JPH03103737A - Torque measuring instrument - Google Patents

Torque measuring instrument

Info

Publication number
JPH03103737A
JPH03103737A JP24286689A JP24286689A JPH03103737A JP H03103737 A JPH03103737 A JP H03103737A JP 24286689 A JP24286689 A JP 24286689A JP 24286689 A JP24286689 A JP 24286689A JP H03103737 A JPH03103737 A JP H03103737A
Authority
JP
Japan
Prior art keywords
constant
detection
shaft
torque
sum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24286689A
Other languages
Japanese (ja)
Inventor
Akiyoshi Hanazawa
花澤 明由
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP24286689A priority Critical patent/JPH03103737A/en
Publication of JPH03103737A publication Critical patent/JPH03103737A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Power Steering Mechanism (AREA)

Abstract

PURPOSE:To evade a state wherein adverse influence is imparted to sensor performance by connecting an exciting coil to a constant current source and preventing a magnetic field from varying even if the impedance of a sensor part varies with temperature. CONSTITUTION:When torque operates on a shaft 1, the difference V1-V2 between both detected voltages appears at the output side of a differential amplifier 13 as usual. The difference value V1-V2 is a voltage value, but it is V/I- converted 28 and outputted 29. At this time, the exciting coil 6 is connected to the constant current source 21, so even if the impedance of the sensor part varies owing to the temperature variation, an exciting current is constant, so a produced magnetic field is constant. Consequently, the state wherein adverse influence is imparted to the sensor performance owing to the variation in the magnetic field intensity of the shaft 1 is precluded. Here, if the characteristics of the instrument vary owing to the temperature variation and the detected voltages V1 and V2 are varied, the sum V1+V2 is compared by an adder 31 with the reference voltage of a reference voltage generation part 32. Then the sum value is fed back 33 to make the gain of an amplification part 23, etc., constant.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はトルク測定装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to a torque measuring device.

従来の技術 従来、トルク測定装置として、トルク伝達軸の外周に一
対の磁気異方性部を形或し、この軸にトルクが負荷され
たときの各磁気異方性部の透磁率の変化を、前記磁気異
方性部の近傍に配置された一対の検出コイルで検出し、
両検出@号の差から、軸に作用するトルクの大きさを電
気信号に変換するようにしたものが、たとえば特願昭6
2−334862号によって提案されている。
Conventional technology Conventionally, as a torque measuring device, a pair of magnetic anisotropic parts are formed on the outer periphery of a torque transmission shaft, and changes in magnetic permeability of each magnetic anisotropic part are measured when torque is applied to this shaft. , detected by a pair of detection coils arranged near the magnetic anisotropic part,
For example, a system that converts the magnitude of torque acting on the shaft into an electrical signal based on the difference between the two detection @ numbers was proposed in a patent application filed in 1983.
No. 2-334862.

第2図は、この特願昭62−334862号によって提
案されたトルク測定装置の概略構或を示す。ここで1は
トルク伝達用の軸であり、軟磁性および磁歪性を有する
材料にて形或されている。軸1の外周には、この軸1の
軸心の方向と士約45度の角度をなして互いに反対方向
に傾斜する磁気異方性部2,3が、多数の溝などによっ
て形成されている。
FIG. 2 shows a schematic structure of the torque measuring device proposed in Japanese Patent Application No. 62-334862. Here, 1 is a shaft for transmitting torque, and is made of a material having soft magnetism and magnetostriction. On the outer periphery of the shaft 1, magnetic anisotropic portions 2 and 3 are formed by a large number of grooves, etc., forming an angle of about 45 degrees with the direction of the axis of the shaft 1 and tilting in opposite directions. .

磁気異方性部2.3の周囲には、各磁気異方性部2.3
に対応した検出コイル4.5と、これら検出コイル4.
5を励磁するための励磁コイル6とが設けられている。
Each magnetic anisotropic portion 2.3 is provided around the magnetic anisotropic portion 2.3.
Detection coils 4.5 corresponding to these detection coils 4.5 and 4.5.
An excitation coil 6 for exciting the magnet 5 is provided.

励磁コイル6は交流雷源7に接続され、この交流電源7
と励磁コイル6との間にはオートゲインコントローラ8
が設けられている。
The excitation coil 6 is connected to an AC lightning source 7, and this AC power source 7
An auto gain controller 8 is connected between the excitation coil 6 and the excitation coil 6.
is provided.

