2 JP S6143868B2 JP 2424877 A JP2424877 A JP 2424877A JP 2424877 A JP2424877 A JP 2424877A JP S6143868 B2 JPS6143868 B2 JP S6143868B2
Authority
JP
Japan
Prior art keywords
strain
generating portion
conversion element
bridge circuit
electric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2424877A
Other languages
Japanese (ja)
Other versions
JPS53109488A (en
Inventor
Hiroshi Nagase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2424877A priority Critical patent/JPS53109488A/en
Publication of JPS53109488A publication Critical patent/JPS53109488A/en
Publication of JPS6143868B2 publication Critical patent/JPS6143868B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、例えば、固定に加わる荷重又は力、
若しくは液体、気体、流体の圧力等の機械量を検
出して電気量に変換するための機械−電気変換器
に係り、特に半導体のピエゾ抵抗効果を利用した
機械−電気変換器に関するものである。 本出願人が先に出願した特願昭51−137954号
(特公昭57−58791号)明細書においては、基台の
表面にシリコン単結晶からなる弾性基板をその周
縁部にて固着してその中央部に外圧により歪が生
じる起歪部を形成し、この起歪部の表面にP形半
導体歪−電気変換素子を形成し、この歪−電気変
換素子により前記起歪部の歪に比例する電気的出
力を検出するようにした機械−電気変換器におい
て、 (前記起歪部の表面における短軸線の長さ)/(前記
起歪部の厚さ) を2〜150の範囲内に定め、かつ前記歪−電気変
換素子の平均導電率を3.7×102〜6.0×102(1/
Ω・cm)の範囲内に定めて、定電流電源により駆
動するようにし、これにより外圧に対する出力
が、周囲温度の変化に影響されることなく、常に
一定になるような機械−電気変換器が自己温度補
償型機械−電気変換器と称して提案されている。 この場合、上述した「短軸線の長さ」は、前記
起歪部が円形であれば、「この起歪部表面におけ
る直径」により特定され、また前記起歪部が多角
形であれば、「この起歪部表面の中心を通りこの
表面上に描かれるもつとも短い軸軸線の長さ」に
よつて特定される。 ところで、このような機械−電気変換器におい
て前記歪−電気変換素子によりブリツジ回路を構
成した場合には、上述したごとく、周囲温度の変
化に対しては安定な出力を有するけれども、機械
−電気変換器の組立誤差、弾性基板の起歪部の構
造上のバラツキ、、各歪−電気変換素子のゲージ
率及び抵抗値のバラツキ等の影響を受けて、一定
の入力電流のもとでも一定圧力に対する出力値は
ばらつく。このばらつきを調整して、一定の圧力
に対して一定の出力が得られるようにするには
個々の機械−電気変換器の入力端間に可変抵抗を
接続し、この可変抵抗によつて、ブリツジ回路に
流れる電流を調整することにより解消できる。 しかしながら、この方法では可変抵抗の付加に
よつて、ブリツジ回路に流れる電流が温度に対し
て一定でなくなり温度特性を持つようになる。す
なわち、ブリツジ回路の合成抵抗Rb、並列抵抗
の値をRpとすれば、電流I1は I1=I×Rp/Rb+Rp となり、一般にブリツジ回路の合成抵抗Rbは正
の抵抗温度特性を持つ一方、並列抵抗Rpは事実
上温度に対して抵抗値が不変であるとすれば、I1
は温度上昇とともに減少することになる。しかし
て、ブリツジ回路に定電流を印加した時、温度に
対して出力感度が一定になるように自己温度補償
された機械−電気変換器の場合でも、並列に付加
した抵抗Rpによつて出力感度の良好な温度特性
がそこなわれることになり、その温度は並列抵抗
Rpの値が小さく、出力調整比(I/I)の値が小さ くなる程大きくなる。 本発明はこのような欠点を解消するためになさ
れたもので、その目的は、上述した機械−電気変
換器においてその出力温度特性を周囲温度の影響
を受けることなく安定に保持しつつ、定電流電源
からブリツジ回路へ流入する電流を広範囲に亘り
調整するようにしようとするものである。 かかる目的を達成するにあたり、本発明の構成
上の特徴は、基台の表面にシリコン単結晶からな
る弾性基板とその周縁部にて固着してその中央部
に外圧により歪が生じる起歪部を形成し、この起
歪部の表面にP形半導体歪−電気変換素子を形成
して、このP形半導体歪−電気変換素子に定電流
電源を接続することにより前記起歪部の歪に比例
する電気的出力を検出するようにした機械−電気
変換器において、 (前記起歪部の表面における短軸線の長さ)/(前記
起歪部の厚さ) を2〜150の範囲内に定め、前記歪−電気変換素
子を3.7×102〜6.0×102(1/Ω・cm)の範囲内
の平均導電率を有する四個の歪−電気変換素子と
してブリツジ回路を構成するように形成し、かつ
前記歪−電気変換素子とほぼ同じ平均導電率及び
ほぼ同じ抵抗温度特性を有する少なくとも一個の
固定抵抗を前記弾性基板の表面の零歪部に形成し
た調整回路を前記ブリツジ回路の入力端又は出力
端に接続するようにしたことにある。 しかして、このように本発明を構成したことに
より、定電流電源による駆動のもとにおいては、
前記ブリツジ回路の出力が、上述のごとくそれぞ
れ定めた各歪−電気変換素子の平均導電率および
前記短軸線の長さに対する前記起歪部の厚さの比
との関連により、周囲温度の変化の影響を受ける
ことなく安定してその温度出力誤差を最小限に抑
制できることは勿論のこと、前記調整回路によつ
て、前記ブリツジ回路の安定した出力温度特性を
そのまま保持しつつ、定電流電源からブリツジ回
路に流入する電流を広範囲に亘つて調整すること
ができ、その結果、この種機械−電気変換器にお
いて、その組立誤差、起歪部の構造上のバラツ
キ、各歪−電気変換素子のゲージ率及び抵抗値の
バラツキ等により生じる一定圧力に対する出力の
バラツキを簡単な操作により容易にしかも精度よ
く調整することができる。 以下本発明の各実施例を図面により説明する。 実施例 1 第1図及び第2図は本発明を実施た機械−電気
変換器の主要部を示していて、図において符号1
0はシリコン単結晶からなる弾性基板を示し、符
号20は基台を示している。弾性基板10はその
周縁部にて基台20の上面21に接着されてい
て、その中央部の薄肉状に形成した円形の起歪部
11の上11aには、第1図及び第2図に示すご
とく、酸化被膜12の一部を除した部分にて、四
個のP型半導体歪−電気変換素子g1〜g4が一体的
に拡散プレーナ法により拡散形成されている。こ
の場合、起歪部11における表面の直径の同起歪
部の厚さに対する比は2〜150の範囲内にある。
また、ここに特定される比は、起歪部11が多角
形であれば、この起歪部表面の中心を通りこの表
面上に描かれる最も短い軸線の長さ(即ち、短軸
線の長さ)の同起歪部の厚さに対する比に対応す
る。各歪−電気変換素子g1〜gはそれぞれ2.4×
1020〜40×1020(原子/cm3)の範囲内の不純物濃
度を有しており、該素子でブリツジ回路を構成
し、該ブリツジ回路に一定電流を供給したときブ
リツジ回路の出力が温度に対して許容誤差の範囲
内にて安定になるようにしてある。また、各歪−
電気変換素子g1〜g4は四個のリード
(酸化被膜12の上面に蒸着されている)により
ブリツジ回路Gを形成するように接続されている
(第3A図の等周囲温度参照)。なお、第3A図に
おいて、リード及びリード
はそれぞれブリツジ回路Gの入力端及び出力端と
なつている。 なお、各歪−電気変換素子g1〜g4の各表面不純
物濃度を、上述のごとく、2.4×1020〜4.0×1020
(原子/cm3)の範囲内に定めた根拠について説明
すると、周知のごとく、この種の歪−電気変換素
子の抵抗が有する正の温度特性αは、歪−電気変
換素子の表面不純物濃度の増大に応じ、所定の表
面不純物濃度にて極小となるように変化するとと
もに歪−電気変換素子のゲージ率が有する負の温
度係数βは、前記表面不純物濃度の増大に応じほ
ぼ直線的に増大するものの、このような歪−電気
変換素子を採用した機械−電気変換器を定電流電
源によつて駆動した場合、出力の温度誤差が、抵
抗及びゲージ率の各温度係数の和α+βに比例し
て生じ、かつこの和+βが零となる表面不純物濃
度が、高濃度側及び低濃度側にてそれぞれ一箇所
ずつ存在する。しかして、かかる観点に着目し
て、α+β=0となる高濃度側不純物濃度に非常
に近い値として実験により見出されたのが、前記
不純物濃度2.4×1020〜4.0×1020(原子/cm3)で
ある。また、上述した起歪部11における表面の
直径の同起歪部の厚さに対する比を2〜150に限
定した根拠は次のとおりである。 1 各歪−電気変換素子g1〜g4の表面不純物濃度
を、上述のごとく、2.4×1020〜4.0×1020(原
子/cm3)の範囲内に定め、起歪部11の直径を
3(mm)とし同起歪部11の厚さを20(μ)〜
100(μ)の範囲内にて変えて実験したとこ
ろ、各歪−電気変換素子g1〜g4の出力の温度誤
差が許容誤差範囲内に収まつた。換言すれば、
各歪−電気変換素子g1〜g4の表面不純物濃度を
2.4×1020〜4.0×1020(原子/cm3)の範囲内に
定め、(起歪部直径)/2(2×起歪部厚さ)
を15〜75とすれば、各歪−直径g1〜g4の出力の
温度誤差が許容誤差範囲内に収まることとな
る。 2 また、前記比率、即ち、(起歪部直)/(2
×起歪部厚さ)が75よりなるときには、起歪部
の直径が厚さに比べて大き過ぎ、起歪部にたわ
みが生じて歪−直径の出力特性が非常に悪くな
り、また前記比率が1より小なるときは、起歪
部の厚さが直径に比べて大き過ぎ、このような
起歪部は実際上歪−直径の受感部としての役割
を果さない。 なお、上述のような各根拠は、起歪部を例え
ば多角形とし、前記比率を、(起歪部の表面に
おける短軸線の長さ)/(2×起歪部厚さ)と
した場合にも同様に成立する。 次に本発明の要部の構成について説明すると、
弾性基板10の上面には、固定抵抗30が、第1
図に示ごとく、起歪部11の外側零歪部にて各歪
−直径g1〜g4とともに拡散形成されている。この
固定抵抗30は前記歪−電気変換素子g1〜g4とほ
ぼ同じ不純物濃度及びほぼ同じ抵抗温度特性を有
していて、その一端にて補助リードを介して
リードに接続され、その他端にて補助リード
に接続されていて、各補助リード
は酸化被膜12の上面に蒸着されている(第1図
及び第3A図参照)。また、補助リードとリ
間には、第3A図に示すごとく、外部回路
を構成する可変抵抗40が接続されていて、この
可変抵抗40により、ブリツジ回路Gの入力端
間に供給される電流を調整するように
し、前記固定抵抗30と可変抵抗40とで調整周
囲温度を形成してある。 ところで、このようにしてブリツジ回路Gの入
力端間に、固定抵抗30及び可変抵抗
40からなる調整回路を接続することによつて、
機械−電気変換器に設けたブリツジ回路Gの出力
を、その温度特性を損うことなく調整し得る範囲
について検討する。この場合、ブリツジ回路Gの
出力はそのブリツジ回路Gに流れる電流と比例関
係にあるので、ここにおいてはブリツジ回路Gの
入力電流と調整回路の固定抵抗30及び可変抵抗
40との関係に着目して検討する。 第3A図において、ブリツジ回路Gの入力端
間に定電流電源Sにより定電流I(温度
に対して不変)を供給した場合、ブリツジ回路G
に流入する電流I1は、周囲温度をtとすれば、 I1(t)=nRb+mRb/Rb+nRb+mRbI
……(1) 但し、Rb;ブリツジ回路Gの入力端
(出力端は開放する)
からみた周囲温度Tにおける各歪−
電気変換素子g1〜g4の合成抵抗値 n,m;定 数 nRb;固定抵抗30の抵抗値 mRb;可変抵抗40の抵抗値
(温度に対して不変と仮定する) 従つて、ブリツジ回路Gの入力端
に流入する電流調整比は P=I(t)/I=n+m/1+n+m ……(2) また、周囲温度がtからt+△tに変化したと
きの合成抵抗値Rbの抵抗変化を△Rbtとすれば、
固定抵抗30の抵抗変化はn△Rbtとなる。従つ
て、 I1(t+△t) =n(Rb+△Rbt)+mRb/Rb+△Rbt+n
(Rb+△Rbt)mRb・I……(3) よつて、電流I1の温度による変化率は Q=I(t+△t)−I(t)/I(t) =−m/{(1+n)(1+α△t)+m}(n+m) ・α△t ……(4) 但し、α=(△Rbt/Rb)(I/△t) しかして、(2),(4)式から電流調整Pと温度によ
る電流変化率Qの関係を求めると、α=
1.4910-3/Cとすれば、第4図に示すようなグラ
フが得られる。 第4図においては、固定抵抗30の抵抗値の定
数nをパラメータとするグラフが描かれており、
直線aはn=0の場合に対応し、曲線b,c,d
にそれぞれn=2,3,4の場合に対応する。直
線aは可変抵抗40をブリツジ回路Gの入力端
間に直接接続した場合に特性(従来の調
整方法によつて得られる)を示しており、電流変
化率Qは電流調整比Pが小さくなるにつれて大き
くなる。このため、温度特性の変化をできるだけ
小さくすべく電流変化率Qを−1(%/100℃)
以内におさえようとすると、電流調整比Pの調整
範囲は1〜0.93に限られる。 これに対して、例えばn=3の場合、可変抵抗
40を無限大から零に変化させて電流調整比Pを
1〜0.75の範囲にて変えても、電流変化率Qは−
1(%/100℃)以内におさまる。また、n=4
の場合、電流調整比Pの調整可能な範囲は1〜
0.8となつて、n=3の場よりやや狭くなるが、
n=0の場合に比べればはるかに広い。これによ
り、固定抵抗30の抵抗値をブリツジ回路Gの合
成抵抗値Rbの約3倍に設定すれば、電流変化率
Qを−1(%/100℃)以内におさえたとき、電
流調整比Pの調整可能な範囲は1〜0.75となる。 なお、上記実施例にては、固定抵抗30と可変
抵抗40を直列に接続した例について説明した
が、これに代えて第3B図に示すごとく固定抵抗
30と可変抵抗40とをブリツジ回路Gの入力端
間に互いに並列に接続して実施しても
よい。しかして、この場合における電流I1の変化
率Qと電流調整比Pとの関係は、第4図にて各破
線b1,c1,d1により示されており、これらの各破
線b1,c3,d1はそれぞれn=2,3,4の場合に
