JPS5943323A - Torque detecting apparatus - Google Patents

Torque detecting apparatus

Info

Publication number
JPS5943323A
JPS5943323A JP57154996A JP15499682A JPS5943323A JP S5943323 A JPS5943323 A JP S5943323A JP 57154996 A JP57154996 A JP 57154996A JP 15499682 A JP15499682 A JP 15499682A JP S5943323 A JPS5943323 A JP S5943323A
Authority
JP
Japan
Prior art keywords
magnetic
torque
shaft
detection
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57154996A
Other languages
Japanese (ja)
Inventor
Toru Kita
喜多 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP57154996A priority Critical patent/JPS5943323A/en
Publication of JPS5943323A publication Critical patent/JPS5943323A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To enhance torque detecting preciseness, by using a trifurcated magnetic coil wherein an exciting coil is mounted to one magnetic pole and detection coils to other two magnetic coils. CONSTITUTION:A trifurcated magnetic core 2 has three mutually parallel magnetic poles 2a-2c directed to the outer peripheral surface of a shaft 1 and the end surfaces of these magnetic poles are opposed to the outer peripheral surface of the shaft 1 so as to provide definite gaps therebetween. In addition, an exciting coil 3 is mounted to one magnetic pole 2a by winding while detection coils 4, 5 are respectively mounted to the residual two magnetic poles 2b, 2c. Subsequently, the exciting coil 3 is connected to an AC power source 6 to be excited and voltages induced in the detection coils 4, 5 are inputted to a predetermined electric circuit to enable the torque detection of the shaft (a torque transmitting object) 1. By this method, even if the gap between each magnetic pole end surface and the shaft 1 is changed, the error due to this change is removed and, therefore, the preciseness of torque detection can be enhanced.

Description

【発明の詳細な説明】 本発明はパワーステアリングの操舵トルク検出器、エン
ジンの出力トルク検出器、その他変速機の出力トルク検
出器として用いるトルク検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a torque detection device used as a steering torque detector for power steering, an output torque detector for an engine, or an output torque detector for other transmissions.

トルク検出装置は従来より種々の型式のものが知られて
おり、例えば特公昭31−942号公報、特開昭51−
60580号公報及び特開昭51−129276号公報
に記載された型式のものがある。これら公報に記載のト
ルク検出装置はいずれも、一対のU字形磁芯を一体化し
て構成した十字交差形磁芯を具え、一方のU字形磁芯に
励磁コイルを、又他方のU字型磁芯に検出コイルを夫々
設け、伝達トルクに応じた軸の捩れにより上記励磁コイ
ルから軸表面を経て上記検出コイルに向う磁束が軸表面
においてバランスをくずされるのを利用し、くずれた磁
束分で検出コイルに誘導起動力を励起せしめることによ
りこれをもって軸トルクを検出するものである。
Various types of torque detection devices have been known in the past, such as those disclosed in Japanese Patent Publication No. 31-942 and Japanese Patent Application Laid-Open No. 1987-51.
There are types described in Japanese Patent Application Laid-open No. 60580 and Japanese Patent Application Laid-Open No. 129276/1983. The torque detection devices described in these publications all include a criss-cross magnetic core constructed by integrating a pair of U-shaped magnetic cores, and an excitation coil is connected to one U-shaped magnetic core, and an excitation coil is connected to the other U-shaped magnetic core. A detection coil is installed in each core, and the magnetic flux from the excitation coil to the detection coil via the shaft surface is unbalanced on the shaft surface due to the twist of the shaft according to the transmitted torque, and this is used to detect the disrupted magnetic flux. The shaft torque is detected by exciting an induced starting force in the coil.

しかし、かかる従来のトルク検出装置においては、U字
形磁芯の各磁極面と軸外周面との間の隙間が軸の製造誤
差やトルク伝達中に不可避な軸の撓み等により変化する
と、上記隙間を通って軸表面に流れる磁束密度も変って
しまい、同じトルクに対しても検出コイルの出力が異な
り、トルク検出誤差を生ずる。
However, in such conventional torque detection devices, if the gap between each magnetic pole surface of the U-shaped magnetic core and the shaft outer peripheral surface changes due to manufacturing errors of the shaft or unavoidable deflection of the shaft during torque transmission, the above-mentioned gap The density of the magnetic flux flowing through the shaft to the shaft surface also changes, and the output of the detection coil differs even for the same torque, resulting in a torque detection error.

