WO1991004474A1 - Temperature compensation apparatus for torque measuring apparatus - Google Patents

Temperature compensation apparatus for torque measuring apparatus Download PDF

Info

Publication number
WO1991004474A1
WO1991004474A1 PCT/JP1990/001177 JP9001177W WO9104474A1 WO 1991004474 A1 WO1991004474 A1 WO 1991004474A1 JP 9001177 W JP9001177 W JP 9001177W WO 9104474 A1 WO9104474 A1 WO 9104474A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
temperature
detection
compensating
signal
Prior art date
Application number
PCT/JP1990/001177
Other languages
French (fr)
Japanese (ja)
Inventor
Akiyoshi Hanazawa
Original Assignee
Kubota Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corporation filed Critical Kubota Corporation
Publication of WO1991004474A1 publication Critical patent/WO1991004474A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Definitions

  • the present invention relates to a temperature compensator for a torque measuring device.
  • a pair of magnetically anisotropic parts are formed on the outer circumference of a torque transmitting shaft, and each magnetic anisotropy when torque is applied to this axis.
  • the change in the magnetic permeability of the magnetic part is detected by a pair of detection coils placed near these magnetic anisotropic parts, and the torque acting on the shaft is determined from the difference between the two detection signals.
  • the size of the detection coil is converted into an electric signal, and an excitation coil for exciting the detection coil is provided, for example, in Japanese Patent Application Publication No. It is proposed in 1-1 73843.
  • the change of the exciting current and the temperature change is controlled by the constant voltage control, which keeps the sum of the voltages of the output signals of the detection coil, that is, the value twice the average of both signals, constant. O to prevent this from happening.
  • the temperature compensator for the torque measuring device of the present invention is:
  • the exciting current does not react to the torque applied to the shaft, but only to the temperature of the torque detector. For this reason, if the excitation current is detected, the temperature of the torque detector can be detected independently of the state of the applied torque. Since the torque signal is temperature-compensated based on the result of this temperature detection, it is possible to reliably prevent the occurrence of a detection error due to a temperature change, and even at a high temperature. Be able to measure torque accurately BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a circuit diagram of a temperature compensator for a child measuring device according to a first embodiment of the present invention
  • Figures 9 and 10 show the measured values of the torque detection output at room temperature and at high temperature, respectively.
  • FIGS. 11 to 14 are circuit diagrams of a temperature compensator for the torque measuring device according to the second to fifth embodiments of the present invention.
  • FIGS. 15 and 16 are circuit diagrams of examples in which the temperature compensator according to the present invention is applied to a differential transformer.
  • FIG. 1 shows a first embodiment of the present invention.
  • Reference numeral 1 denotes a torque transmission shaft, which is made of a soft magnetic and magnetostrictive material.
  • magnetic anisotropic parts 2, 3 which are inclined in the opposite directions at an angle of about 15 ° with the direction of the axis of the shaft 1 and a number of grooves, etc. It is formed by.
  • the detection coils 4 and 5 corresponding to the magnetic anisotropic parts 2 and 3 and the detection coils 4 and 5 are excited.
  • an excitation coil 6 are provided.
  • the excitation coil 6 is connected to an AC power supply 7, and between the AC power supply 7 and the excitation coil 6, an auto-gain controller 8 and an excitation current detection resistor 9 are connected. Are provided. Rectifier filters 10 and 11 are connected to both ends of the detection resistor 9, respectively. These rectifier filters 10 and 11 are connected to the human-powered side of the differential detector 12 respectively. ing. difference The motion detector 12 detects the exciting current IeX flowing through the exciting coil 6 by taking the difference between the signals from the two rectifying filters 10 and 11. I do.
  • the output lines 13 and U of the detection coils 4 and 5 are connected to the input sides of the rectifying fins 15 and 16, respectively.
  • the output sides of the filters 15 and 16 are connected to the input side of a computing unit 17 for subtraction.
  • the output side of the arithmetic unit 17 is connected to the output terminal 21 via the automatic gain controller 18, the arithmetic unit 19 for addition, and the V / I converter 20. It is being led. 22 is a load resistance.
  • the output side of the differential detector 12 is connected to one input side of a comparator 23, and the other input side of the comparator 23 is connected to a constant voltage generator 24.
  • the output side of the comparator 23 is connected to this automatic gain controller 18 in order to adjust the amplification factor of the automatic gain controller 18. Also, is connected to the input side of the computing unit 19.
  • the output sides of the rectifier filters 15 and 16 are also connected to the input side of a computing unit 25 for addition.
  • the output side of the computing unit 25 is connected to one input side of the comparator 26, and the other input side of the comparator 26 is connected to the constant voltage generator 24.
  • the output side of the comparator 26 is connected to the automatic gain controller 8 in order to adjust the gain of the automatic gain controller 8.
  • the magnetically anisotropic parts 2 and 3 are inclined in opposite directions, so that a tensile force acts on one magnetically anisotropic part and a compressive force acts on the other.
  • the detection voltage V of one detection Coil g 4 For example other force, increasing by Tsu was the increase in preparative Torque detection voltage V 2 of the other detection Coil le 5 Decrease with it.
  • the difference between V 2 V, - if the V 2 Ru determined, signal or an output corresponding to the change of the bets Torque Remind as in FIG. 5 Appears at terminal 21.
  • the sum V, + V 2 of the detection voltages appearing on the output side of the computing unit 25 is compared in the comparator 26 with the reference voltage V ref from the constant voltage generator 24. Then, a control signal is sent from the comparator 26 to the auto gain controller 8, and the excitation is controlled by adjusting the gain of the auto gain controller 8.
  • the exciting current I ex of the coil 6 the sum V and the value of + V 2 are controlled to be constant. As a result, variations in the characteristics of the device due to temperature changes are roughly compensated.
  • the exciting current I ex is detected by the detection resistor 9, the rectifying filters 10 and 11, and the differential detector 12.
  • the excitation current Iex does not react to the torque, but only to the temperature of the torque detector. Therefore, if the exciting current lex is detected, the temperature of the torque detecting section is detected independently of the state of the torque applied to the shaft 1. According to the temperature detection result, the differential detector 12 outputs the temperature compensation reference voltage Vt. This voltage Vt is compared with the reference voltage Vref from the constant voltage generator 24 in the comparator 23, and the corresponding torque detection sensitivity is determined. The correction signal voltage V s is output from the comparator 23.
  • FIG. 2 shows a change in the excitation current I ex when the temperature of the torque detector changes. As the temperature rises, the exciting current I ex decreases.
  • Figure 3 shows the change in the temperature compensation reference voltage Vt based on the change in the excitation current Iex, that is, the change in the temperature compensation reference voltage Vt when the temperature of the torque detector changes. As the voltage rises, the temperature compensation reference voltage Vt decreases.