対応する。例えば、n=3の場合、電流変化率Q
を−1(%/100℃)以内におさえると、可変抵
抗40を調整することにより電流調整比Pを0.75
〜0.7の範囲で変えることができる。同様に、n
=4の場合、電流調整比Pの調整可能な範囲は
0.8〜0.75である。 また、上記実施例において、第3A図に示す固
定抵抗30及び可変抵抗40の直列回路と第3B
図に示す固定抵抗30及び可変抵抗40の並列抵
抗とを組合わせて実施することにより、電流調整
比Pの調整可能な範囲をさらに広げることがで
き、例えばn=3の場合、電流調整比Pを1〜
0.7の範囲にて変えても、温度による電流変化率
は−1(%/100℃)以内におさまる。 実施例 2 第5図は本発明による第2実施例を示してい
て、この実施例においては、固定抵抗30aが弾
性基板10の上面にて起歪部11の外側零歪部に
前固定抵抗30及び各歪−直径g1〜g4とともに拡
散形成されている。この固定抵抗30aは前記歪
−電気変換素子g1〜g4とほぼ同じ不純物濃度及び
ほぼ同じ抵抗温度特性を有していて、その一端に
は補助リードを介してリードに接続さ
れ、その他端にて補助リードに接続されてい
る。また、各固定抵抗30,30aに対する可変
抵抗40の接続回路については、下表のごとく
種々の回路を組むことができる(第6図参照)。
For example, the present invention can be applied to a load or force applied to fixation,
Alternatively, the present invention relates to a mechanical-electrical converter for detecting a mechanical quantity such as the pressure of a liquid, gas, or fluid and converting it into an electrical quantity, and particularly relates to a mechanical-electrical converter that utilizes the piezoresistance effect of a semiconductor. In the specification of Japanese Patent Application No. 51-137954 (Japanese Patent Publication No. 57-58791) previously filed by the present applicant, an elastic substrate made of silicon single crystal is fixed to the surface of the base at its periphery. A strain-generating part is formed in the center where strain occurs due to external pressure, a P-type semiconductor strain-electrical conversion element is formed on the surface of this strain-generating part, and the strain-electrical conversion element is proportional to the strain of the strain-generating part. In a mechanical-electrical converter configured to detect electrical output, (length of the short axis on the surface of the strain-generating portion)/(thickness of the strain-generating portion) is set within a range of 2 to 150, And the average conductivity of the strain-electric conversion element is 3.7×10 2 to 6.0×10 2 (1/
A mechanical-electrical converter that is set within the range of Ωcm) and driven by a constant current power supply, so that the output relative to external pressure is always constant without being affected by changes in ambient temperature. It has been proposed as a self-temperature compensated mechanical-electrical converter. In this case, the above-mentioned "length of the short axis" is specified by the "diameter at the surface of this strain-generating part" if the strain-generating part is circular, and if the strain-generating part is polygonal, " It is specified by the length of the shortest axial line that passes through the center of the surface of this strain-generating part and is drawn on this surface. By the way, when a bridge circuit is constructed using the strain-to-electrical conversion element in such a mechanical-to-electrical converter, as described above, although the output is stable against changes in ambient temperature, the mechanical-to-electrical conversion is Due to the influence of assembly errors of the device, structural variations in the strain-generating part of the elastic substrate, and variations in the gauge factor and resistance value of each strain-electrical conversion element, even under a constant input current, the Output values vary. To adjust this variation and obtain a constant output for a constant pressure, a variable resistor is connected between the input terminals of each mechanical-electrical converter, and this variable resistor This can be resolved by adjusting the current flowing through the circuit. However, in this method, due to the addition of a variable resistor, the current flowing through the bridge circuit is not constant with respect to temperature and has temperature characteristics. That is, if the combined resistance Rb of the bridge circuit and the value of the parallel resistance are Rp, the current I 1 becomes I 1 = I × Rp / Rb + Rp, and while the combined resistance Rb of the bridge circuit generally has a positive resistance temperature characteristic, Assuming that the resistance value of the parallel resistance Rp remains virtually unchanged with respect to temperature, I 1
will decrease with increasing temperature. Therefore, when a constant current is applied to the bridge circuit, even in the case of a mechanical-electrical converter that is self-temperature compensated so that the output sensitivity is constant with respect to temperature, the output sensitivity is changed by the resistor Rp added in parallel. The good temperature characteristics of the
The smaller the value of Rp and the smaller the value of the output adjustment ratio (I 1 /I), the larger it becomes. The present invention has been made to eliminate such drawbacks, and its purpose is to maintain the output temperature characteristics of the above-mentioned mechanical-electrical converter stably without being affected by ambient temperature, while maintaining constant current. The aim is to adjust the current flowing into the bridge circuit from the power supply over a wide range. In order to achieve this object, the structural features of the present invention include an elastic substrate made of silicon single crystal on the surface of the base, and a strain-generating portion that is fixed at its periphery and that is strained by external pressure at its center. A P-type semiconductor strain-to-electrical conversion element is formed on the surface of the strain-generating portion, and a constant current power supply is connected to the P-type semiconductor strain-to-electrical conversion element, so that the strain is proportional to the strain in the strain-generating portion. In a mechanical-electrical converter configured to detect electrical output, (length of the short axis on the surface of the strain-generating portion)/(thickness of the strain-generating portion) is set within a range of 2 to 150, The strain-electric conversion elements are formed to form a bridge circuit as four strain-electric conversion elements having an average conductivity within the range of 3.7×10 2 to 6.0×10 2 (1/Ωcm). , and at least one fixed resistor having approximately the same average conductivity and approximately the same resistance temperature characteristics as the strain-to-electrical conversion element is formed at the zero strain portion of the surface of the elastic substrate at the input end of the bridge circuit or The reason is that it is connected to the output end. However, by configuring the present invention in this way, when driven by a constant current power supply,