これがため、特開昭51−60580号公報及び特開昭
51−129276号公報に示されているような補正手
段、即ち上記隙間を検出し、その変化で検出コイルの出
力を補正する手段が上記トルク検出装置には必要となり
、高価であったし、これによってもなお、隙間検出手段
の取付精度がトルク検出精度に関与することから、十分
な精度を確保し難いのが実情であった。
For this reason, the correction means as shown in Japanese Patent Application Laid-open No. 51-60580 and Japanese Patent Application Laid-open No. 51-129276, that is, means for detecting the above-mentioned gap and correcting the output of the detection coil based on the change, is required. This is necessary for a torque detection device, which is expensive, and even with this, it is difficult to ensure sufficient accuracy because the mounting accuracy of the gap detection means is related to the torque detection accuracy.

他方、中心に1本、これを取巻くよう4本、合計5本の
脚部を持った磁芯を具え、中心脚部に励磁コイルを、又
他の4本の脚部に夫々検出コイルを巻装したトルク検出
装置も提案されている。しかしかかる磁芯は、鋳物で一
体に造る場合、鋳造後熱歪を均等にするため焼鈍しが不
可欠であることとも相俟って著しく高価になり、とても
採用できないことから、硅素鋼板等で4本の脚部を持つ
磁芯本体を先ずプレス成形し、その中心部に中心脚部を
溶接により後付けするしかなかった。しかして、後者の
方法で造った磁芯は中心脚部の接合部が対をなす脚部に
対して磁気特性上のアンバランスを生ずるのを避けられ
ず、この点でトルク検出精度の低下を否めないものであ
った。
On the other hand, it has a magnetic core with five legs, one in the center and four surrounding it, with an excitation coil wound around the center leg and a detection coil wound around each of the other four legs. A torque detecting device equipped with a torque sensor has also been proposed. However, when such magnetic cores are manufactured in one piece by casting, annealing is essential to equalize thermal strain after casting, which makes them extremely expensive, making it difficult to use. The only way to do this was to first press-form a magnetic core body with the legs of a book, and then attach the center legs to the center of the core by welding. However, with magnetic cores made using the latter method, it is unavoidable that the joint of the center leg creates an unbalance in magnetic properties with respect to the pair of legs, and this leads to a decrease in torque detection accuracy. It was undeniable.

本発明は、磁芯を三叉形状にし、その3個の磁極端面が
夫々トルク伝達物体の外面に一定の隙間を持って対向す
るよう三叉形磁心を設け、又当該磁芯の1個の磁極に励
磁コイルを、又残りの2個の磁極に夫々検出コイルを巻
装し、これら検出コイルの出力を入力して前記物体に加
わるトルクを検出する電気回路を設けることによってト
ルクを検出するように構成すれば、トルク伝達物体と各
磁極端面との間の隙間が変化しても、トルク検出精度が
これによる影響を受けず、高く保たれて前記の問題を解
決し得るとの観点から、この着想を具体化したトルク検
出装置を提供しようとするものである。
The present invention provides a three-pronged magnetic core in which the three-pronged magnetic core is provided so that each of its three pole end faces faces the outer surface of a torque transmitting object with a certain gap, and one magnetic pole of the magnetic core is provided with a three-pronged magnetic core. It is configured to detect torque by winding an excitation coil and a detection coil around each of the remaining two magnetic poles, and providing an electric circuit that receives the outputs of these detection coils and detects the torque applied to the object. This idea was developed from the viewpoint that even if the gap between the torque transmitting object and each magnetic pole end surface changes, the torque detection accuracy will not be affected by this and can be kept high, thus solving the above problem. The present invention aims to provide a torque detection device that embodies the following.