  • FIG. 4 shows the relationship between the temperature compensation reference voltage Vt and the amplification factor of the automatic gain controller 18. As the temperature compensation reference voltage Vt decreases, that is, as the temperature rises, the amplification factor of the auto gain controller 18 decreases.
  • Figure 5 shows the relationship between torque and output voltage at room temperature.
  • Figure 6 shows the relationship between the two at high temperatures.
  • the dashed line indicates that the output of the arithmetic unit 17, that is, only the control in which the values of V and + V 2 are constant, is executed, but the temperature compensation based on the exciting current I e .x is not performed. Indicates output voltage when not performed.
  • the solid line indicates the output voltage of the output of the auto-gain controller 18, that is, the output voltage when temperature compensation based on the excitation current Iex is also performed.
  • V, + a value of V 2 is the case where only a certain value and name Ru control, inclined or suddenly Tsu Na line shifts to a higher sensitivity than that in the normal temperature
  • the slope becomes almost the same as that at room temperature and almost the same. Sensitivity characteristics have been achieved.
  • the variation in the torque detection sensitivity due to the temperature change is about +1000 ppm / oC. Is equivalent to a 10% measurement error when the temperature of the detector changes by 100 ° C.
  • the sensitivity fluctuation can be improved to ⁇ 20 to 30 ppm / ° C at most. .
  • the correction signal voltage V s from the comparator 23 is also used to correct the output at the zero point.
  • the signal voltage V s for this correction and the output voltage from the auto-gain controller 18 for which the sensitivity correction has been achieved as described above are both used by the arithmetic unit. Entered in 19.
  • the arithmetic unit 19 adds and subtracts these two voltages, the degree to which the zero-point output increases or decreases when the temperature of the detection unit fluctuates is measured in advance, and it is determined in advance. By determining the corresponding circuit constant (correction coefficient), the arithmetic unit 19 outputs a signal in which the error due to the fluctuation of the zero point output is compensated.
  • FIG. 7 shows how the correction signal voltage Vs changes when the temperature compensation reference voltage Vt from the differential detector 12 fluctuates with the temperature change of the detection unit. .
  • the inclination angle of the graph changes according to the degree of fluctuation of the zero point output, and the direction of the inclination is not only in the case of the lower right as shown in the figure but also in the case of the upper right. is there.
  • Figure 8 shows the relationship between torque and output voltage at high temperatures.
  • the solid line indicates the output voltage when temperature compensation based on the output of the computing unit 19, that is, the excitation current Iex, is performed, and the dashed line indicates the output voltage when temperature compensation is not performed. Show. It explains how the error E based on the fluctuation of the zero point output is eliminated by performing the temperature compensation.
  • the fluctuation of the zero point output due to the temperature change of the detection unit is about ⁇ 500 ppm / ° C. This means that there is no applied torque when the temperature of the detection unit changes by 100 ° C. This means that an output signal of ⁇ 5% of full scale is generated.
  • the fluctuation of the zero point output can be improved to about 20 to 30 ppm / ° C at most.
  • Fig. 9 shows the measured values of the relationship between the torque and the output voltage at room temperature (detector temperature: 25 ° C).
  • Figure 10 shows the measured values of the relationship between the torque and the output voltage when the temperature was compensated for the sensitivity and the zero point at high temperatures (detector temperature 125 V). In both cases, the measured values and are shown in. In this Figure 10,
  • the graph “with sensitivity and zero correction” is a plot of the output appearing at output terminal 21 in FIG. Similarly, the graph “with sensitivity correction only” plots the output of the auto-gain controller 18, and the graph “without correction” plots the output of the calculator 17, respectively. It is a thing that has been dropped.
  • FIG. 11 shows a second embodiment of the present invention.
  • the computing unit 19 in FIG. 1 is omitted.
  • the circuit of Fig. 11 has the characteristic that the fluctuation of sensitivity with temperature change is a problem, but the fluctuation of zero is negligibly small. Suitable for torque measurement equipment.
  • FIG. 12 shows a third embodiment of the present invention.
  • the automatic gain controller 18 in FIG. 1 is omitted, and only temperature compensation of the zero point is performed, and temperature compensation of the sensitivity is not performed. Therefore, in the circuit of Fig. 12, contrary to the circuit of Fig. 11, the fluctuation of the zero point due to the temperature change is a problem, but the fluctuation of the sensitivity is negligible. It is suitable for a torque measuring device having such a small characteristic.
  • FIG. 13 shows a fourth embodiment of the present invention. This is a modification of the embodiment shown in FIG.
  • the comparator 23 compares the temperature compensation reference voltage Vt from the differential detector 12 with the reference voltage Vref from the constant voltage generator 24.
  • the exciting current lex detected by the detecting resistor 9 and the output of the computing unit 25 are compared by the comparator 23.
  • the sum of the detection voltages V and + V2 appearing on the output side of the computing unit 25 is compared with the reference voltage Vref from the constant voltage generator 24, and this circuit Sum V, +
  • the automatic gain controller 18 is composed of a resistor 27 and an FET 28.
  • FIG. 14 shows a fifth embodiment of the present invention.
  • the sum V of the detected voltage, + V 2 and the comparison reference voltage V ref to the sum of this V, off I in earthenware pots by ing to a certain value of + V 2 - Caribbean Tsu
  • the excitation voltage V ex of the excitation coil 6 is controlled to be constant.
  • reference numeral 29 denotes a detection unit for the excitation voltage V ex at both ends of the excitation coil 6, and the detection signal is input to the comparator 26 and is compared with the reference voltage V ref from the constant voltage generator 24. Are compared. According to the comparison result, the amplification factor of the auto-gain controller 8 is adjusted so that the excitation voltage Vex becomes a constant value. In this way, even when the excitation voltage V ex of the excitation coil 6 is controlled to be a constant value, the sensitivity and the sensitivity are controlled in the same manner as when controlling the sum V and + V 2 of the detection voltages. Zero compensation is possible.
  • FIGS. 15 and 16 show examples in which a temperature compensator according to the present invention is applied to a differential trans- former.
  • the differential transformer 31 is also generally provided with an excitation coil 6 and a pair of detection coils 4 and 5 similar to the torque measuring device. Therefore, by using exactly the same circuit configuration as that of the torque measuring device, the sensitivity of the detection output when this differential transformer 31 is used under high temperature conditions is improved.
  • Fig. 15 shows a circuit for controlling the sum V and + V2 of the detection power E to be constant, as in Fig. 1.
  • FIG. 16 shows a circuit for controlling the value of the excitation voltage V ex of the excitation coil 6 to be constant, as in the case of FIG. 14.
  • the differential transformer 31 whose temperature is compensated can be used as a displacement detector, a magnetic amplifier, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Power Steering Mechanism (AREA)