The output of the bridge circuit is determined based on the relationship between the average conductivity of each strain-electrical conversion element determined as described above and the ratio of the thickness of the strain-generating portion to the length of the short axis line, so that the output of the bridge circuit responds to changes in ambient temperature. Not only can the temperature output error be suppressed to a minimum without being affected, but also the adjustment circuit can maintain the stable output temperature characteristics of the bridge circuit while also controlling the temperature output from the constant current power supply. The current flowing into the circuit can be adjusted over a wide range, and as a result, in this type of mechanical-electrical converter, assembly errors, structural variations in the strain generating part, and gauge factors of each strain-electrical conversion element can be reduced. It is possible to easily and accurately adjust output variations with respect to a constant pressure caused by variations in resistance values, etc., by simple operations. Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1 FIGS. 1 and 2 show the main parts of a mechanical-electrical converter embodying the present invention, and are designated by the reference numeral 1 in the figures.
0 indicates an elastic substrate made of silicon single crystal, and 20 indicates a base. The elastic substrate 10 is bonded to the upper surface 21 of the base 20 at its periphery, and on the upper surface 11a of the circular strain-generating portion 11 formed in a thin shape at the center thereof, there is a groove as shown in FIGS. 1 and 2. As shown, four P-type semiconductor strain-to-electric conversion elements g 1 to g 4 are integrally formed by diffusion in a portion of the oxide film 12 by a diffusion planar method. In this case, the ratio of the diameter of the surface of the strain-generating portion 11 to the thickness of the strain-generating portion is within the range of 2 to 150.
Furthermore, if the strain-generating portion 11 is polygonal, the ratio specified here is the length of the shortest axis drawn on the surface passing through the center of the surface of the strain-generating portion (i.e., the length of the short axis). ) corresponds to the ratio of the thickness of the homogeneous strain part. Each strain-electric conversion element g 1 to g is 2.4×
It has an impurity concentration within the range of 10 20 to 40 × 10 20 (atoms/cm 3 ), and when a bridge circuit is configured with this element and a constant current is supplied to the bridge circuit, the output of the bridge circuit is It is designed to be stable within the allowable error range. Also, each strain -
Electric conversion elements g1 to g4 have four leads 1 to 4 .
(deposited on the upper surface of the oxide layer 12) are connected to form a bridge circuit G (see iso-ambient temperature in FIG. 3A). In addition, in FIG. 3A, leads 1 and 2 and leads 3 and 4
are the input terminal and output terminal of the bridge circuit G, respectively. Note that the surface impurity concentration of each strain-electric conversion element g 1 to g 4 is 2.4×10 20 to 4.0×10 20 as described above.
(atoms/cm 3 ).As is well known, the positive temperature characteristic α of the resistance of this type of strain-electrical conversion element is based on the surface impurity concentration of the strain-electrical conversion element. As the surface impurity concentration increases, the negative temperature coefficient β of the gauge factor of the strain-electric conversion element changes to become minimum at a predetermined surface impurity concentration, and increases almost linearly as the surface impurity concentration increases. However, when a mechanical-electrical converter employing such a strain-electrical conversion element is driven by a constant current power supply, the output temperature error is proportional to the sum α + β of the temperature coefficients of resistance and gauge factor. There is one surface impurity concentration on the high-concentration side and one on the low-concentration side, respectively, where the sum +β becomes zero. Focusing on this point of view, it was experimentally found that the impurity concentration was 2.4×10 20 to 4.0×10 20 (atoms/ cm3 ). Further, the reason why the ratio of the surface diameter of the strain-generating portion 11 to the thickness of the strain-generating portion 11 is limited to 2 to 150 is as follows. 1. The surface impurity concentration of each strain-electric conversion element g 1 to g 4 is set within the range of 2.4×10 20 to 4.0×10 20 (atoms/cm 3 ) as described above, and the diameter of the strain-generating portion 11 is 3 (mm), and the thickness of the same strain part 11 is 20 (μ) ~
When an experiment was performed by changing the value within a range of 100 (μ), the temperature error in the output of each strain-electric conversion element g 1 to g 4 was within the allowable error range. In other words,
The surface impurity concentration of each strain-electric conversion element g 1 to g 4 is
Set within the range of 2.4×10 20 to 4.0×10 20 (atoms/cm 3 ), (diameter of strain-generating portion)/2 (2× thickness of strain-generating portion)
If it is set to 15 to 75, the temperature error of the output for each strain-diameter g 1 to g 4 will fall within the allowable error range. 2 Also, the above ratio, that is, (direction of strain-generating part)/(2
× strain-generating portion thickness) is 75, the diameter of the strain-generating portion is too large compared to the thickness, the strain-generating portion is deflected, and the strain-diameter output characteristic becomes very poor, and the ratio When is smaller than 1, the thickness of the strain-generating portion is too large compared to the diameter, and such a strain-generating portion does not actually serve as a strain-diameter sensing portion. In addition, each of the above-mentioned grounds is based on the fact that the strain-generating portion is, for example, a polygon, and the ratio is (length of the short axis on the surface of the strain-generating portion)/(2×thickness of the strain-generating portion). The same holds true. Next, the configuration of the main part of the present invention will be explained.
A fixed resistor 30 is provided on the upper surface of the elastic substrate 10.