以下、図示の実施例により本発明を詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図は本発明トルク検出装置の一実施例で、図中1は
トルク伝達物体としての軸を示し、本例装置はこの軸1
の伝達トルクを検出するのに用いる構成とする。
FIG. 1 shows an embodiment of the torque detection device of the present invention. In the figure, 1 indicates a shaft as a torque transmission object.
The configuration is used to detect the transmitted torque of.

本発明においては、三叉形磁芯2をで設け、これを例え
ば硅素鋼板等の磁性薄板による積層構造又はソフトフェ
ライトのプレス成形になる一体構造とする。磁芯2は軸
1の外周面に向う3個の互に平行な磁極2a、2b、2
cを有し、これら各磁極の端面は軸1の外周面に一定の
隙間を持って対向させる。そして、1個の磁極2aに励
磁コイル3を巻装すると共に、残りの2個の磁極2b、
2cに夫々検出コイル4、5を巻装し、励磁コイル3は
交流電源6に接続し、検出コイル4、5は夫々リード線
7、8に接続する。
In the present invention, the trident-shaped magnetic core 2 is provided, and is formed into a laminated structure of magnetic thin plates such as silicon steel plates or an integral structure formed by press molding of soft ferrite. The magnetic core 2 has three mutually parallel magnetic poles 2a, 2b, 2 facing the outer peripheral surface of the shaft 1.
The end face of each of these magnetic poles is opposed to the outer circumferential surface of the shaft 1 with a certain gap therebetween. Then, the excitation coil 3 is wound around one magnetic pole 2a, and the remaining two magnetic poles 2b,
Detection coils 4 and 5 are respectively wound around 2c, the excitation coil 3 is connected to an AC power source 6, and the detection coils 4 and 5 are connected to lead wires 7 and 8, respectively.

又、軸1の外周面と対向する各磁極2a、2b、2cの
端面は軸1の外周面に沿うよう筒形にに彎曲させ、これ
により各磁極端面がその全面に亘り軸1との間に上記の
隙間を持つようにする。そして、励磁コイル3を巻装し
た磁極2aの端面から検出コイル4、5を巻装した磁極
2b、2cの端面に至る距離が夫々等しく、磁極2aの
端面から磁極2b、2cの端面相互を結ぶ線上に下した
垂線が軸1の軸線方向(トルク軸線方向)に延在するよ
う三叉形磁芯2を構成配置する。なお、磁極2b、2c
の端面間距離は軸1の材料の磁歪効果の大小により任意
に決定することができる。
In addition, the end faces of each of the magnetic poles 2a, 2b, and 2c facing the outer circumferential surface of the shaft 1 are curved into a cylindrical shape along the outer circumferential surface of the shaft 1, so that the end face of each magnetic pole extends over the entire surface of the shaft 1. with the above gap. The distances from the end face of the magnetic pole 2a around which the excitation coil 3 is wound to the end faces of the magnetic poles 2b and 2c around which the detection coils 4 and 5 are wound are the same, and the end faces of the magnetic poles 2b and 2c are connected from the end face of the magnetic pole 2a to the end faces of the magnetic poles 2b and 2c. The trident-shaped magnetic core 2 is constructed and arranged so that a perpendicular line drawn on the line extends in the axial direction of the shaft 1 (torque axis direction). In addition, the magnetic poles 2b, 2c
The distance between the end faces can be arbitrarily determined depending on the magnitude of the magnetostrictive effect of the material of the shaft 1.

磁極2a、2b、2cの断面形状を図示例では矩形断面
形状としたが、この形状は円形断面形状、三角断面形状
又はその他の多角形断面形状等それ以外の断面形状にで
きるし、磁芯2の全体形状も前記の条件を満足すれば任
意に変更可能である。
In the illustrated example, the magnetic poles 2a, 2b, and 2c have a rectangular cross-sectional shape, but this shape can be a circular cross-sectional shape, a triangular cross-sectional shape, or another polygonal cross-sectional shape, etc. The overall shape of can also be changed arbitrarily as long as the above conditions are satisfied.