Abstract

A temperature compensation apparatus in a torque measuring apparatus, which is provided with a detection coil in order to determine the magnitude of a torque by detecting the change of permeability at a magnetically anisotropic portion of the outer periphery of a shaft when the torque is applied. The change of an excitation current of an excitation coil for exciting the detection coil is correlated with the temperature of a torque detection portion. Therefore, the temperature of the torque detection portion is detected by detecting the excitation current. Sensitivity and zero point of the torque detection output are subjected to temperature compensation on the basis of the detection result of temperature.

Description

明 細 書  Specification
発明の名称  Title of invention
ト 几 ク 測定装置のための温度補償装置  G Temperature compensator for geometry measuring device
技術分野  Technical field
本発明は、 ト ル ク 測定装置のための温度補償装置に関す 。  The present invention relates to a temperature compensator for a torque measuring device.
背景技術  Background art
公知の ト 儿 ク 測定装置 と して、 ト 儿 ク 伝達軸の外周 に一 対の磁気異方性部を形成 し、 こ の軸に ト ル ク が印加 さ れた と き の各磁気異方性部の透磁率の変化を、 こ れ ら磁気異方 性部の近傍に配置さ れた一対の検出 コ ィ ルで検出 し、 両検 出信号の差か ら、 軸に作用する ト ル ク の大き さ を電気信号 に変換する よ う に した も のであ っ て、 前記検出 コ イ ルを励 磁する ための励磁コ イ ル を有 した も のが、 た とえば 日 本国 特許出願公開第 1 - 1 73843号において提案 さ れてい る。  As a well-known torque measuring device, a pair of magnetically anisotropic parts are formed on the outer circumference of a torque transmitting shaft, and each magnetic anisotropy when torque is applied to this axis. The change in the magnetic permeability of the magnetic part is detected by a pair of detection coils placed near these magnetic anisotropic parts, and the torque acting on the shaft is determined from the difference between the two detection signals. In this case, the size of the detection coil is converted into an electric signal, and an excitation coil for exciting the detection coil is provided, for example, in Japanese Patent Application Publication No. It is proposed in 1-1 73843.
こ の種の ト ル ク 測定装置では、 磁気異方性部が形成さ れ た軸部分や検出 コ イ ル や励磁コ イ ルな どを備えた ト ル ク 検 出部に温度変化が生 じ る と、 その磁気特性や電気特性が変 化 し、 励磁コ イ ルの イ ン ピー ダ ン スが変化 してその励磁電 流が変化する。 こ の結果 ト ル ク 検出精度に変動が生 じ、 た とえば零点出力 の変化、 感度変化、 ヒ ステ リ シ ス増大な ど が起こ る。 こ のため、 産業機械、 モー タ、 エ ン ジ ン 、 自動 車な ど、 運転時に比較的高温にな る装置の ト ル ク を測定す る際に問題 と な る。  In this type of torque measuring device, a temperature change occurs in the shaft portion where the magnetically anisotropic portion is formed, and in the torque detecting portion equipped with a detection coil and an excitation coil. As a result, the magnetic and electrical characteristics change, the impedance of the exciting coil changes, and the exciting current changes. As a result, torque detection accuracy fluctuates, for example, a change in zero point output, a change in sensitivity, and an increase in hysteresis. This poses a problem when measuring the torque of equipment that gets relatively hot during operation, such as industrial machinery, motors, engines, and automobiles.
そ こ で上記 1 一 1 73843号では、 励磁電流の変化 と温度変 化 と に相関があ る こ と に着 目 し、 検出 コ イ ルの出力信号の 電圧の和、 すなわち両信号の平均値の 2 倍の値を一定にす る 定電圧制御に よ り 励磁電流を制御 して、 こ の よ う な事態 の発生を防止 して い o。 Therefore, in the above-mentioned No. 11 1 73843, the change of the exciting current and the temperature change The excitation current is controlled by the constant voltage control, which keeps the sum of the voltages of the output signals of the detection coil, that is, the value twice the average of both signals, constant. O to prevent this from happening.
し力、 し、 単に こ の よ う な定電圧制御を行な つ ただけでは 特に温度変化が大き い場合な どにおいては、 ト ル ク 検出精 度の変動を防止する う えで十分でない とい う 問題点があ る 発明の開示  It is said that simply performing such a constant voltage control is not enough to prevent fluctuations in the torque detection accuracy, especially when the temperature change is large. Disclosure of inventions with problems
本発明の 目 的は、 ト ル ク 検出部の温度が大き く 変化する 場合であ っ て も 、 その検出精度を維持でき る よ う にする こ と にあ る。  It is an object of the present invention to maintain the detection accuracy even when the temperature of the torque detecting section changes greatly.
こ の 目 的を達成する ため本発明の ト ル ク 測定装置のため の温度補償装置は、  To achieve this objective, the temperature compensator for the torque measuring device of the present invention is:
励磁コ ィ ルの励磁電流を検出する こ と に よ っ て ト ル ク検 出部の温度を検出する手段 と、  Means for detecting the temperature of the torque detecting section by detecting the exciting current of the exciting coil;
こ の温度検出手段に よ る検出結果に も とづいて前記 ト ル ク の大き さ についての電気信号を温度補償する手段 と を有 する。  Means for temperature-compensating the electric signal for the magnitude of the torque based on the detection result by the temperature detecting means.
こ の よ う な構成では、 励磁電流は軸に印加 さ れる ト ル ク には反応せず、 ト ル ク 検出部の温度のみに反応する。 こ の ため、 励磁電流を検出すれば、 印加 ト ル ク の状態 と は独立 して ト ノレ ク 検出部の温度を検出でき る。 こ の温度の検出結 果に も とづいて ト ル ク 信号を温度補償する こ とか ら、 温度 変化に と も な う 検出誤差の発生を確実に防止する こ とがで き 、 高温下で も正確に ト ル ク を測定する こ とか可能にな る 図面の簡単な説明 In such a configuration, the exciting current does not react to the torque applied to the shaft, but only to the temperature of the torque detector. For this reason, if the excitation current is detected, the temperature of the torque detector can be detected independently of the state of the applied torque. Since the torque signal is temperature-compensated based on the result of this temperature detection, it is possible to reliably prevent the occurrence of a detection error due to a temperature change, and even at a high temperature. Be able to measure torque accurately BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の第一の実施例の 卜 儿 ク 測定装置のため の温度補償装置の回路図、  FIG. 1 is a circuit diagram of a temperature compensator for a child measuring device according to a first embodiment of the present invention,