As shown in the figure, each strain-diameter g 1 to g 4 is diffused and formed in the outer zero strain portion of the strain-generating portion 11 . This fixed resistor 30 has approximately the same impurity concentration and approximately the same resistance temperature characteristics as the strain-electrical conversion elements g1 to g4 , and is connected at one end to the lead 1 via the auxiliary lead 5 , and at the other end. Auxiliary lead at the end
6 , each auxiliary lead 5 , 6
is deposited on the top surface of the oxide film 12 (see FIGS. 1 and 3A). Furthermore, a variable resistor 40 constituting an external circuit is connected between the auxiliary lead 6 and the lead 2 , as shown in FIG. 3A.
The current supplied between the terminals 1 and 2 is adjusted, and the fixed resistor 30 and variable resistor 40 form an adjustable ambient temperature. By the way, by connecting the adjustment circuit consisting of the fixed resistor 30 and the variable resistor 40 between the input terminals 1 and 2 of the bridge circuit G in this way,
The range in which the output of the bridge circuit G provided in the mechanical-electrical converter can be adjusted without impairing its temperature characteristics will be discussed. In this case, since the output of the bridge circuit G is proportional to the current flowing through the bridge circuit G, we will focus on the relationship between the input current of the bridge circuit G and the fixed resistor 30 and variable resistor 40 of the adjustment circuit. think about. In FIG. 3A, the input terminal of bridge circuit G
When a constant current I (unchanged with respect to temperature) is supplied between 1 and 2 by a constant current power supply S, the bridge circuit G
If the ambient temperature is t, the current I 1 flowing into the
...(1) However, Rb: input terminal 1 of bridge circuit G,
2 (Output terminals 3 and 4 are open)
Each strain at ambient temperature T as seen from -
Combined resistance value of electrical conversion elements g 1 to g 4 n, m; constant nRb; resistance value of fixed resistor 30 mRb; resistance value of variable resistor 40
(It is assumed that it does not change with respect to temperature.) Therefore, the current adjustment ratio flowing between input terminals 1 and 2 of bridge circuit G is P=I 1 (t)/I=n+m/1+n+m...(2) Also, If the resistance change in the combined resistance value Rb when the ambient temperature changes from t to t+△t is △Rbt, then
The resistance change of the fixed resistor 30 is nΔRbt. Therefore, I 1 (t+△t) = n(Rb+△Rbt)+mRb/Rb+△Rbt+n
(Rb+△Rbt)mRb・I...(3) Therefore, the rate of change of current I 1 due to temperature is Q=I 1 (t+△t) - I 1 (t)/I 1 (t) = -m/ {(1+n)(1+α△t)+m}(n+m) ・α△t ...(4) However, α=(△Rbt/Rb)(I/△t) Therefore, equations (2) and (4) To find the relationship between current adjustment P and current change rate Q due to temperature, α=
If 1.4910 -3 /C is used, a graph as shown in FIG. 4 will be obtained. In FIG. 4, a graph is drawn in which the constant n of the resistance value of the fixed resistor 30 is used as a parameter.
Straight line a corresponds to the case where n=0, and curves b, c, d
correspond to the cases where n=2, 3, and 4, respectively. Straight line a connects the variable resistor 40 to the input terminal of the bridge circuit G.
1 and 2 (obtained by a conventional adjustment method), the current change rate Q increases as the current adjustment ratio P becomes smaller. Therefore, in order to minimize the change in temperature characteristics, the current change rate Q is set to -1 (%/100℃).
If the current adjustment ratio P is to be kept within the range of 1 to 0.93, the adjustment range of the current adjustment ratio P is limited to 1 to 0.93. On the other hand, when n=3, for example, even if the variable resistor 40 is changed from infinity to zero and the current adjustment ratio P is changed in the range of 1 to 0.75, the current change rate Q is -
Stay within 1 (%/100℃). Also, n=4
In this case, the adjustable range of the current adjustment ratio P is 1 to
0.8, which is slightly narrower than the field where n=3,
It is much wider than when n=0. As a result, if the resistance value of the fixed resistor 30 is set to approximately three times the combined resistance value Rb of the bridge circuit G, then when the current change rate Q is kept within -1 (%/100°C), the current adjustment ratio P The adjustable range is 1 to 0.75. In the above embodiment, an example was explained in which the fixed resistor 30 and the variable resistor 40 were connected in series, but instead of this, the fixed resistor 30 and the variable resistor 40 were connected in the bridge circuit G as shown in FIG. 3B. input end
1 and 2 may be connected in parallel to each other. Therefore, the relationship between the rate of change Q of the current I 1 and the current adjustment ratio P in this case is shown by the broken lines b 1 , c 1 , d 1 in FIG . , c 3 , and d 1 correspond to n=2, 3, and 4, respectively. For example, when n=3, the current change rate Q
If it is kept within -1 (%/100℃), the current adjustment ratio P can be set to 0.75 by adjusting the variable resistor 40.
It can be varied within the range of ~0.7. Similarly, n
= 4, the adjustable range of the current adjustment ratio P is
It is 0.8-0.75. In addition, in the above embodiment, the series circuit of the fixed resistor 30 and the variable resistor 40 shown in FIG.
By combining the fixed resistor 30 and the variable resistor 40 shown in the figure in parallel, the adjustable range of the current adjustment ratio P can be further expanded. For example, when n=3, the current adjustment ratio P 1~
Even if it is changed within the range of 0.7, the current change rate due to temperature remains within -1 (%/100°C). Embodiment 2 FIG. 5 shows a second embodiment of the present invention. In this embodiment, a fixed resistor 30a is connected to a front fixed resistor 30 on the outer zero strain part of the strain generating part 11 on the upper surface of the elastic substrate 10. and are formed by diffusion with each strain-diameter g 1 to g 4 . This fixed resistor 30a has approximately the same impurity concentration and approximately the same resistance temperature characteristics as the strain-electrical conversion elements g1 to g4 , and one end thereof is connected to the lead 2 via the auxiliary lead 7 , and the other end is connected to the lead 2 via the auxiliary lead 7. It is connected to the auxiliary lead 8 at the end. Further, as for the connection circuit of the variable resistor 40 to each fixed resistor 30, 30a, various circuits can be constructed as shown in the table below (see FIG. 6).