上述の構成において、励磁コイル3は交流電源6からの
電力を受けて交流磁束を発生し、この交流磁束は磁極2
aから軸1の外周面、磁極2b、軸1の外周面を経て磁
極2aに戻る閉磁路と、磁極2aから軸1の外周面、磁
極2c、軸1の外周面を経て磁極2aに戻る閉磁路とを
形成して、磁極2b、2c上の検出コイル4、5に夫々
誘導起電力を発生する。
In the above configuration, the excitation coil 3 receives power from the AC power supply 6 and generates an AC magnetic flux, and this AC magnetic flux is transmitted to the magnetic pole 2.
A closed magnetic path from a to the outer circumferential surface of the shaft 1, the magnetic pole 2b, and the closed magnetic path that returns to the magnetic pole 2a via the outer circumferential surface of the shaft 1, and a closed magnetic path that returns from the magnetic pole 2a to the magnetic pole 2a via the outer circumferential surface of the shaft 1, the magnetic pole 2c, and the outer circumferential surface of the shaft 1. and generates induced electromotive force in the detection coils 4 and 5 on the magnetic poles 2b and 2c, respectively.

ところで、軸1がトルクを伝達していない状態では、第
2図(a)に示す如く磁極2aと磁極2b、2cとの間
における磁束密度φ1、φ2が夫々等しく、検出コイル
4、5の誘導起電力が同レベルである。しかして、軸1
がトルクを伝達している状態では、軸1の外周面にその
軸線方向に対し±45°の方向に夫々引張応力と圧縮応
力が作用し、軸1が例えば第2図(b)に示す如く矢a
の方向にトルク伝達を行なっている場合につき述べると
、軸1の外周面は同図中+σで示す引張応力及び−σで
示す圧縮応力を夫々受ける。従って、磁極2a、2b間
の軸1の外周面は引張応力+σを受けて逆磁歪効果によ
り透磁率を増加され、磁極2a、2c間の軸1の外周面
は圧縮応力−σを受けて透磁率を低下される。これがた
め、軸1の当該トルク伝達中、磁極2a、2b間に形成
される閉磁路の磁気抵抗が減少し、第2図(b)に示す
如く磁束密度が第2図(a)中のφ1からトルクに応じ
たφ1′へと増大して検出コイル4の誘導起電力を増大
させる。同時に磁極2a、2c間に形成される閉磁路の
磁気抵抗は増大し、第2図中(b)に示す如く磁束密度
が第2図(a)中のφ2からトルクに応じたφ2′へと
減少して検出コイル5の誘導起電力を減少させる。
By the way, when the shaft 1 is not transmitting torque, the magnetic flux densities φ1 and φ2 between the magnetic pole 2a and the magnetic poles 2b and 2c are equal, respectively, as shown in FIG. 2(a), and the induction of the detection coils 4 and 5 is The electromotive force is at the same level. However, axis 1
is transmitting torque, tensile stress and compressive stress act on the outer circumferential surface of shaft 1 in directions of ±45° with respect to the axial direction, and shaft 1 arrow a
When torque is transmitted in the direction shown in FIG. 1, the outer peripheral surface of the shaft 1 receives a tensile stress indicated by +σ and a compressive stress indicated by −σ in the figure. Therefore, the outer circumferential surface of the shaft 1 between the magnetic poles 2a and 2b receives tensile stress +σ and its magnetic permeability is increased by the inverse magnetostriction effect, and the outer circumferential surface of the shaft 1 between the magnetic poles 2a and 2c receives compressive stress −σ and its permeability increases. Magnetic property is reduced. Therefore, during the torque transmission of the shaft 1, the magnetic resistance of the closed magnetic path formed between the magnetic poles 2a and 2b decreases, and as shown in FIG. 2(b), the magnetic flux density increases to φ1 in FIG. 2(a). The induced electromotive force of the detection coil 4 is increased from φ1' to φ1' according to the torque. At the same time, the magnetic resistance of the closed magnetic path formed between the magnetic poles 2a and 2c increases, and as shown in FIG. 2(b), the magnetic flux density changes from φ2 in FIG. 2(a) to φ2' according to the torque. This decreases the induced electromotive force of the detection coil 5.