第 2 図〜第 8 図は第 1 図の回路の動作を説明する ための 図、  2 to 8 are diagrams for explaining the operation of the circuit in FIG. 1,
第 9 図お よ び第 1 0図は常温時お よ び高温時における ト ル ク 検出出力の実測値を示す図、  Figures 9 and 10 show the measured values of the torque detection output at room temperature and at high temperature, respectively.
第 1 1図〜第 1 4図は本発明の第二〜第五の実施例の ト ル ク 測定装置のための温度補償装置の回路図、 そ して  FIGS. 11 to 14 are circuit diagrams of a temperature compensator for the torque measuring device according to the second to fifth embodiments of the present invention, and FIGS.
第 1 5図お よ び第 1 6図は本発明に も とづ く 温度補償装置を 差動 ト ラ ン ス へ応用 した例の回路図であ る。  FIGS. 15 and 16 are circuit diagrams of examples in which the temperature compensator according to the present invention is applied to a differential transformer.
発明を実施する ための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
第 1 図は本発明の第一の実施例を示す。 1 は ト ル ク 伝達 用の軸であ り 、 軟磁性お よ び磁歪性を有する材料にて形成 さ れている。 軸 1 の外周 には、 こ の軸 1 の軸心の方向 と 土 約 ·1 5度の角度をな して互いに反対方向に傾斜する磁気異方 性部 2 , 3 が、 多数の溝な どに よ っ て形成さ れてし、る。 磁 気異方性部 2 , 3 の周囲には、 各磁気異方性部 2 , 3 に対 応 した検出 コ イ ル 4 , 5 と、 こ れ ら検出 コ ィ ノレ 4 , 5 を励 磁する ための励磁コ イ ル 6 とが設け られている。 励磁コ ィ ル 6 は交流電源 7 に接続さ れ、 こ の交流電源 7 と励磁コ ィ ル 6 と の間に は、 オー ト ゲ イ ン コ ン ト ロ ー ラ 8 と励磁電流 の検出抵抗 9 とが設け られている。 検出抵抗 9 の両端には それぞれ整流 フ ィ ル タ 1 0, 1 1が接続さ れ、 こ れ ら整流フ ィ 儿 夕 1 0, 1 1は差動検出器 1 2の人力側に接続さ れている。 差 動検出器 1 2は、 両整流フ ィ ル タ 1 0, 1 1か らの信号の差を と る こ と に よ っ て、 励磁コ イ ル 6 に流れ る励磁電流 I e Xを検 出する。 FIG. 1 shows a first embodiment of the present invention. Reference numeral 1 denotes a torque transmission shaft, which is made of a soft magnetic and magnetostrictive material. On the outer circumference of the shaft 1, magnetic anisotropic parts 2, 3 which are inclined in the opposite directions at an angle of about 15 ° with the direction of the axis of the shaft 1 and a number of grooves, etc. It is formed by. Around the magnetic anisotropic parts 2 and 3, the detection coils 4 and 5 corresponding to the magnetic anisotropic parts 2 and 3 and the detection coils 4 and 5 are excited. And an excitation coil 6 are provided. The excitation coil 6 is connected to an AC power supply 7, and between the AC power supply 7 and the excitation coil 6, an auto-gain controller 8 and an excitation current detection resistor 9 are connected. Are provided. Rectifier filters 10 and 11 are connected to both ends of the detection resistor 9, respectively. These rectifier filters 10 and 11 are connected to the human-powered side of the differential detector 12 respectively. ing. difference The motion detector 12 detects the exciting current IeX flowing through the exciting coil 6 by taking the difference between the signals from the two rectifying filters 10 and 11. I do.
各検出 コ ィ ノレ 4 , 5 力ヽ ら の出力 ラ イ ン 1 3, Uは、 整流フ イ ノし 夕 1 5 , 1 6の入力側にそれぞれ接続さ れ、 ま た こ れ ら整 流フ ィ ル タ 1 5 , 1 6の出力側は、 減算のための演算器 1 7の入 力側に接続さ れてい る。 演算器 1 7の出力側は、 オー ト ゲイ ン コ ン ト ロ ー ラ 1 8、 加算のための演算器 1 9、 お よ び V / I 変換器 20を介 して、 出力端子 2 1に導かれてい る。 22は、 負 荷抵抗であ る。  The output lines 13 and U of the detection coils 4 and 5 are connected to the input sides of the rectifying fins 15 and 16, respectively. The output sides of the filters 15 and 16 are connected to the input side of a computing unit 17 for subtraction. The output side of the arithmetic unit 17 is connected to the output terminal 21 via the automatic gain controller 18, the arithmetic unit 19 for addition, and the V / I converter 20. It is being led. 22 is a load resistance.
' 差動検出器 1 2の出力側は比較器 23の一方の入力側に接続 さ れ、 こ の比較器 23の他方の入力側には定電圧発生器 24が 接続さ れている。 比較器 23の出力側は、 オー ト ゲイ ン コ ン ト ロ 一 ラ 1 8の増幅率を調節する ために こ のォ一 卜 ゲイ ン コ ン ト ロ 一 ラ 1 8に接続さ れる と と も に、 演算器 1 9の入力側に も接続さ れている。  'The output side of the differential detector 12 is connected to one input side of a comparator 23, and the other input side of the comparator 23 is connected to a constant voltage generator 24. The output side of the comparator 23 is connected to this automatic gain controller 18 in order to adjust the amplification factor of the automatic gain controller 18. Also, is connected to the input side of the computing unit 19.
整流フ ィ 儿 夕 1 5, 1 6の出力側は、 加算のための演算器 25 の入力側に も接続さ れている。 演算器 25の出力側は比較器 2 6の一方の入力側に接続さ れ、 こ の比較器 2 6の他方の入力 側には定電圧発生器 24が接続さ れている。 比較器 26の出力 側は、 ォ一 ト ゲイ ン コ ン ト ロ 一 ラ 8 の増幅率を調整する た め に、 こ のォ 一 ト ゲ イ ン コ ン ト ロ 一 ラ 8 に接続さ れてい る こ の よ う な構成に よれば、 軸 1 に作用する ト ル ク に も と づ く 各磁気異方性部 2 , 3 での透磁率の変化が、 検出 コ ィ ル 4 , 5 にて検出 さ れる。 こ の と き 、 磁気異方性部 2 , 3 は互いに反対方向に傾斜 している ため、 一方の磁気異方性 部に引張力が働 く と、 他方には圧縮力か働 く 。 こ の ため、 た とえ ば一方の検出 コ イ ル 4 の検出電圧 V , 力、 ト ル ク の増 加に したが っ て増加する と、 他方の検出 コ イ ル 5 の検出電 圧 V 2 はそれに と も な っ て減少する。 そ こ で、 演算器 1 7に よ り 両検出電圧 V , , V 2 の差 V , - V 2 を求め る と、 第 5 図に示すよ う に ト ル ク の変化に対応する信号か出力端 子 2 1に現れる。 The output sides of the rectifier filters 15 and 16 are also connected to the input side of a computing unit 25 for addition. The output side of the computing unit 25 is connected to one input side of the comparator 26, and the other input side of the comparator 26 is connected to the constant voltage generator 24. The output side of the comparator 26 is connected to the automatic gain controller 8 in order to adjust the gain of the automatic gain controller 8. According to this configuration, the change in the magnetic permeability in each of the magnetically anisotropic parts 2 and 3 based on the torque acting on the axis 1 is detected by the detection coils 4 and 5. Detected. At this time, the magnetically anisotropic parts 2 and 3 Are inclined in opposite directions, so that a tensile force acts on one magnetically anisotropic part and a compressive force acts on the other. For this reason, the detection voltage V of one detection Coil g 4 For example other force, increasing by Tsu was the increase in preparative Torque detection voltage V 2 of the other detection Coil le 5 Decrease with it. In its This arithmetic unit 1 7 by Ri both detection voltage V,, the difference between V 2 V, - if the V 2 Ru determined, signal or an output corresponding to the change of the bets Torque Remind as in FIG. 5 Appears at terminal 21.