【表】 しかして、表−1において、例えば接続回1か
ら接続回2に切換える組合せ回路を採用した場合
について、温度による電流変化率Qと電流調整比
Pの関係を説明する。接続回路1にては、固定抵
抗30と可変抵抗40との直列回路のみが定電流
電源Sと共にブリツジ回路Gの入力端
間に接続される。このようにして構成した等価回
路は、第3A図に示したものと同じであつて、n
=3とすれば、温度による電流変化率Qと電流調
整比Pとの関係は第4図の曲線Cとなる。また、
接続回路2にては、固定抵抗30aと可変抵抗4
0との直列回路のみが接続回路1の場合と同様に
ブリツジ回路Gの入力端間に接続され
る。そして固定抵抗30aの抵抗値n1Rbとし、
n1=2とすれば、電流変化率Qと電流調整比Pと
の関係は第4図の曲線bとなる。この結果、曲c
とbを組合わせることにより、電流調整比Pの調
整可能な範囲は1〜0.67となり、前記実施例のよ
りも広くなる。このとき、電流変化率Qは−1
(%/100℃)以内である。 また、他の例として、表−1において接続回路
1から接続回路5に切換える組合わせ回路を採用
した場合、接続回路1にては、n=3とすれば、
電流変化率Qと電流調整比Pとの関係は第7図の
曲線e(第4図の曲線cと同じ)となる。また、
接続回路5にては、固定抵抗30aと可変抵抗4
0との直列回路及び固定抵抗30aと定電流電源
Sと共にブリツジ回路Gの入力端間に
接続される。しかして、n=3,n1=2として、
前記第1実施例のと同様にして電流変化率Qと電
流調整比Qの関係を求めると、第7図の曲線fが
得られる。この結果、両曲線eとfを組合わせる
ことにより、電流調整比Pの調整可能な範囲は1
〜0.54となつて、さらに広くなる。このとき、電
流変化率Qは−1(%/100℃)以である。 なお、本実施例においては、接続回路1と2及
び1と5をそれぞれ組合わた場合について、n=
3,n1=2とした例を説明したが、これに限られ
ることなく、表−1の各接続回路を互いに組合わ
せることにより、電流変化率Qを−1(%/100
℃)以内におさえながら、電流調整比Pを1〜
0.5の範囲で調整できる。 次に、前記第2実施例の変形例について説明す
ると、本変形例においては、上記第2実施例にて
説明した各固定抵抗30,30aに代えて、二個
の固定抵抗30b,30cが、第8図にて示すご
とく、弾性基板10の上面にて起歪部11の外側
零歪部に各歪−電気変換素子g1〜g4とともに拡散
形成されている。これら各固定抵抗30b,30
cはそれぞれ前歪−電気変換素子g1〜g4とほぼ同
じ不純物濃度及び、ほぼ同じ抵抗温度特性をを有
していて、補助リード10を介して互いに直列に
接続されている。固定抵抗30bはその一端にて
補助リードを介してリードに接続され、
一方固定抵抗30cはその一端にて補助リード
11に接続されている。また、各固定抵抗30b,
30cに対する可変抵抗40の接続回路について
は、下表のごとく種々の回路を組むことができ
る。
[Table] Therefore, in Table 1, the relationship between the current change rate Q and the current adjustment ratio P due to temperature will be explained in the case where a combinational circuit that switches from the connection circuit 1 to the connection circuit 2 is adopted, for example. In the connection circuit 1, only the series circuit of the fixed resistor 30 and the variable resistor 40 is connected to the constant current power supply S and the input terminals 1 and 2 of the bridge circuit G.
connected between. The equivalent circuit constructed in this way is the same as that shown in FIG. 3A, with n
=3, the relationship between the current change rate Q due to temperature and the current adjustment ratio P becomes a curve C in FIG. Also,
In the connection circuit 2, a fixed resistor 30a and a variable resistor 4
Only the series circuit with 0 is connected between the input terminals 1 and 2 of the bridge circuit G, as in the case of the connection circuit 1. Then, the resistance value of the fixed resistor 30a is n 1 Rb,
If n 1 =2, the relationship between the current change rate Q and the current adjustment ratio P becomes curve b in FIG. 4. As a result, song c
By combining and b, the adjustable range of the current adjustment ratio P becomes 1 to 0.67, which is wider than that of the previous embodiment. At this time, the current change rate Q is -1
(%/100℃) or less. As another example, if a combinational circuit that switches from connection circuit 1 to connection circuit 5 in Table 1 is adopted, and if n=3 in connection circuit 1, then
The relationship between the current change rate Q and the current adjustment ratio P is the curve e in FIG. 7 (same as the curve c in FIG. 4). Also,
In the connection circuit 5, a fixed resistor 30a and a variable resistor 4 are connected.
It is connected between the input terminals 1 and 2 of the bridge circuit G together with a series circuit with 0, a fixed resistor 30a, and a constant current power supply S. Therefore, assuming n=3, n 1 =2,
When the relationship between the current change rate Q and the current adjustment ratio Q is determined in the same manner as in the first embodiment, a curve f in FIG. 7 is obtained. As a result, by combining both curves e and f, the adjustable range of the current adjustment ratio P is 1
~0.54, which is even wider. At this time, the current change rate Q is -1 (%/100°C) or less. In addition, in this embodiment, when connecting circuits 1 and 2 and 1 and 5 are combined, n=
3. An example in which n 1 = 2 has been explained, but the current change rate Q can be set to -1 (%/100
℃) while keeping the current adjustment ratio P from 1 to
It can be adjusted within a range of 0.5. Next, a modification of the second embodiment will be described. In this modification, two fixed resistors 30b and 30c are used in place of the fixed resistors 30 and 30a described in the second embodiment. As shown in FIG. 8, on the upper surface of the elastic substrate 10, the strain-to-electric conversion elements g1 to g4 are diffused and formed in the outer zero strain part of the strain generating part 11. Each of these fixed resistors 30b, 30
The elements c have approximately the same impurity concentration and approximately the same resistance-temperature characteristics as the prestrain-electrical conversion elements g 1 to g 4 , and are connected in series to each other via the auxiliary lead 10 . The fixed resistor 30b is connected at one end to the lead 1 via the auxiliary lead 9 ,
On the other hand, the fixed resistor 30c has an auxiliary lead at one end.
Connected to 11 . In addition, each fixed resistor 30b,
Regarding the connection circuit of the variable resistor 40 to the variable resistor 30c, various circuits can be constructed as shown in the table below.