各検出コイル4,5からの出力ライン9.10は、整流
およびフィルタ装置it, 12の入力端へそれぞれ接
続され、またこれら整流およびフィルタ1771. 1
2の出力側は差初増幅器13の入力端に接続されている
。差動増幅器13は、両検出コイル4,5の検出信号の
差をとることによって、軸1に作用づるトルクに対応し
た電圧の出力を出力端子14に出力する。整流およびフ
ィルタ装置H, 12の出力側はまた加算器15の入力
端にも接続され、この加篩器15の出力側は前述のオー
トゲインコントローラ8に接続されている。
The output line 9.10 from each detection coil 4, 5 is connected to the input of a rectifier and filter device it, 12, respectively, and also to the input of a rectifier and filter device it, 1771. 1
The output side of 2 is connected to the input end of the differential amplifier 13. The differential amplifier 13 outputs a voltage corresponding to the torque acting on the shaft 1 to the output terminal 14 by taking the difference between the detection signals of both the detection coils 4 and 5. The output of the rectifier and filter device H, 12 is also connected to the input of an adder 15, the output of which is connected to the autogain controller 8 mentioned above.

このような!?4戊によれば、軸1に作用するトルクに
もとづく各磁気異方性部2.3での透磁率の変化が、検
出コイル4,5にて検出される。このとき、磁気異方性
部は互いに反対方向に傾斜しているため、一方の磁気異
方性部に引張力が働くと、他方には圧縮力が鋤く。この
ため、たとえば一方の検出コイル4の検出雷圧■1がト
ルクの増加にしたがって増加すると、他方の検出コイル
5の検出雷圧V2はそれにともなって減少する。そこで
、前述のように差初増幅器13により両検出電圧の差V
t−V2を求めると、トルクの変化に対応する信号が出
力端子14に現われる。
like this! ? According to Section 4, changes in magnetic permeability in each magnetically anisotropic portion 2.3 based on the torque acting on the shaft 1 are detected by the detection coils 4, 5. At this time, since the magnetic anisotropic parts are inclined in opposite directions, when a tensile force is applied to one magnetic anisotropic part, a compressive force is applied to the other magnetic anisotropic part. Therefore, for example, when the detected lightning pressure (1) of one of the detection coils 4 increases as the torque increases, the detected lightning pressure V2 of the other detection coil 5 decreases accordingly. Therefore, as mentioned above, the difference amplifier 13 is used to calculate the difference V between the two detection voltages.
When t-V2 is determined, a signal corresponding to the change in torque appears at the output terminal 14.

いま、軸1まわりのセンサ部に温度変化があると、装置
の特性が変動して、正確な検出値が得られなくなるおそ
れがある。そこで、このような場合には、上述のように
逆方向の傾斜を有する両検出電圧V1,V2の平均値が
一定になるように制御して、温度変化にともなう測定誤
差の発生を防止している。すなわち、加算器15によっ
て両検出電圧V1.V2 (7)和Vl +V2  (
平均値の2倍の値)を求め、この値が一定値となるよう
に、オートゲインコントローラ8をフィードバック制御
して励磁電流を増減させている。こうずることで、温度
変化により装置の特性が変動しても、軸1に作用するト
ルクと検出電圧V1,V2との関係に変化が生じること
がなく、正確な測定を明待できる。
Now, if there is a temperature change in the sensor section around axis 1, the characteristics of the device will change and there is a risk that accurate detection values will not be obtained. Therefore, in such a case, the average value of both detection voltages V1 and V2, which have slopes in opposite directions as described above, is controlled to be constant to prevent measurement errors caused by temperature changes. There is. That is, the adder 15 adds both detection voltages V1. V2 (7) Sum Vl +V2 (
The auto gain controller 8 is feedback-controlled to increase or decrease the excitation current so that this value becomes a constant value. By doing this, even if the characteristics of the device change due to temperature changes, there will be no change in the relationship between the torque acting on the shaft 1 and the detected voltages V1 and V2, and accurate measurements can be expected.

発明が解決しようとする課題 しかし、このような従来のものでは、検出電圧の和Vt
 +V2が一定になるようなフィードバック制御を行っ
ているため定電圧制御となり、温度変化にもとづくセン
サ部のインピーダンス変化によって励11雷流が変eす
る。そして、このように励1l電流が変動することで、
軸1の磁界強度が変化して、センサ性能に悪影警を与え
るおそれがある。
Problems to be Solved by the Invention However, in such conventional devices, the sum of detected voltages Vt
Feedback control is performed so that +V2 remains constant, resulting in constant voltage control, and the lightning current changes due to changes in the impedance of the sensor section due to temperature changes. And, by changing the excitation 1l current in this way,
The magnetic field strength of axis 1 may change, which may adversely affect sensor performance.