ここで、両検出コイル4、5の誘導起電力の差が軸1の
伝達トルクに対応し、又両者の和が磁束密度の総計φ1
+φ2=φ1′+φ2′に対応するため、これら和値と
差値との比を求めれば、これが各磁極2a、2b、2c
と軸1との隙間のトルク伝達中の振動等により生起され
る変動に起因した磁束密度の変動による誤差を除去した
トルク検出値を表わすこととなる。
Here, the difference in induced electromotive force between both detection coils 4 and 5 corresponds to the transmitted torque of shaft 1, and the sum of both is the total magnetic flux density φ1
+φ2=φ1'+φ2', so if we calculate the ratio of the sum value and the difference value, this corresponds to each magnetic pole 2a, 2b, 2c.
This represents a detected torque value from which errors due to fluctuations in magnetic flux density due to fluctuations caused by vibrations during torque transmission in the gap between the shaft 1 and the shaft 1 are removed.

かかる誘導起電力の演算処理を行なうため本発明におい
ては、例えば第3図に示す電気回路を用いる。この電気
回路は検出コイル4、5からリード線7、8を経て取出
した誘導起電力を夫々、先ず整流器9、10によりアナ
ログ電圧(電流)値に変更し、次でこれらアナログ信号
を減算器11により減算して両者の差値を演算すると共
に、加算器12により加算して両者の和値を演算し、更
に割算器13によりこれら和値及び差値の比に求めた後
、フィルタ回路14によりノイズを除去して、上記の比
に関する信号Voutを出力するものである。
In order to perform calculation processing of the induced electromotive force, the present invention uses, for example, an electric circuit shown in FIG. 3. In this electric circuit, the induced electromotive force taken out from the detection coils 4 and 5 via lead wires 7 and 8 is first changed into an analog voltage (current) value by rectifiers 9 and 10, and then these analog signals are converted into an analog voltage (current) value by a subtracter 11. The adder 12 calculates the difference value by subtracting the two, and the adder 12 adds the two to calculate the sum value.The divider 13 calculates the ratio of the sum value and the difference value, and then the filter circuit 14 This is to remove noise and output a signal Vout related to the above ratio.

この出力Voutは軸1の伝達トルクに対し例えば第4
図の如くに変化し、トルクの伝達方向(右又は左)はト
ルク零の時の基準電圧Vsより高いか低いかで判別でき
、又基準電圧Vsに対する出力Vout(電圧)の差が
検出トルクに対応することから、この差を読取って軸1
の伝達トルクを検知することができる。
This output Vout is, for example, the fourth
The direction of torque transmission (right or left) can be determined by whether it is higher or lower than the reference voltage Vs when the torque is zero, and the difference in the output Vout (voltage) with respect to the reference voltage Vs is the detected torque. Based on the correspondence, read this difference and set axis 1.
transmission torque can be detected.