【表】 しかして、この変形例においては、表−2に示
した各接続回路1〜4を互いに組合わせることに
より、上第2実施例にて説明した場合と実質的に
同様の電流変化率Qに対する電流調整比Pの関係
が得られる。 なお、上記各実施例及び変形例においては、各
固定抵抗30〜30cの抵抗値をブリツジ回路G
の合成抵抗値Rbの整数倍にした例について説明
したが、これに限ることはない。なお各固定抵抗
30〜30cの抵抗値は約5Rb以下が実用的であ
る。 また、上記各実施例及び変形例にては、各固定
抵抗30〜30cと可変抵抗40をブリツジ回路
Gの入力端に接続した例について説明したが、こ
れら各固定抵抗及び可変抵抗をブリツジ回路Gの
出力端に接続して実施しても、上記各実施例及び
変形例の場合と実質的に同様の効果が得られる。 また、本発明の実施に際しては、弾性基板10
の表面に各歪−電気変換素子g1〜g4及び各固定抵
抗30〜30cを、例えば、イオン注入法又はエ
ピタキシヤル法により、3.7×102〜6.0×102
(1/Ωcm)の範囲内の平均導電率を有するよう
に、形成してもよい。この場合、歪−電気変換素
子の形成方法によつて不純物濃度の評価方法が一
般に異なるため、拡散プレーナ法により設定した
表面不純物濃度2.4×1020〜4.0×1020(原子/
cm3)を平均導電率3.7×102〜6.0×102(1/Ω
cm)に換算(公知のステイン法及び四探針法によ
り定まる。)し、この換算した平均導電率の範囲
内に、エピタキシヤル法又はイオン注入により形
成した歪−電気変換素子及び各固定抵抗の平均導
電率が収まるようにした。 また、上記各実施例及び変形例においては、可
変抵抗40の抵抗値が温度に対して不変であると
仮定したが、市販の可変抵抗はこのようなことは
なく温度により異なる抵抗値を有する。しかしな
がら、このような可変抵抗を本発明における可変
抵抗として採用しても、その電流調整比Pと温度
による電流変化率Qとの関係に対する影響は実質
上無視できる。 また、上記各実施例及び変形例において、固定
抵抗30,30a,30b,30cを弾性基板表
面において起歪部の外側の零歪部に拡散形成する
態様を示したが、本発明における前記固定抵抗の
形成部位はこれに限定されるものではなく、起歪
部の表面上において、引張力と圧縮力とが丁度釣
合う零歪部領域上に固定抵抗を拡散形成する実施
態様をとることもできる。 また、上記各実施例及び変形例においては、上
述したごとく、弾性基板10に円形の起歪部11
を形成し、かつこの起歪部11における表面直径
の同起歪部の厚さに対する比を2〜150の範囲内
に定めた例について説明したが、これに限らず、
起歪部11を、例えば多角形に形成し、かつこの
起歪部における表面の短軸線(起歪部表面の中心
を通りこの表面上に描かれる最も短い軸線)の長
さの同起歪部の厚さに対する比を2〜150の範囲
内に定めて実施してもよい。
[Table] Therefore, in this modification, by combining each of the connection circuits 1 to 4 shown in Table 2, the current change rate is substantially the same as that described in the second embodiment above. The relationship of current adjustment ratio P to Q is obtained. In each of the above embodiments and modifications, the resistance value of each fixed resistor 30 to 30c is determined by the bridge circuit G.
Although an example has been described in which the resistance value Rb is an integral multiple of the combined resistance value Rb, the present invention is not limited to this. Note that it is practical for the resistance value of each of the fixed resistors 30 to 30c to be approximately 5 Rb or less. Further, in each of the above embodiments and modifications, an example was explained in which each of the fixed resistors 30 to 30c and the variable resistor 40 were connected to the input terminal of the bridge circuit G. Even if it is connected to the output end of , substantially the same effects as in the above embodiments and modifications can be obtained. Further, when implementing the present invention, the elastic substrate 10
Each strain-electrical conversion element g 1 to g 4 and each fixed resistor 30 to 30c are placed on the surface of 3.7×10 2 to 6.0×10 2 by, for example, ion implantation or epitaxial method.
It may be formed to have an average conductivity within the range of (1/Ωcm). In this case, since the evaluation method of impurity concentration generally differs depending on the method of forming the strain-electric conversion element, the surface impurity concentration set by the diffusion planar method is 2.4 × 10 20 to 4.0 × 10 20 (atom/
cm 3 ) and average conductivity 3.7×10 2 to 6.0×10 2 (1/Ω
cm) (determined by the well-known Stein method and four-probe method), and within the range of this converted average conductivity, the strain-electrical conversion element formed by epitaxial method or ion implantation and each fixed resistor. The average conductivity was kept within range. Further, in each of the embodiments and modifications described above, it is assumed that the resistance value of the variable resistor 40 does not change with respect to temperature, but this is not the case with commercially available variable resistors, and the resistance value varies depending on the temperature. However, even if such a variable resistor is employed as the variable resistor in the present invention, its influence on the relationship between the current adjustment ratio P and the current change rate Q due to temperature can be substantially ignored. Furthermore, in each of the above embodiments and modifications, an embodiment has been shown in which the fixed resistors 30, 30a, 30b, and 30c are diffused and formed in the zero strain part outside the strain generating part on the surface of the elastic substrate, but the fixed resistors in the present invention The formation location is not limited to this, but it is also possible to adopt an embodiment in which the fixed resistance is diffused and formed on the surface of the strain-generating portion in a zero-strain region where tensile force and compressive force are exactly balanced. . Further, in each of the above embodiments and modifications, as described above, the circular strain generating portion 11 is provided on the elastic substrate 10.
, and the ratio of the surface diameter of the strain-generating portion 11 to the thickness of the strain-generating portion is set within the range of 2 to 150, but the invention is not limited to this.
The strain-generating portion 11 is formed into a polygonal shape, for example, and the same strain portion has the length of the short axis of the surface of the strain-generating portion (the shortest axis drawn on the surface passing through the center of the surface of the strain-generating portion). The ratio of 2 to 150 may be set in the range of 2 to 150.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施した機械−電気変換器の
要部平面図、第2図は同断面図、第3A図及び第
3B図は第1図の機械−電気変換器に可変抵抗を
接続した等価回路図、第4図は電流調整比Pと電
流変化率Qとの関係を示すグラフ、第5図は本発
明の他の実施例を示す機械−電気変換器の要部平
面図、第6図は第5図の機械−電気変換器に可変
抵抗を接続した等価回路、第7図は電流調整比P
と電流変化率Qとの関係を示すグラフ、第8図は
第5図に示した第2実施例の変形例を示す機械−
電気変換器の要部平面図、第9図は第8図の機械
−電気変換器に可変抵抗を接続した等価回路図で
ある。 符号の説明、10……弾性基板、11……起歪
部、20……基台、30〜30c……固定抵抗、
40……可変抵抗、g1〜g4……歪−電気変換素
子、G……ブリツジ回路、……入力
端、……出力端、S……定電流電源。
Figure 1 is a plan view of essential parts of a mechanical-electrical converter embodying the present invention, Figure 2 is a cross-sectional view of the same, and Figures 3A and 3B show a variable resistor connected to the mechanical-electrical converter of Figure 1. FIG. 4 is a graph showing the relationship between the current adjustment ratio P and the current change rate Q, and FIG. Figure 6 shows an equivalent circuit in which a variable resistor is connected to the mechanical-electrical converter shown in Figure 5, and Figure 7 shows the current adjustment ratio P.
FIG. 8 is a graph showing the relationship between the current change rate Q and the current change rate Q, and FIG. 8 is a machine diagram showing a modification of the second embodiment shown in FIG.
FIG. 9, which is a plan view of the main part of the electrical converter, is an equivalent circuit diagram in which a variable resistor is connected to the mechanical-electrical converter shown in FIG. 8. Explanation of symbols, 10...Elastic substrate, 11...Strain-generating portion, 20...Base, 30-30c...Fixed resistor,
40...variable resistor, g1 to g4 ...distortion-electric conversion element, G...bridge circuit, 1 , 2 ...input terminal, 3 , 4 ...output terminal, S...constant current power supply.