演算器 25の出力側に現れる検出電圧の和 V , + V 2 の 値は、 比較器 26において定電圧発生器 24か らの基準電圧 V r e f と比較さ れる。 そ して、 比較器 26か らオー ト ゲ イ ン コ ン ト ロ 一 ラ 8 へ制御信号が送 られ、 ォー 卜 ゲ イ ン コ ン ト ロ ー ラ 8 の増幅率の調節に よ り 励磁コ ィ ル 6 の励磁電流 I e x を制御する こ とで、 上記和 V , + V 2 の値が一定値 とな る よ う に制御さ れる。 こ れに よ り 、 温度変化に よ る装置の 特性の変動が大 ま かに補償さ れる。 The sum V, + V 2 of the detection voltages appearing on the output side of the computing unit 25 is compared in the comparator 26 with the reference voltage V ref from the constant voltage generator 24. Then, a control signal is sent from the comparator 26 to the auto gain controller 8, and the excitation is controlled by adjusting the gain of the auto gain controller 8. By controlling the exciting current I ex of the coil 6, the sum V and the value of + V 2 are controlled to be constant. As a result, variations in the characteristics of the device due to temperature changes are roughly compensated.
励磁電流 I e xが、 検出抵抗 9 、 整流フ ィ ル タ 1 0 , 1 1、 差 動検出器 1 2に よ っ て検知 さ れる。 本 ト ル ク 測定装置の構成 では、 励磁電流 I e xは ト ル ク には反応せず、 ト ル ク 検出部 の温度のみに反応する。 こ のため、 、励磁電流 l e xを検出す れば、 軸 1 に印加 さ れ る 卜 ル ク の状態 と は独立 して、 ト ル ク 検出部の温度が検出 さ れ る。 こ の温度の検出結果に応 じ、 差動検出器 1 2か ら温度補償基準電圧 V t が出力 さ れ る。 こ の電圧 V t は、 比較器 23において定電圧発生器 24か らの基 準電圧 V r e f と比較さ れ、 それに応 じた ト ル ク 検出感度の . 補正用信号電圧 V sが比較器 23か ら出力 される。 高温下で は実際に軸 1 に印加 さ れている ト ル ク よ り も大き な値の検 出出力が現れ るが、 こ の補正用信号電圧 V sに よ っ てォ一 ト ゲイ ン コ ン ト ロ 一 ラ 1 8の増幅率が調整さ れ、 オー ト ゲイ ン コ ン ト ロ ー ラ 1 8か ら は温度に よ る感度変化を補償さ れた ト ル ク検出信号が出力 さ れ る。 The exciting current I ex is detected by the detection resistor 9, the rectifying filters 10 and 11, and the differential detector 12. In the configuration of the present torque measuring device, the excitation current Iex does not react to the torque, but only to the temperature of the torque detector. Therefore, if the exciting current lex is detected, the temperature of the torque detecting section is detected independently of the state of the torque applied to the shaft 1. According to the temperature detection result, the differential detector 12 outputs the temperature compensation reference voltage Vt. This voltage Vt is compared with the reference voltage Vref from the constant voltage generator 24 in the comparator 23, and the corresponding torque detection sensitivity is determined. The correction signal voltage V s is output from the comparator 23. At a high temperature, a detection output with a value larger than the torque actually applied to the axis 1 appears, but the correction signal voltage Vs causes an auto gain. The gain of the controller 18 is adjusted, and the auto gain controller 18 outputs a torque detection signal compensated for the sensitivity change due to temperature. You.
第 2 図は、 ト ル ク検出部の温度が変化 した と き の励磁電 流 I e xの変化を示す。 温度の上昇に と も な っ て、 励磁電流 I e xは減少する。 第 3 図は、 励磁電流 I e xの変化に も とづ く 温度補償基準電圧 V t の変化、 すなわち ト ル ク検出部の 温度が変化 した と き の温度補償基準電圧 V t の変化を示す 温度の上昇に と も な っ て、 温度補償基準電圧 V t は減少す る。 第 4 図は、 温度補償基準電圧 V t とオー ト ゲイ ン コ ン ト ロ ー ラ 1 8の増幅率 と の関係を示す。 温度補償基準電圧 V t の減少すなわち温度の上昇に と もな って、 オー ト ゲ イ ン コ ン ト ロ 一 ラ 1 8の増幅率は低下する。  FIG. 2 shows a change in the excitation current I ex when the temperature of the torque detector changes. As the temperature rises, the exciting current I ex decreases. Figure 3 shows the change in the temperature compensation reference voltage Vt based on the change in the excitation current Iex, that is, the change in the temperature compensation reference voltage Vt when the temperature of the torque detector changes. As the voltage rises, the temperature compensation reference voltage Vt decreases. FIG. 4 shows the relationship between the temperature compensation reference voltage Vt and the amplification factor of the automatic gain controller 18. As the temperature compensation reference voltage Vt decreases, that is, as the temperature rises, the amplification factor of the auto gain controller 18 decreases.
第 5 図は、 常温時の ト ル ク と 出力電圧 との関係を示す。 第 6 図は高温時における両者の関係を示す。 第 6 図におい て、 破線は、 演算器 1 7の出力すなわち V , + V 2 の値が 一定値 と な る制御のみを実行するが、 励磁電流 I e .xに も と づ く 温度補償は行なわない と き の出力電圧を示す。 ま た実 線は、 ォ一 卜 ゲ イ ン コ ン ト ロ ー ラ 1 8の出力すなわち励磁電 流 I e xに も とづ く 温度補償を も行な っ た と き の出力電圧を 示す。 V , + V 2 の値が一定値 とな る制御のみの場合は、 常温時に比べて線の傾斜か急にな っ て感度が高めに移行 し 感度の変動に よ る誤差が生 じている が、 励磁電流 I exに も とづ く 温度補償を も行な っ た と き には、 常温時 と ほぼ同一 の傾斜 と な っ てほぼ同一の感度特性が達成さ れてい る。 詳 細に は、 V , + V 2 の値が一定値 と な る制御のみの場合 は、 温度変化に よ る ト ル ク 検出感 ¾の変動は + 1000ppm/oC 程度であ り 、 こ れは検出部が 100 °C温度変化 した と き に測 定誤差が 10 %生 じ る こ と に相当する。 こ れ に対 し励磁電流 I exの検出に も とづ く 温度補償を も行な っ た と き には、 感 度の変動をたかだか ± 20〜 30ppm/°C程度に改善する こ とか でき る。 Figure 5 shows the relationship between torque and output voltage at room temperature. Figure 6 shows the relationship between the two at high temperatures. In FIG. 6, the dashed line indicates that the output of the arithmetic unit 17, that is, only the control in which the values of V and + V 2 are constant, is executed, but the temperature compensation based on the exciting current I e .x is not performed. Indicates output voltage when not performed. The solid line indicates the output voltage of the output of the auto-gain controller 18, that is, the output voltage when temperature compensation based on the excitation current Iex is also performed. V, + a value of V 2 is the case where only a certain value and name Ru control, inclined or suddenly Tsu Na line shifts to a higher sensitivity than that in the normal temperature Although errors due to variations in sensitivity occur, when temperature compensation is also performed based on the excitation current I ex, the slope becomes almost the same as that at room temperature and almost the same. Sensitivity characteristics have been achieved. Specifically, when only the control in which the values of V and + V2 are constant values is performed, the variation in the torque detection sensitivity due to the temperature change is about +1000 ppm / oC. Is equivalent to a 10% measurement error when the temperature of the detector changes by 100 ° C. On the other hand, when temperature compensation based on the detection of the excitation current Iex is also performed, the sensitivity fluctuation can be improved to ± 20 to 30 ppm / ° C at most. .