かくして本発明トルク検出装置は上述の如く、三叉形磁
芯2をその3個の磁極2a、2b、2cの端面がトルク
伝達物体1の外面に一定の隙間を持って対向するよう設
け、該磁芯2の1個の磁極2aに交流電源6と接続した
励磁コイル3を巻装すると共に、残りの2個の磁極2b
、2cに夫々検出コイル4、5を巻装し、これら検出コ
イルの出力を入力して上記物体1のトルクを検出する電
気回路11〜13を設けたから、三叉形磁芯2を一体構
造で安価に製造し得ると共に、各磁極端面と物体1との
間隙が変化して対応磁極2a、2b間及び2a、2c間
の磁束密度が変動しても、これによる誤差を除去してト
ルクを検出でき、この誤差を補正するような手段を付加
せずとも正確なトルク検出が可能で、安価な構成にてト
ルク検出精度を向上させることができる。
Thus, as described above, the torque detecting device of the present invention includes a trident-shaped magnetic core 2 provided such that the end faces of its three magnetic poles 2a, 2b, and 2c face the outer surface of the torque transmitting object 1 with a certain gap therebetween. An excitation coil 3 connected to an AC power source 6 is wound around one magnetic pole 2a of the core 2, and the remaining two magnetic poles 2b
, 2c are respectively wound with detection coils 4 and 5, and electric circuits 11 to 13 are provided for inputting the outputs of these detection coils and detecting the torque of the object 1. Therefore, the three-pronged magnetic core 2 can be integrated and inexpensive. In addition, even if the gap between each magnetic pole end face and the object 1 changes and the magnetic flux density between the corresponding magnetic poles 2a and 2b and between 2a and 2c changes, the error caused by this can be removed and torque can be detected. , accurate torque detection is possible without adding any means for correcting this error, and torque detection accuracy can be improved with an inexpensive configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明トルク検出装置のピックアップに関する
斜視図、 第2図は同じくその作用説明図で、同図(a)はトルク
非伝達状態、同図(b)はトルク伝達状態を夫々示し、 第3図は本発明装置の電気回路を示すブロック線図、 第4図は本発明装置の出力信号特性図である。 1・・・軸(トルク伝達物体)2・・・三叉形磁芯2a
、2b、2c・・・磁極3・・・励磁コイル4、5・・
・検出コイル6・・・交流電源7、8・・・リード線9
、10・・・整流器11・・・減算器12・・・加算器 13・・・割算器14・・・フィルタ。 第2 t’<+ 第:S1女1 第1−」 ト1
FIG. 1 is a perspective view of the pickup of the torque detection device of the present invention, and FIG. 2 is an explanatory diagram of its operation, where (a) shows a torque non-transmission state, and (b) shows a torque transmission state. FIG. 3 is a block diagram showing the electric circuit of the device of the present invention, and FIG. 4 is an output signal characteristic diagram of the device of the present invention. 1... Axis (torque transmission object) 2... Three-pronged magnetic core 2a
, 2b, 2c...Magnetic pole 3...Exciting coil 4, 5...
・Detection coil 6...AC power supply 7, 8...Lead wire 9
, 10... Rectifier 11... Subtractor 12... Adder 13... Divider 14... Filter. 2nd t'<+ th: S1 woman 1 1st-'' t1

Claims (1)

【特許請求の範囲】 1、三叉形磁芯をその3個の各磁極端面がトルク伝達物
体の外面に一定の隙間を持って対向するよう設け、該三
叉形磁芯の1個の磁極に交流電源と接続した励磁コイル
を巻装すると共に、残りの2個の磁極に夫々検出コイル
を巻装し、これら検出コイルの出力を入力して前記物体
に加わるトルクを検出する電気回路を設けたことを特徴
とするトルク検出装置。 2、前記1個の磁極の端面から前記残りの2個の磁極の
端面に至る距離が夫々等しく、前記1個の磁極の端面か
ら前記残りの2個の磁極の端面相互を結ぶ線上に下した
垂線がトルク軸線方向に延在するよう前記三叉形磁芯を
構成配置した特許請求の範囲第1項記載のトルク検出装
置。
[Scope of Claims] 1. A three-pronged magnetic core is provided so that each of its three magnetic pole end faces faces the outer surface of a torque transmitting object with a certain gap, and an alternating current is applied to one magnetic pole of the three-pronged magnetic core. In addition to winding an excitation coil connected to a power source, a detection coil is wound around each of the remaining two magnetic poles, and an electric circuit is provided to input the outputs of these detection coils and detect the torque applied to the object. A torque detection device featuring: 2. The distance from the end face of the one magnetic pole to the end faces of the remaining two magnetic poles is the same, and the distance is on a line connecting the end face of the one magnetic pole to the end faces of the remaining two magnetic poles. 2. The torque detection device according to claim 1, wherein said trident-shaped magnetic core is constructed and arranged so that a perpendicular line extends in the torque axis direction.
JP57154996A 1982-09-06 1982-09-06 Torque detecting apparatus Pending JPS5943323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57154996A JPS5943323A (en) 1982-09-06 1982-09-06 Torque detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57154996A JPS5943323A (en) 1982-09-06 1982-09-06 Torque detecting apparatus

Publications (1)