Claims (1)

【特許請求の範囲】 1 基台の表面にシリコン単結晶からなる弾性基
板とその周縁部にて固着してその中央部に外圧に
より歪が生じる起歪部を形成し、この起歪部の表
面にP形半導体歪−電気変換素子を形成して、こ
のP形半導体歪−電気変換素子に定電流電源を接
続することにより前記起歪部の歪に比例する電気
的出力を検出するようにした機械−電気変換器に
おいて、 (前記起歪部の表面における短軸線の長さ)/(前記
起歪部の厚さ) を2〜150の範囲内に定め、前記歪−電気変換素
子を3.7×102〜6.0×102(1/Ω・cm)の範囲内
の平均導電率を有する四個の歪−電気変換素子と
してブリツジ回路を構成するように形成し、かつ
前記歪−電気変換素子とほぼ同じ平均導電率及び
ほぼ同じ抵抗温度特性を有する少なくとも一個の
固定抵抗を前記弾性基板の表面の零歪部に形成し
た調整回路を前記ブリツジ回路の入力端又は出力
端に接続したことを特徴とする機械−電気変換
器。
[Scope of Claims] 1. An elastic substrate made of a silicon single crystal is fixed to the surface of the base at its periphery, and a strain-generating portion is formed in the center thereof where strain occurs due to external pressure, and the surface of this strain-generating portion is fixed to the surface of the base. A P-type semiconductor strain-electric conversion element is formed in the P-type semiconductor strain-electric conversion element, and by connecting a constant current power source to the P-type semiconductor strain-electric conversion element, an electrical output proportional to the strain of the strain generating portion is detected. In the mechanical-electrical converter, (length of short axis on the surface of the strain-generating portion)/(thickness of the strain-generating portion) is set within the range of 2 to 150, and the strain-electrical conversion element is A bridge circuit is formed as four strain-electric conversion elements having an average conductivity within the range of 10 2 to 6.0×10 2 (1/Ω·cm), and the strain-electric conversion elements and An adjustment circuit in which at least one fixed resistor having approximately the same average conductivity and approximately the same resistance temperature characteristic is formed in a zero strain portion on the surface of the elastic substrate is connected to the input end or output end of the bridge circuit. Mechanical-electrical converter.
JP2424877A 1977-03-05 1977-03-05 Mechanicalltooelectric converter Granted JPS53109488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2424877A JPS53109488A (en) 1977-03-05 1977-03-05 Mechanicalltooelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2424877A JPS53109488A (en) 1977-03-05 1977-03-05 Mechanicalltooelectric converter