比較器 23か らの補正用信号電圧 V sは、 零点の出力を補 正する ために も利用 さ れる。 こ の補正のための信号電圧 V sと、 上述の よ う に して感度補正が達成さ れたオー ト ゲイ ン コ ン ト ロ ー ラ 18か らの出力電圧 と は、 と も に演算器 19に 入力 さ れる。 演算器 19では こ れ ら両電圧が加減算さ れる が . 検出部の温度が変動 した と き の零点出力の増加 ま たは減少 するする度合をあ らか じめ測定 してお き、 かつそれに応 じ た回路定数 (補正係数) を決定 してお く こ とで、 こ の演算 器 19か ら は、 零点出力の変動に よ る誤差が補償さ れた信号 が出力 さ れる。  The correction signal voltage V s from the comparator 23 is also used to correct the output at the zero point. The signal voltage V s for this correction and the output voltage from the auto-gain controller 18 for which the sensitivity correction has been achieved as described above are both used by the arithmetic unit. Entered in 19. Although the arithmetic unit 19 adds and subtracts these two voltages, the degree to which the zero-point output increases or decreases when the temperature of the detection unit fluctuates is measured in advance, and it is determined in advance. By determining the corresponding circuit constant (correction coefficient), the arithmetic unit 19 outputs a signal in which the error due to the fluctuation of the zero point output is compensated.
第 7 図は、 検出部の温度変化に と も な っ て差動検出器 12 か らの温度補償基準電圧 V t が変動 した と き の、 補正用信 号電圧 V sの変化の様子を示す。 グラ フ の傾き の角度は零 点出力 の変動の度合に応 じて変化 し、 その傾き の方向 も、 図示の よ う な右下が り の場合のほかに、 右上が り の場合 も あ る。 第 8 図は、 高温時における ト ル ク と出力電圧 と の関 係を示す。 実線は演算器 19の出力すなわち励磁電流 I exに も とづ く 温度補償を行な っ た と き の出力電圧を示 し、 破線 は こ の温度補償を行なわなか っ た と き の出力電圧を示す。 温度補償を行な う こ と に よ り 、 零点出力の変動に も とづ く 誤差 E が解消する様子が説明 さ れている。 詳細には、 検出 部の温度変化に よ る零点出力の変動は ± 500 ppm/°C程度存 在 し、 こ れは検出部が 100 °C温度変化 した と き に印加 ト ル ク がな く て も フ ルスケールの ± 5 %の出力信号が生 じ る こ とをを意味する。 こ れに対 し励磁電流 l exに も とづ く 温度 補償を行な っ た と き には、 零点出力の変動をたかだか土 20 〜 30ppm/°C程度に改善する こ とができ る。 FIG. 7 shows how the correction signal voltage Vs changes when the temperature compensation reference voltage Vt from the differential detector 12 fluctuates with the temperature change of the detection unit. . The inclination angle of the graph changes according to the degree of fluctuation of the zero point output, and the direction of the inclination is not only in the case of the lower right as shown in the figure but also in the case of the upper right. is there. Figure 8 shows the relationship between torque and output voltage at high temperatures. The solid line indicates the output voltage when temperature compensation based on the output of the computing unit 19, that is, the excitation current Iex, is performed, and the dashed line indicates the output voltage when temperature compensation is not performed. Show. It explains how the error E based on the fluctuation of the zero point output is eliminated by performing the temperature compensation. Specifically, the fluctuation of the zero point output due to the temperature change of the detection unit is about ± 500 ppm / ° C. This means that there is no applied torque when the temperature of the detection unit changes by 100 ° C. This means that an output signal of ± 5% of full scale is generated. On the other hand, when temperature compensation is performed based on the excitation current l ex, the fluctuation of the zero point output can be improved to about 20 to 30 ppm / ° C at most.
第 9 図は、 常温時 (検出部温度 25°C ) の ト ル ク と出力電 圧 との関係の実測値を示す。 第 10図は、 高温時 (検出部温 度 125 V ) において感度 と零点 との温度補償を行な っ た と き の ト ル ク と 出力電圧と の関係の実測値を、 温度補償が不 十分な場合の実測値 と と も に示す。 こ の第 10図において、 Fig. 9 shows the measured values of the relationship between the torque and the output voltage at room temperature (detector temperature: 25 ° C). Figure 10 shows the measured values of the relationship between the torque and the output voltage when the temperature was compensated for the sensitivity and the zero point at high temperatures (detector temperature 125 V). In both cases, the measured values and are shown in. In this Figure 10,
「感度お よ び零点補正あ り 」 の グラ フ は第 1 図における 出 力端子 21に現れる 出力をプロ ッ ト した も のであ る。 同様に 「感度補正のみあ り 」 の グラ フ はオー ト ゲイ ン コ ン ト ロ ー ラ 18の出力を、 ま た 「補正な し」 の グラ フ は演算器 17の出 力を、 それぞれプロ ッ 卜 した も のであ る。 The graph “with sensitivity and zero correction” is a plot of the output appearing at output terminal 21 in FIG. Similarly, the graph “with sensitivity correction only” plots the output of the auto-gain controller 18, and the graph “without correction” plots the output of the calculator 17, respectively. It is a thing that has been dropped.
第 11図は、 本発明の第二の実施例を示す。 こ こ では、 第 1 図にお ける 演算器 19が省略さ れている。 こ の よ う な構成 に よ る と、 感度の温度補償のみが行なわれ、 零点の温度補 償は行なわれない。 したがっ て、 こ の第 1 1図の回路は、 温 度変化に と も な う 感度の変動は問題にな るが、 零点の変動 は無視でき る程度に小さ い と い う 特性を有す る ト ル ク 測定 装置に対 し好適であ る。 FIG. 11 shows a second embodiment of the present invention. Here, the computing unit 19 in FIG. 1 is omitted. According to such a configuration, only the temperature compensation of the sensitivity is performed, and the temperature compensation of the zero point is performed. No compensation is made. Therefore, the circuit of Fig. 11 has the characteristic that the fluctuation of sensitivity with temperature change is a problem, but the fluctuation of zero is negligibly small. Suitable for torque measurement equipment.