そこで本発明はこのような問題点を解決し、上述のよう
な励磁電流の変動にもとづくセンサ性能への悪影響の発
生を防止できるようにすることを目的とする。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to solve these problems and to prevent the adverse effects on sensor performance caused by the above-mentioned fluctuations in excitation current.

課題を解決するための手段 上記目的を達戊するため本発明は、磁気程方性部の近傍
に励磁コイルを設けて、この励磁コイルを定電流源に接
続し;倹出コイルの出力側に、両検出コイルの検出電圧
の和を検出して、この和が一定値となるように各検出コ
イルの出力側の増幅部のゲインを調整する手段を設けた
ものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides an excitation coil near the magnetically oriented section, connects this excitation coil to a constant current source; , a means is provided for detecting the sum of the detection voltages of both detection coils and adjusting the gain of the amplification section on the output side of each detection coil so that this sum becomes a constant value.

作用 このようなl1或によれば、従来のように励磁電流を変
化させて制御するのではなく、励磁コイルは定電流制御
されることになるため、温度変化によりセンサ部のイン
ピーダンスが変化しても、允生する磁界は常に一定にな
り、センサ特性に悪影響を及ぼすことがない。しかも、
そのうえで、各検出コイルの出力側に設けられた増幅部
のゲインをa整して、両検出コイルの検出電圧の和を一
定にするように制御するものであるため、温度変化にも
とづく測定誤差の発生が確実に防止される。
According to this method, the excitation coil is controlled with a constant current, instead of being controlled by changing the excitation current as in the past, so the impedance of the sensor section changes due to temperature changes. However, the generated magnetic field is always constant and does not adversely affect the sensor characteristics. Moreover,
Then, the gain of the amplification section provided on the output side of each detection coil is adjusted to keep the sum of the detection voltages of both detection coils constant, so measurement errors due to temperature changes are eliminated. Occurrence is reliably prevented.

実施例 第1図において、磁気異方性部2,3が形li.された
軸1の周囲には、励磁コイル6と、一対の検出コイル4
,5とが設けられている。励磁コイル21は、交流の定
電流8!21に接続されている。
Embodiment In FIG. 1, the magnetic anisotropic parts 2 and 3 are of the shape li. Around the shaft 1, an excitation coil 6 and a pair of detection coils 4 are arranged.
, 5 are provided. The excitation coil 21 is connected to an alternating current constant current 8!21.

両検出コイル4.5の出力ライン9,10は整流および
フィルタ5111. 12の入力端にそれぞれ接続され
ている。これら出力ライン9.10どうしの間には、検
出コイル4,5および磁気異方性部2.3などからなる
両センサ部のバランスをとるための可変抵抗22が接続
されている。
The output lines 9, 10 of both detection coils 4.5 are rectified and filtered 5111. 12 input terminals, respectively. A variable resistor 22 is connected between these output lines 9.10 to balance both sensor sections, which are comprised of detection coils 4, 5, magnetic anisotropy section 2.3, and the like.

両整流およびフィルタ装置11. 12の出ノノ側は、
それぞれゲインコントローラとしての増幅部23.24
へ接続されている。各増幅部23. 24は、抵抗25
とトランジスタ26とを有している。両増幅部23.2
4の出力側は、第2図の場合と同様に差IIJ増幅器1
3の入力端に接続されている。差初増幅器13の出力側
は、可変抵抗を有したゲイン調整部27を経て、V/I
変換器28へ接続されている。V/I変換器28の出力
端子29には電流出力が現われる。30は抵抗である。
Double rectifier and filter device 11. The denono side of 12 is
Amplifying sections 23 and 24 respectively as gain controllers
connected to. Each amplifier section 23. 24 is the resistance 25
and a transistor 26. Both amplification sections 23.2
The output side of 4 is connected to the difference IIJ amplifier 1 as in the case of FIG.
It is connected to the input terminal of 3. The output side of the differential amplifier 13 is connected to the V/I
Connected to converter 28. A current output appears at the output terminal 29 of the V/I converter 28. 30 is a resistance.

また両増幅部23. 24の出力側は、加算器31の入
力側に接続されている。加算器31の反転入力端には、
ツエナーダイオードを備えた基準電圧発生部32が接続
されている。さらに加篩器31の出力端は増幅部23.
 24の入力側すなわち各トランジスタ26のベースに
接続されて、フィードバックループ33を構成している
Also, both amplifying sections 23. The output side of 24 is connected to the input side of adder 31. At the inverting input terminal of the adder 31,
A reference voltage generator 32 including a Zener diode is connected. Furthermore, the output end of the sieve filter 31 is connected to the amplifier section 23.
24, that is, the base of each transistor 26, forming a feedback loop 33.

このような構成において、軸1にトルクが作用したとき
に差動増幅器13の出力側に両検出電圧の差V1−V2
が現われる点は、第2図の場合と同様である。この差値
V1−V2は電圧の形で現われるが、これはV/I変換
器28によって電流に変換され、変換後の電流出力が出
力端子29に現われる。
In such a configuration, when torque is applied to the shaft 1, a difference V1-V2 between the two detection voltages is generated on the output side of the differential amplifier 13.
The appearance of is the same as in the case of FIG. This difference value V1-V2 appears in the form of a voltage, which is converted into a current by the V/I converter 28, and the converted current output appears at the output terminal 29.

このとき、励磁コイル6は定電流源21に接続されてい
るため、温度変化によってセンサ部のインピーダンスが
変化しても、励磁電流が一定であることから、発生する
磁界は常に一定になる。そのため、軸1の磁界強度の変
化によってセンサ性能に悪影響が生じるような事態の発
生が防止される。
At this time, since the excitation coil 6 is connected to the constant current source 21, even if the impedance of the sensor section changes due to temperature changes, the excitation current is constant, so the generated magnetic field is always constant. Therefore, a situation in which the sensor performance is adversely affected by a change in the magnetic field strength of the shaft 1 is prevented from occurring.

そのうえで温度変化によって装置の特性が変動し、それ
によって検出電圧V1,V2に変動が生じた場合には、
これら検出電圧の和V1+V2が加算器31において基
準電圧発生部32からの基準電圧と比較される。そして
、この和Vl +V2の値が一定になるように、フィー
ドバックループ33により増幅部23. 24のゲイン
が調整されて、測定感度や零点などの変動が防止される
Furthermore, if the characteristics of the device change due to temperature changes and the detection voltages V1 and V2 change accordingly,
The sum V1+V2 of these detected voltages is compared with the reference voltage from the reference voltage generator 32 in the adder 31. Then, the feedback loop 33 causes the amplifying section 23. 24 gains are adjusted to prevent fluctuations in measurement sensitivity, zero points, etc.

梵明の効果 以上述べたように本発明によると、励磁コイルを定電流
源に接続したため、温度変化によってセンナ部のインピ
ーダンスが変化しても発生する磁界に変化はなく、この
ためセンサ軸部の磁界強度が変化してセンサ性能に悪影
響を及ぼすような事態の発生が防止される。しかも、そ
のうえで両検出コイルの検出電圧の和が一定値になるよ
うに制II]するものであるため、センサ部に温度変化
が生じても、測定時の感度や零点などの変動をきわめて
少なくすることができる。
Effect of Brahma As described above, according to the present invention, since the excitation coil is connected to a constant current source, the generated magnetic field does not change even if the impedance of the sensor section changes due to temperature change, and therefore the magnetic field of the sensor shaft section This prevents the occurrence of a situation where the intensity changes and adversely affects sensor performance. Furthermore, since the sum of the detection voltages of both detection coils is controlled to a constant value, even if temperature changes occur in the sensor section, fluctuations in sensitivity and zero point during measurement are extremely minimized. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のトルク測定装置の回路4f
4戒を示す図、第2図は従来のトルク測定装置の回路構
成を示す図である。 1・・・軸、2.3・・・磁気異方性部、4.5・・・
検出コイル、6・・・励磁コイル、21・・・定電流源
、23. 24・・・増幅部(ゲインコントローラ)、
31・・・加篩器、33・・・フィードバックループ。
FIG. 1 shows a circuit 4f of a torque measuring device according to an embodiment of the present invention.
FIG. 2, a diagram showing the four precepts, is a diagram showing a circuit configuration of a conventional torque measuring device. 1... Axis, 2.3... Magnetic anisotropy part, 4.5...
Detection coil, 6... Excitation coil, 21... Constant current source, 23. 24... Amplification section (gain controller),
31... Sifter, 33... Feedback loop.

Claims (1)

【特許請求の範囲】 1、トルク伝達軸の外周に一対の磁気異方性部を形成し
、この軸にトルクが負荷されたときの各磁気異方性部の
透磁率の変化を、前記磁気異方性部の近傍に配置された
一対の検出コイルで検出し、両検出信号の差から、軸に
作用するトルクの大きさを電気信号に変換するようにし
たトルク測定装置であつて、 前記磁気異方性部の近傍に励磁コイルを設けて、この励
磁コイルを定電流源に接続し、 前記検出コイルの出力側に、両検出コイルの検出電圧の
和を検出して、この和が一定値となるように各検出コイ
ルの出力側の増幅部のゲインを調整する手段を設け、 たことを特徴とするトルク測定装置。
[Claims] 1. A pair of magnetically anisotropic parts are formed on the outer periphery of a torque transmission shaft, and the change in magnetic permeability of each magnetically anisotropic part when torque is applied to this shaft is calculated based on the magnetic A torque measuring device that detects with a pair of detection coils arranged near the anisotropic part and converts the magnitude of torque acting on the shaft into an electrical signal from the difference between the two detection signals, comprising: An excitation coil is provided near the magnetic anisotropy section, this excitation coil is connected to a constant current source, and the sum of detection voltages of both detection coils is detected on the output side of the detection coil, and this sum is constant. 1. A torque measuring device, comprising means for adjusting the gain of an amplification section on the output side of each detection coil so that the value of
JP24286689A 1989-09-18 1989-09-18 Torque measuring instrument Pending JPH03103737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24286689A JPH03103737A (en) 1989-09-18 1989-09-18 Torque measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24286689A JPH03103737A (en) 1989-09-18 1989-09-18 Torque measuring instrument

Publications (1)

Publication Number Publication Date
JPH03103737A true JPH03103737A (en) 1991-04-30

Family

ID=17095414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24286689A Pending JPH03103737A (en) 1989-09-18 1989-09-18 Torque measuring instrument

Country Status (1)

Country Link
JP (1) JPH03103737A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0974824A1 (en) * 1998-07-24 2000-01-26 Mannesmann VDO Aktiengesellschaft Torque sensor and procedure for generating a torque dependent signal
US6443019B1 (en) * 1998-07-24 2002-09-03 Siemens Corporation Torque sensor and method of producing a torque-dependent signal
US7982129B2 (en) 2005-08-15 2011-07-19 Konarka Technologies, Inc. Photovoltaic cells with interconnects to external circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0974824A1 (en) * 1998-07-24 2000-01-26 Mannesmann VDO Aktiengesellschaft Torque sensor and procedure for generating a torque dependent signal
US6443019B1 (en) * 1998-07-24 2002-09-03 Siemens Corporation Torque sensor and method of producing a torque-dependent signal
US7982129B2 (en) 2005-08-15 2011-07-19 Konarka Technologies, Inc. Photovoltaic cells with interconnects to external circuit

Similar Documents

Publication Publication Date Title
KR900000660B1 (en) Noncontact torque sensor
JPH01187424A (en) Torque sensor
JP2673636B2 (en) Processing circuit for magnetostrictive torque sensor
GB2210460A (en) Magnetostrictive stress measurement apparatus
US5751112A (en) CRT magnetic compensating circuit with parallel amorphous wires in the sensor
JPH03103737A (en) Torque measuring instrument
JPH02163625A (en) Torque measuring instrument
JPS599528A (en) Torque sensor
JP2001356059A (en) Torque measuring apparatus and method
JPH04286927A (en) Compensating apparatus for sensitivity of torque measuring device
JPS5943323A (en) Torque detecting apparatus
JP2633125B2 (en) Compensation device for temperature characteristics of torque sensor
JPH04296627A (en) Temperature compensator for torque measuring device
JPH1194658A (en) Torque sensor
JPH0739974B2 (en) Temperature compensation device for torque measuring device
JPH0462441A (en) Torque measuring instrument
JP3607963B2 (en) Torque detection device
JPH03103738A (en) Torque measuring instrument
JPH0462442A (en) Torque measuring instrument
JPH03289525A (en) Torque measuring apparatus
JP2661728B2 (en) Torque measuring device
JPH0862063A (en) Magneyostrictive type strain sensor
JP2816528B2 (en) Torque detector
JPH0534218A (en) Temperature compensating device of torque measuring apparatus
JPH10160598A (en) Torque detecting device