Publications (2)

Publication Number Publication Date
JPS53109488A JPS53109488A (en) 1978-09-25
JPS6143868B2 true JPS6143868B2 (en) 1986-09-30

Family

ID=12132935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2424877A Granted JPS53109488A (en) 1977-03-05 1977-03-05 Mechanicalltooelectric converter

Country Status (1)

Country Link
JP (1) JPS53109488A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399932U (en) * 1990-01-26 1991-10-18

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2856708A1 (en) * 1978-12-29 1980-07-10 Siemens Ag Pressure measurement transducer - has membrane carrying strain gauges used as parallel resistive paths with curved connecting end sections
JPS6323371A (en) * 1986-07-16 1988-01-30 Nippon Denso Co Ltd Semiconductor strain detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399932U (en) * 1990-01-26 1991-10-18

Also Published As

Publication number Publication date
JPS53109488A (en) 1978-09-25

Similar Documents

Publication Publication Date Title
US3858150A (en) Polycrystalline silicon pressure sensor
JP3602611B2 (en) Horizontal Hall element
US3758830A (en) Transducer formed in peripherally supported thin semiconductor web
US6915702B2 (en) Piezoresistive transducers
US3572109A (en) Integral semiconductor strain gage transducers with frequency output
US6870236B2 (en) Integrated resistor network for multi-functional use in constant current or constant voltage operation of a pressure sensor
US11047822B2 (en) Sensor device
JPH063389B2 (en) Fluid flow measuring device
US6718830B1 (en) Customized span compensation of SOI pressure sensor
EP0006740A1 (en) Improvements in strain gauges
EP0303875A2 (en) Si crystal force transducer
JPS6143868B2 (en)
JPS61107774A (en) Pressure sensor and making thereof
JP4195388B2 (en) Sensor formed on a silicon-on-insulator structure and having reduced power-up drift
JPH0414512B2 (en)
JP5248439B2 (en) Semiconductor pressure sensor and manufacturing method thereof
JP2748077B2 (en) Pressure sensor
JPH06265427A (en) Semiconductor pressure converter
JPH04131721A (en) Stress sensor
JPH0587649A (en) Semiconductor stress detector
JPH0234972A (en) Semiconductor pressure detector
WO1991004474A1 (en) Temperature compensation apparatus for torque measuring apparatus
JP3509336B2 (en) Integrated sensor
JP2737479B2 (en) Semiconductor stress detector
FI71198C (en) HALVLEDAROMVANDLARE FOER SPAENNINGSMAETARE