第 1 2図は、 本発明の第三の実施例を示す。 こ こ では第 1 図にお ける ォー ト ゲイ ン コ ン ト ロ ー ラ 1 8が省略 さ れてお り 零点の温度補償のみが行なわれ、 感度の温度補償は行なわ れない。 したが っ て、 こ の第 1 2図の回路は、 第 1 1図の回路 と は逆に、 温度変化に と も な う 零点の変動は問題にな る が . 感度の変動は無視でき る程度に小さ い と い う 特性を有する 卜 ル ク 測定装置に対 し好適であ る。  FIG. 12 shows a third embodiment of the present invention. Here, the automatic gain controller 18 in FIG. 1 is omitted, and only temperature compensation of the zero point is performed, and temperature compensation of the sensitivity is not performed. Therefore, in the circuit of Fig. 12, contrary to the circuit of Fig. 11, the fluctuation of the zero point due to the temperature change is a problem, but the fluctuation of the sensitivity is negligible. It is suitable for a torque measuring device having such a small characteristic.
第 1 3図は、 本発明の第四の実施例を示す。 こ れは、 第 1 1 図の実施例に変更を加えた も のであ る。 第 1 1図の回路では、 比較器 23に よ っ て差動検出器 1 2か らの温度補償基準電圧 V t と定電圧発生器 24か らの基準電圧 V r e f とが比較さ れて いる 力 こ の第 1 3図の回路では、 検出抵抗 9 に よ っ て検知 さ れた励磁電流 l e xと、 演算器 25の出力 とが、 比較器 23に よ っ て比較さ れてい る。 し力、 し、 両回路 と も 、 演算器 25の 出力側に現れる検出電圧の和 V , + V 2 の値を定電圧発 生器 24か らの基準電圧 V r e f と比較 して、 こ の和 V , +  FIG. 13 shows a fourth embodiment of the present invention. This is a modification of the embodiment shown in FIG. In the circuit of FIG. 11, the comparator 23 compares the temperature compensation reference voltage Vt from the differential detector 12 with the reference voltage Vref from the constant voltage generator 24. In the circuit of FIG. 13, the exciting current lex detected by the detecting resistor 9 and the output of the computing unit 25 are compared by the comparator 23. In both circuits, the sum of the detection voltages V and + V2 appearing on the output side of the computing unit 25 is compared with the reference voltage Vref from the constant voltage generator 24, and this circuit Sum V, +
V 2 の値が一定にな る よ う に フ ィ ー ドバ ッ ク 制御 してい る 点において一致 してい る。 したがっ て、 比較器 23の入力 と して、 の フ ィ ッ ク ループのいずれの部分力、 らの信 号を利用するか と い う こ と は、 単な る設計事項に過 ぎず、 こ れ ら第 1 1図の回路 と第 1 3図の回路 とでは実質的な差はな い。 第 13図の回路では、 オー ト ゲイ ン コ ン ト ロ ー ラ 18は抵 抗 27と F E T 28とで構成さ れている。 They agree on the fact that the feedback control is performed so that the value of V 2 becomes constant. Therefore, it is not merely a matter of design matter which signal of the fixed loop is used as the input of the comparator 23, but this is just a matter of design. There is no substantial difference between the circuit in Fig. 11 and the circuit in Fig. 13. No. In the circuit shown in FIG. 13, the automatic gain controller 18 is composed of a resistor 27 and an FET 28.
第 14図は、 本発明の第五の実施例を示す。 上述の各実施 例では、 検出電圧の和 V , + V 2 を基準電圧 V ref と比 較 して、 こ の和 V , + V 2 の値が一定にな る よ う に フ ィ — ドバ ッ ク制御 しているが、 こ の第 14図の回路では、 励磁 コ イ ル 6 の励磁電圧 V exの値が一定にな る よ う に制御 して いる o FIG. 14 shows a fifth embodiment of the present invention. In each of the above embodiments, the sum V of the detected voltage, + V 2 and the comparison reference voltage V ref to the sum of this V, off I in earthenware pots by ing to a certain value of + V 2 - Dubai Tsu In the circuit of Fig. 14, the excitation voltage V ex of the excitation coil 6 is controlled to be constant.
第 14図において、 29は励磁コ イ ル 6 の両端における励磁 電圧 V exの検出部で、 そ の検出信号は比較器 26に入力 さ れ て定電圧発生器 24か らの基準電圧 V ref と比較さ れる。 比 較結果に よ り 、 励磁電圧 V exが一定値 とな る よ う にオー ト ゲイ ン コ ン ト ロ ー ラ 8 の増幅率が調整される。 こ の よ う に 励磁コ イ ル 6 の励磁電圧 V exが一定値とな る よ う に制御す る場合において も、 検出電圧の和 V , + V 2 を制御する 場合 と同様に、 感度、 零点の補償が可能であ る。  In FIG. 14, reference numeral 29 denotes a detection unit for the excitation voltage V ex at both ends of the excitation coil 6, and the detection signal is input to the comparator 26 and is compared with the reference voltage V ref from the constant voltage generator 24. Are compared. According to the comparison result, the amplification factor of the auto-gain controller 8 is adjusted so that the excitation voltage Vex becomes a constant value. In this way, even when the excitation voltage V ex of the excitation coil 6 is controlled to be a constant value, the sensitivity and the sensitivity are controlled in the same manner as when controlling the sum V and + V 2 of the detection voltages. Zero compensation is possible.
第 15図お よ び第 16図は、 本発明に も とづ く 温度補償装置 を差動 卜 ラ ン スへ応用 した例を示す。 図示の よ う に、 差動 ト ラ ン ス 31において も、 ト ル ク 測定装置 と同様の励磁コ ィ ル 6 と一対の検出 コ ィ ノレ 4 、 5 とが一般的に設け られる。 したが って、 ト ル ク 測定装置の場合 と全 く 同一の回路構成 に よ っ て、 こ の差動 ト ラ ン ス 31が高温条件下で使用 さ れる と き の検出出力の感度お よ び零点の温度補正が可能であ る 第 15図は、 第 1 図の場合 と同様に、 検出電 Eの和 V , + V 2 の値が一定にな る よ う に制御する ための回路を示す。 第 16図は、 第 14図の場合 と同様に、 励磁コ イ ル 6 の励磁電 圧 V exの値が一定にな る よ う に制御す る ための回路を示す こ の よ う に検出出力が温度補償さ れた差動 ト ラ ン ス 31は、 変位検出器、 磁気増幅器な ど と して利用でき る。 FIGS. 15 and 16 show examples in which a temperature compensator according to the present invention is applied to a differential trans- former. As shown in the figure, the differential transformer 31 is also generally provided with an excitation coil 6 and a pair of detection coils 4 and 5 similar to the torque measuring device. Therefore, by using exactly the same circuit configuration as that of the torque measuring device, the sensitivity of the detection output when this differential transformer 31 is used under high temperature conditions is improved. Fig. 15 shows a circuit for controlling the sum V and + V2 of the detection power E to be constant, as in Fig. 1. Show. FIG. 16 shows a circuit for controlling the value of the excitation voltage V ex of the excitation coil 6 to be constant, as in the case of FIG. 14. The differential transformer 31 whose temperature is compensated can be used as a displacement detector, a magnetic amplifier, and the like.