Publication Number Publication Date
JPS5943323A true JPS5943323A (en) 1984-03-10

Family

ID=15596419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57154996A Pending JPS5943323A (en) 1982-09-06 1982-09-06 Torque detecting apparatus

Country Status (1)

Country Link
JP (1) JPS5943323A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138134A (en) * 1984-12-10 1986-06-25 Japanese National Railways<Jnr> Electromagnetic stress measuring instrument
JPS62203030A (en) * 1986-03-03 1987-09-07 Honda Motor Co Ltd Torque sensor
EP3051265A1 (en) * 2015-01-29 2016-08-03 Torque and More (TAM) GmbH Force measurement device
CN111148976A (en) * 2017-06-12 2020-05-12 特拉法格股份公司 Load measuring method, load measuring device and load measuring arrangement
JP2021015018A (en) * 2019-07-11 2021-02-12 多摩川精機株式会社 Stator structure of torque sensor
JP2021527825A (en) * 2018-06-21 2021-10-14 トラファグ アクツィエンゲゼルシャフトTrafag Ag Load measurement equipment, this manufacturing method, and the load measurement method that can be carried out with it.

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138134A (en) * 1984-12-10 1986-06-25 Japanese National Railways<Jnr> Electromagnetic stress measuring instrument
JPS62203030A (en) * 1986-03-03 1987-09-07 Honda Motor Co Ltd Torque sensor
EP3051265A1 (en) * 2015-01-29 2016-08-03 Torque and More (TAM) GmbH Force measurement device
WO2016119931A1 (en) * 2015-01-29 2016-08-04 Torque And More (Tam) Gmbh Force measurement device
US10247627B2 (en) 2015-01-29 2019-04-02 Torque And More (Tam) Gmbh Force measurement device
CN111148976A (en) * 2017-06-12 2020-05-12 特拉法格股份公司 Load measuring method, load measuring device and load measuring arrangement
JP2020523588A (en) * 2017-06-12 2020-08-06 トラファグ アクツィエンゲゼルシャフトTrafag Ag Load measuring method, load measuring device, and load measuring mechanism
CN111148976B (en) * 2017-06-12 2022-03-25 特拉法格股份公司 Load measuring method, load measuring device and load measuring arrangement
JP2021527825A (en) * 2018-06-21 2021-10-14 トラファグ アクツィエンゲゼルシャフトTrafag Ag Load measurement equipment, this manufacturing method, and the load measurement method that can be carried out with it.
JP2021015018A (en) * 2019-07-11 2021-02-12 多摩川精機株式会社 Stator structure of torque sensor

Similar Documents

Publication Publication Date Title
KR900000660B1 (en) Noncontact torque sensor
US5831180A (en) Torque sensing and strain detecting device
JPH07146315A (en) Ac current sensor
KR0165893B1 (en) Inductance-type displacement sensor for eliminating inaccuracies due to external magnetic fields
JPS5943323A (en) Torque detecting apparatus
JPH01110230A (en) Magnetoelastic torque converter
JP2003004407A (en) Displacement measuring device
JP6587875B2 (en) Current sensor and measuring device
JPS5946527A (en) Torque detecting device
JPH08220141A (en) Split dc zero-phase current transformer
JPH0813183B2 (en) Rotor axial displacement detector in induction motor
JP4028559B2 (en) Rotation sensor
JP2566640B2 (en) Torque measuring device
JPH11337424A (en) Torque sensor
JP2005221342A (en) Coil-type current sensor
JPH04286927A (en) Compensating apparatus for sensitivity of torque measuring device
JP4677856B2 (en) Current sensor
JPH0743105A (en) Position transducer
SU1384972A1 (en) Magnetoelastic torque generator
JPS63121448A (en) Rotary electric machine
JP4337180B2 (en) Magnetostrictive torque sensor
JPH11208320A (en) Tension measuring device for trolley wire
JPS63236955A (en) Detection sensor for foreign matter of ferromagnetic body
JP2023084822A (en) Stator core magnetic characteristic evaluation device
Fazljoo et al. Inductance variations on performance of linear reluctance accelerators and appropriate selecting of projectile to increase launcher performance