Claims

請 求 の 範 囲 The scope of the claims
. ト ル ク 伝達軸の外周 に一対の磁気異方性部を形成 し、 こ の軸に ト ル ク が印加 さ れた と き の各磁気異方性部の透 磁率の変化を、 前記磁気異方性部の近傍に配置さ れた一 対の検出 コ イ ルで検出 し、 両検出信号の差か ら、 軸に作 用する ト ル ク の大き さ を電気信号に変換する よ う に した ト ル ク 測定装置における温度補償装置であ り 、 前記検出 コ イ ルを励磁する ための励磁コ イ ルを有 した ものにおい て、 A pair of magnetically anisotropic parts are formed on the outer periphery of the torque transmission shaft, and when a torque is applied to this axis, the change in the magnetic permeability of each magnetically anisotropic part is determined by the magnetic field. Detection is performed by a pair of detection coils placed near the anisotropic part, and from the difference between the two detection signals, the magnitude of the torque acting on the shaft is converted to an electric signal. A temperature compensating device in the torque measuring device described above, which has an exciting coil for exciting the detection coil,
励磁コ イ ルの励磁電流を検出する こ と に よ っ て ト ル ク 検出部の温度を検出する手段 と、  Means for detecting the temperature of the torque detecting section by detecting the exciting current of the exciting coil;
こ の温度検出手段に よ る検出結果に も とづいて前記 ト ル ク の大き さ についての電気信号を温度補償する手段 と を有する こ とを特徴 とする。  Means for temperature-compensating the electric signal for the magnitude of the torque based on the detection result by the temperature detecting means.
. 請求項 1 記載の ト ル ク 測定装置における温度補償装置 であ っ て、 検出 コ イ ルの検出信号の和が一定値 とな る よ う に励磁コ イ ルの励磁電流を制御する手段 と、 励磁コ ィ ルの励磁電圧が一定値 とな る よ う にその励磁電流を制御 する手段 とのいずれか一方を有する。 A means for controlling the exciting current of the exciting coil so that the sum of the detection signals of the detecting coil becomes a constant value, which is a temperature compensator in the torque measuring device according to claim 1. And means for controlling the exciting current so that the exciting voltage of the exciting coil becomes a constant value.
. 請求項 2 記載の ト ル ク 測定装置における温度補償装置 であ っ て、 温度補償手段は、 ト ル ク信号の感度を補償す る手段 と、 ト ル ク信号の零点を補償する手段 との少な く と も いずれか一方を有する。 The temperature compensating device in the torque measuring device according to claim 2, wherein the temperature compensating means includes means for compensating for the sensitivity of the torque signal and means for compensating for the zero point of the torque signal. It has at least one of them.
. 請求項 3 記載の ト ル ク 測定装置における温度補償装置 であ っ て、 ト 儿 ク 信号の感度を補償する手段は、 ト ル ク 信号を増幅する手段 と、 検出 さ れた励磁電流に応 じて ト ル ク 信号増幅手段の増幅率を調節する手段 と を有する。 . 請求項 4 記載の ト ル ク 測定装置における 温度補償装置 であ っ て、 励磁電流の検出値をそれに対応する温度補償 基準電圧に変換する手段 と、 こ の温度補償基準電圧を一 定値の基準電圧 と比較 し、 比較結果に も とづいて ト ル ク 信号増幅手段の増幅率を調節する手段 と を有する。 4. The temperature compensator in the torque measuring device according to claim 3, wherein the means for compensating for the sensitivity of the torque signal is torque. Means for amplifying the signal and means for adjusting the amplification factor of the torque signal amplifying means in accordance with the detected exciting current. 5. A temperature compensating device for a torque measuring device according to claim 4, wherein the means for converting the detected value of the exciting current into a temperature compensating reference voltage corresponding thereto, and the temperature compensating reference voltage as a constant value reference. Means for comparing the voltage and adjusting the gain of the torque signal amplifying means based on the comparison result.
. 請求項 3 記載の ト ル ク 測定装置にお ける 温度補償装置 であ っ て、 ト ル ク 信号の零点を補償する手段は、 励磁電 流の検出値をそれに対応する温度補正信号に変換する手 段と、 ト ル ク 信号と前記温度補正信号 とを加算する手段 とを有する。 4. A temperature compensator in a torque measuring device according to claim 3, wherein the means for compensating for a zero point of the torque signal converts a detected value of the excitation current into a temperature correction signal corresponding to the exciting current. Means for adding a torque signal and the temperature correction signal.
. 請求項 1 か ら 6 ま でのいずれか 1 項記載の温度補償装 置であ っ て、 前記 ト ル ク 測定装置に代えて、 励磁コ イ ル と一対の検出 コ イ ル とを備えた差動 ト ラ ン ス に適用 さ れ 。 The temperature compensation device according to any one of claims 1 to 6, further comprising: an excitation coil and a pair of detection coils, instead of the torque measurement device. Applies to differential transformers.
PCT/JP1990/001177 1989-09-18 1990-09-13 Temperature compensation apparatus for torque measuring apparatus WO1991004474A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1/242867 1989-09-18
JP24286789 1989-09-18

Publications (1)

Publication Number Publication Date
WO1991004474A1 true WO1991004474A1 (en) 1991-04-04

Family

ID=17095426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/001177 WO1991004474A1 (en) 1989-09-18 1990-09-13 Temperature compensation apparatus for torque measuring apparatus

Country Status (2)

Country Link
JP (1) JPH0739974B2 (en)
WO (1) WO1991004474A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2269009A (en) * 1990-07-13 1994-01-26 Simmonds Precision Products Magneto-optic torque measuring system with temperature compensation
EP0587042A2 (en) * 1992-09-07 1994-03-16 Koyo Seiko Co., Ltd. Torque sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2831206B2 (en) * 1992-08-27 1998-12-02 株式会社クボタ Magnetostrictive torque sensor
JP6033749B2 (en) * 2013-09-19 2016-11-30 株式会社帝国電機製作所 Axial displacement detector for canned motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119715U (en) * 1984-07-09 1986-02-05 株式会社 京浜精機製作所 displacement meter
JPS6333634A (en) * 1986-07-28 1988-02-13 Aisin Warner Ltd Torque detector
JPS6429723A (en) * 1987-07-24 1989-01-31 Nissan Motor Torque detecting circuit
JPH01173843A (en) * 1987-12-28 1989-07-10 Kubota Ltd Torque measuring instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119715U (en) * 1984-07-09 1986-02-05 株式会社 京浜精機製作所 displacement meter
JPS6333634A (en) * 1986-07-28 1988-02-13 Aisin Warner Ltd Torque detector
JPS6429723A (en) * 1987-07-24 1989-01-31 Nissan Motor Torque detecting circuit
JPH01173843A (en) * 1987-12-28 1989-07-10 Kubota Ltd Torque measuring instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2269009A (en) * 1990-07-13 1994-01-26 Simmonds Precision Products Magneto-optic torque measuring system with temperature compensation
GB2269009B (en) * 1990-07-13 1996-05-22 Simmonds Precision Products Torque measurement
EP0587042A2 (en) * 1992-09-07 1994-03-16 Koyo Seiko Co., Ltd. Torque sensor
EP0587042A3 (en) * 1992-09-07 1994-08-03 Koyo Seiko Co

Also Published As

Publication number Publication date
JPH03183924A (en) 1991-08-09
JPH0739974B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
EP0133695B1 (en) Sensing system for measuring a parameter
US7053600B2 (en) Current sensor
US4646014A (en) Hall effect field sensor circuit with temperature compensation using OP amplifier
US5522269A (en) Apparatus and method for transducing torque applied to a magnetostrictive shaft while minimizing temperature induced variations
JPS63252264A (en) Current measuring device measuring motor current of dc motor
US5419206A (en) Phase independent torque detection and processing circuit for sensing device
JPH03261869A (en) Apparatus for correcting output signal of hall element
WO1991004474A1 (en) Temperature compensation apparatus for torque measuring apparatus
US7256574B2 (en) Device for measuring electric current intensity
JPH04286927A (en) Compensating apparatus for sensitivity of torque measuring device
JP2001356059A (en) Torque measuring apparatus and method
JP4253084B2 (en) Load measuring device
JP2564049B2 (en) Torque sensor temperature compensation device
JP2776693B2 (en) Temperature compensation device for torque measuring device
JP3766855B2 (en) Current transformer
JP2529980Y2 (en) Magnetostrictive torque sensor
JPH0313705Y2 (en)
JP2633125B2 (en) Compensation device for temperature characteristics of torque sensor
JPH11257908A (en) Electromagnetic induction type sensor
JP2566687B2 (en) Torque measuring device temperature compensation device
JPH03170073A (en) Hall element current detecting device
JP2831206B2 (en) Magnetostrictive torque sensor
JPS6139948Y2 (en)
SU873171A1 (en) Device for hall pickup temperature compensation
JPH03103737A (en) Torque measuring instrument

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE