JPS6143402B2 - - Google Patents

Info

Publication number
JPS6143402B2
JPS6143402B2 JP59108600A JP10860084A JPS6143402B2 JP S6143402 B2 JPS6143402 B2 JP S6143402B2 JP 59108600 A JP59108600 A JP 59108600A JP 10860084 A JP10860084 A JP 10860084A JP S6143402 B2 JPS6143402 B2 JP S6143402B2
Authority
JP
Japan
Prior art keywords
metal cadmium
cadmium
powder according
producing metal
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59108600A
Other languages
Japanese (ja)
Other versions
JPS60255907A (en
Inventor
Hirobumi Miura
Mitsuo Shinoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP59108600A priority Critical patent/JPS60255907A/en
Publication of JPS60255907A publication Critical patent/JPS60255907A/en
Publication of JPS6143402B2 publication Critical patent/JPS6143402B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の分野〕 本発明は金属カドミウム粉末の製造方法に関
し、特に比表面積の大なる活性な金属カドミウム
粉末を容易に製造することのできる方法に関す
る。 〔従来技術〕 従来より、置換反応を利用して金属カドミウム
を製造する方法として、硫酸カドミウム溶液中に
亜鉛板を浸漬し溶液中のCdイオンとZnイオンの
置換反応(酸化還元反応、下記(i)式)によつて、
亜鉛板表面にデントライトよりなるカドミウムス
ポンジを形成させ、これを回収して金属カドミウ
ムを得る方法は既知である。 CdSO4+Zn→ZnSO4+Cd …(i) しかし、従来法では、粉末形態を有する金属カ
ドミウムを得るためには、上記スポンジを塊状に
粉砕し、更にボールミル等の微粉砕機を用いて、
細粒径となるまで粉砕しなければならない。 特に得られる金属カドミウム粉末をニツケル―
カドミウム電池等の電池用活物質として使用する
場合においては活性であることが要求され、その
ため少なくとも1m2/g以上の比表面積を有する
ことが望まれ、従つて粉砕を念入りに行なう必要
がある。またこの様な活物質として用いる場合、
カドミウム粉末中の金属カドミウム含量(メタリ
ツクCd量)が少なくとも90%以上であることが
望まれる。 このような条件を満足させるために、前記公知
方法においては粒径にして数μ以下となるまで十
分な微粉砕を行い、さらに粉砕中の酸化を防止す
るため湿式粉砕においては例えばアルコール中で
行なうか、乾式粉砕においては例えば不活性ガス
中で行なう等種々の方策を構じなければならなか
つた。 従つて、粉砕手段を用いなくともも溶液からじ
かに微粒子状のカドミウム粉末が回収できる様に
することが、望まれていた。 〔発明の目的〕 本発明の目的は、従来の欠点を排除し、置換反
応を行なう溶液中から、じかに微細で比表面積が
大きくしかも金属カドミウム含量が多いカドミウ
ム粉末を回収することのできる金属カドミウム粉
末の製造方法を提供することにある。 上記目的は、硫酸カドミウム溶液中に亜鉛を浸
漬し置換反応により金属カドミウムを析出させる
工程を経て金属カドミウム粉末を製造する方法に
おいて、前記硫酸カドミウム溶液中に析出金属カ
ドミウムの結晶成長を抑制しうる物質を存在させ
ることにより達成される。 〔実施態様〕 第1図に本発明の1実施態様の工程説明図であ
る。本発明方法の工程の中でも最も重要な点は、
置換液として用いる硫酸カドミウム溶液に結晶成
長抑制効果を有する物質を加えることにある。置
換反応における金属カドミウムの析出過程は、反
応初期における亜鉛表面上での核生成と、反応進
行に伴うデンドライト結晶の成長とで説明され
る。公知方法の場合、反応初期を除いて、析出す
るカドミウムの大部分はデントライト結晶の成長
に寄与し、粗大なデンドライトを形成する結果、
デントライト結晶の板は相互に絡み合いスポンジ
を形成する。前述のように形成されたスポンジは
微粉末まで粉砕することが容易でない。そこで本
発明者等はこのような欠点を排除するため置換反
応において、直接的に微細粉末状のカドミウムを
析出させるべく研究を重ね、その結果、硫酸カド
ミウム置換液に、結晶成長抑制効果を有する物質
を添加することによつて、粗大なデンドライトの
成長を抑制し、さらに析出物が、亜鉛表面から容
易に離脱するためスポンジを形成することなく、
微細で比表面積の大きい金属カドミウム粉末を直
接的に回収できることを見出した。 本発明方法においてはデンドライトの結晶成長
が抑制されるが、一方、析出物の亜鉛表面からの
自然離脱も早いサイクルで起るため、核生成頻度
が増大し、置換速度が阻害されることにはならな
い。この早いサイクルで起る核生成及び結晶成長
によつて、析出物は公知方法のごときスポンジを
呈することなく、微細粉末形態を保持しつつ置換
反応に用いる槽底部に沈積し、回収容易である。
また、回収した沈積物は、次の洗浄工程で容易に
分散し、かつ前記金属カドミウムの結晶成長を抑
制しうる物質と容易に分別され、さらに過後乾
燥すれば、何ら粉末工程を要することなく、金属
カドミウム粉末を得ることができる。しかもここ
において得られる粉末は微細なものであり個々の
粉末は海綿状の形態を呈するため、1m2/g以上
の比表面積を有しかつメタリツクCd量90%以上
の活性なものとなる。 本発明で使用する、前記析出金属カドミウムの
結晶成長を抑制しうる物質としては、 (i) 硫酸カドミウム溶液中において親液コロイド
を形成しうる物質として、例えばニワカ、ゼラ
チン、アルブミン等のタンパク質、 (ii)カドミウムと塩又は錯塩を形成し得る物質とし
て、例えばカフエイン、硫黄含有アミノ酸(L
―システイン、シスチン、メチオニン等)、及
び (iii)高分子凝集剤として、例えばアニオン型又はノ
ニオン型ポリアクリルアミド系凝集剤を例とし
て挙げることができる。 なお本発明者等は上記以外の物質でチオ尿素、
OH基を有する芳香族化合物として、例えば、α
―ナフトロール、高分子物質として例えばポリビ
ニルアルコール、炭水化物例えば砂糖等について
も実験を行なつており、これらの物質にも効果が
期待できることを確認している。 前記金属カドミウムの結晶成長を抑制しうる物
質の添加量は、置換液のカドミウム濃度と物質自
体の作用力に対応して適量が決定されるものであ
るが、おおむね0.4g/以下、更には0.1g/以下
であることが望まれる。0.4g/以上にすると、
結晶成長抑止効果はあるものの、デンドライトの
枝が粒状を呈し全体として比表面積を減少させる
傾向を示し、比表面積1m2/g以上を達成できな
い場合を生ずるからである。 本発明において、置換液として用いる硫酸カド
ミウム溶液のカドミウム濃度は特に限定する必要
はない。公知方法において通常使用される濃度例
えば40〜50g/、あるいはそれ以下の濃度範囲
において任意に選択可能である。カドミウム源と
しては、酸化物等天然資源のまま、あるいはある
程度分別た状態のカドミウム化合物を用いること
ができる。 本発明において、置換反応中の析出物は亜鉛表
面から自然離脱するが、この自然離脱よりも早い
サイクルで人工的にかき落すか又は浸漬した亜鉛
板に振動を与える等の方法によつて離脱させれば
さらに微細で、かつ比表面積の大きい粉末を得る
ことができる。これは亜鉛表面上での核生成サイ
クルを早めることによるものと考えられる。 本発明において、置換液の温度は特に限定する
必要はない。本発明方法は常温の置換反応によつ
て充分に実施されるものであるが、例えば50〜80
℃の温度に加熱して、置換反応速度を高め生産性
を上げる操作は通常公知方法においても行なわれ
るものであり、これによつて本発明の効果が阻害
されるものではない。 また本発明に使用される亜鉛の形態は問わない
が、平滑面を有する板状のものが望ましい。 以下実施例によつて、本発明方法をさらに具体
的に説明する。 実施例 1 酸化カドミウムを硫酸で溶かしCd濃度として
40g/に調整後有機物添加剤として、チオ尿
素、L―システイン、α―ナフトール、ポリビニ
ルアルコールニカワ、ゼラチン、カフエイン、砂
糖、ポリアクリルアミド系高分子からなるアニオ
ン系凝集剤及びノニオン系凝集剤の10種類をそれ
ぞれ0.1g/の濃度で添加し置換液とした。各置
換液2を溶器に取り100mm×50mm×15mmtサイ
ズの亜鉛板を各4枚浸漬しpH=6、常温の条件
下で置換反応を開始させた。反応途中時折浸漬亜
鉛板に振動を与え、析出物の離脱操作を行なつ
た。置換反応終了後、容器底部に沈積した析出粉
を回収し次に図―1の工程に示す様に水洗アルカ
リ洗浄アルコール洗浄を経た後過し60〜70℃の
温度で乾燥し350メツシユで分級して金属カドミ
ウム粉末を得た。 上記操作によつて得られた金属カドミウム粉末
の特性を表―1に示す。表―1からタンパク質で
あるニカワ、ゼラチンが特に効果があり比表面積
にして2m2/g以上が得られた。その他にポリア
クリルアミド系高分子、カフエイン、L―システ
イン等を効果的であつた。
[Field of the Invention] The present invention relates to a method for producing metal cadmium powder, and particularly to a method for easily producing active metal cadmium powder with a large specific surface area. [Prior art] Conventionally, as a method for producing metal cadmium using a substitution reaction, a zinc plate is immersed in a cadmium sulfate solution, and a substitution reaction (oxidation-reduction reaction, below (i)) of Cd ions and Zn ions in the solution is performed. ),
A method is known in which metal cadmium is obtained by forming a cadmium sponge made of dentrite on the surface of a zinc plate and recovering the sponge. CdSO 4 +Zn→ZnSO 4 +Cd...(i) However, in the conventional method, in order to obtain metallic cadmium in powder form, the sponge is ground into lumps, and then a fine grinder such as a ball mill is used to
It must be ground to a fine particle size. In particular, the obtained metallic cadmium powder is
When used as an active material for batteries such as cadmium batteries, it is required to be active, and therefore it is desired to have a specific surface area of at least 1 m 2 /g or more, and therefore it is necessary to carefully crush it. In addition, when used as such an active material,
It is desirable that the metallic cadmium content (metallic Cd content) in the cadmium powder is at least 90% or more. In order to satisfy such conditions, in the above-mentioned known method, sufficient pulverization is carried out until the particle size is reduced to several micrometers or less, and furthermore, in order to prevent oxidation during pulverization, wet pulverization is carried out in, for example, alcohol. Alternatively, in dry grinding, various measures had to be taken, such as carrying out the grinding in an inert gas. Therefore, it has been desired to be able to recover fine particulate cadmium powder directly from a solution without using any pulverizing means. [Object of the Invention] The object of the present invention is to eliminate the drawbacks of the conventional methods and to provide a metal cadmium powder that is fine, has a large specific surface area, and can be recovered directly from a solution in which a substitution reaction is carried out, and which has a high metal cadmium content. The purpose of this invention is to provide a method for manufacturing the same. The above purpose is to provide a substance capable of suppressing the crystal growth of metal cadmium precipitated in the cadmium sulfate solution in a method for manufacturing metal cadmium powder through a step of immersing zinc in a cadmium sulfate solution and precipitating metal cadmium by a substitution reaction. This is achieved by having the [Embodiment] FIG. 1 is a process explanatory diagram of one embodiment of the present invention. The most important points among the steps of the method of the present invention are:
The purpose of this method is to add a substance that has the effect of inhibiting crystal growth to the cadmium sulfate solution used as a replacement liquid. The precipitation process of metallic cadmium in a substitution reaction is explained by nucleation on the zinc surface at the initial stage of the reaction and growth of dendrite crystals as the reaction progresses. In the case of the known method, most of the precipitated cadmium contributes to the growth of dendrite crystals, except at the initial stage of the reaction, resulting in the formation of coarse dendrites.
Plates of dendrite crystals intertwine to form a sponge. The sponge formed as described above is not easy to grind into fine powder. Therefore, in order to eliminate such drawbacks, the present inventors conducted research to directly precipitate fine powdered cadmium in the substitution reaction, and as a result, they found that a substance that has the effect of inhibiting crystal growth was added to the cadmium sulfate replacement solution. By adding , the growth of coarse dendrites is suppressed, and the precipitates are easily separated from the zinc surface, so they do not form a sponge.
We have discovered that fine metal cadmium powder with a large specific surface area can be directly recovered. In the method of the present invention, the crystal growth of dendrites is suppressed, but on the other hand, the natural detachment of precipitates from the zinc surface occurs at a rapid cycle, so the frequency of nucleation increases and the substitution rate is inhibited. It won't happen. Due to the nucleation and crystal growth that occur in this rapid cycle, the precipitate does not take on the appearance of a sponge as in known methods, but instead remains in the form of a fine powder and is deposited at the bottom of the tank used for the substitution reaction, making it easy to recover.
In addition, the recovered sediment is easily dispersed in the next washing step and easily separated from substances that can suppress the crystal growth of the metal cadmium, and if it is further dried after washing, there is no need for any powdering step. Metallic cadmium powder can be obtained. Moreover, the powder obtained here is fine and each individual powder has a spongy morphology, so that it has a specific surface area of 1 m 2 /g or more and is active with a metallic Cd content of 90% or more. Substances that can suppress the crystal growth of the precipitated metal cadmium used in the present invention include (i) Substances that can form lyophilic colloids in a cadmium sulfate solution, such as proteins such as niwaka, gelatin, and albumin; ii) Examples of substances that can form salts or complex salts with cadmium include caffeine, sulfur-containing amino acids (L
- cysteine, cystine, methionine, etc.) and (iii) polymer flocculants, such as anionic or nonionic polyacrylamide flocculants. In addition, the present inventors have used substances other than the above, such as thiourea,
As an aromatic compound having an OH group, for example, α
-We have also conducted experiments with naphthrol, polymeric substances such as polyvinyl alcohol, and carbohydrates such as sugar, and have confirmed that these substances can also be expected to be effective. The amount of the substance capable of suppressing the crystal growth of metal cadmium is determined appropriately depending on the cadmium concentration of the substitution liquid and the acting force of the substance itself, but it is generally 0.4 g/or less, and more preferably 0.1 It is desirable that it be less than g/g/. If it is 0.4g/ or more,
This is because, although it has the effect of inhibiting crystal growth, the branches of the dendrites tend to take on a granular shape and tend to reduce the specific surface area as a whole, resulting in cases where a specific surface area of 1 m 2 /g or more cannot be achieved. In the present invention, there is no need to particularly limit the cadmium concentration of the cadmium sulfate solution used as the replacement liquid. The concentration can be arbitrarily selected from the concentration range commonly used in known methods, for example, 40 to 50 g/, or lower. As a cadmium source, a natural resource such as an oxide, or a cadmium compound in a somewhat separated state can be used. In the present invention, precipitates during the substitution reaction naturally separate from the zinc surface, but they can be removed by artificially scraping off at a faster cycle than the natural removal or by applying vibration to the immersed zinc plate. If this is done, a finer powder with a larger specific surface area can be obtained. This is thought to be due to accelerating the nucleation cycle on the zinc surface. In the present invention, the temperature of the substitution liquid does not need to be particularly limited. The method of the present invention can be carried out satisfactorily by a substitution reaction at room temperature.
The operation of heating to a temperature of .degree. C. to increase the rate of substitution reaction and increase productivity is normally carried out in known methods, and this does not impair the effects of the present invention. Further, although the form of zinc used in the present invention is not limited, it is preferably in the form of a plate with a smooth surface. The method of the present invention will be explained in more detail with reference to Examples below. Example 1 Dissolving cadmium oxide with sulfuric acid to obtain Cd concentration
After adjusting to 40g/10 types of organic additives: thiourea, L-cysteine, α-naphthol, polyvinyl alcohol glue, gelatin, caffein, sugar, anionic flocculants and nonionic flocculants consisting of polyacrylamide polymers. were added at a concentration of 0.1 g/each to form a replacement solution. Four zinc plates each having a size of 100 mm x 50 mm x 15 mm were immersed in each displacement solution 2 in a vessel, and the displacement reaction was started under conditions of pH = 6 and room temperature. During the reaction, the immersed zinc plate was occasionally vibrated to remove the precipitates. After the substitution reaction is completed, the precipitated powder deposited at the bottom of the container is collected, and then washed with water, alkaline, and alcohol as shown in the process in Figure 1, dried at a temperature of 60 to 70℃, and classified with a 350 mesh. A metal cadmium powder was obtained. Table 1 shows the properties of the metal cadmium powder obtained by the above procedure. From Table 1, the proteins glue and gelatin were particularly effective, with a specific surface area of 2 m 2 /g or more. Other effective drugs include polyacrylamide polymers, caffein, and L-cysteine.

【表】【table】

【表】 実施例 2 酸化カドミウムを硫酸で溶かし、Cd濃度を40
g/に調整後ニカワを添加濃度にして0.8,0.4,
0.2,0.1,0.05g/となる様、5種類の置換液を
作成した。この5種類に対し実施例1と同様の操
作を行ない金属カドミウム粉末を得た。この場合
の添加量と比表面積の関係を第2図に示す。第2
図から判る通りCd濃度g/の場合添加量0.4g/
以下のニカワ添加に対し、比表面積が1m2/g以
上に上昇し格別有効であることが判つた。 実施例 3 酸化カドミウムを硫酸で溶かしCd濃度を20g/
に調整後ニカワを添加濃度にして0.4,0.2,
0.1,0.05g/となる様4種類の置換液を作成し
た。この4種類に対し実施例1と同様の操作を行
ない金属カドミウム粉末を得た。この場合の添加
量と比表面積の関係を第3図に示す。第2図から
判る通りCd濃度20g/の場合はニカワ添加量0.2
g/以下において比表面積が1m2/g以上に上昇
し格別有効であることが判つた。
[Table] Example 2 Dissolve cadmium oxide with sulfuric acid and reduce the Cd concentration to 40
After adjusting the concentration to g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/, the glue concentration is 0.8, 0.4,
Five types of replacement liquids were prepared with concentrations of 0.2, 0.1, and 0.05g/. These five types were subjected to the same operation as in Example 1 to obtain metal cadmium powder. The relationship between the amount added and the specific surface area in this case is shown in FIG. Second
As can be seen from the figure, when the Cd concentration is g/, the amount added is 0.4 g/
It was found that the following glue additions increased the specific surface area to 1 m 2 /g or more and were particularly effective. Example 3 Dissolve cadmium oxide with sulfuric acid and reduce the Cd concentration to 20g/
After adjusting the glue concentration to 0.4, 0.2,
Four types of replacement liquids were prepared at concentrations of 0.1 and 0.05g/. These four types were subjected to the same operation as in Example 1 to obtain metal cadmium powder. The relationship between the amount added and the specific surface area in this case is shown in FIG. As can be seen from Figure 2, when the Cd concentration is 20g/, the amount of glue added is 0.2
It was found that the specific surface area increased to more than 1 m 2 /g at a temperature of less than 1 m 2 /g, making it particularly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における金属カドミウム粉末の
製造工程の概略図。第2図は、置換液Cd濃度40
g/におけるニカワ添加量と比表面積の関係を
示すグラフ。第3図は置換液Cd濃度20g/にお
けるニカワ添加量と比表面積の関係を示すグラ
フ。
FIG. 1 is a schematic diagram of the manufacturing process of metal cadmium powder in the present invention. Figure 2 shows the replacement liquid Cd concentration 40
Graph showing the relationship between the amount of glue added and specific surface area in g/. FIG. 3 is a graph showing the relationship between the amount of glue added and the specific surface area at a Cd concentration of 20 g/substitute solution.

Claims (1)

【特許請求の範囲】 1 硫酸カドミウム溶液中に亜鉛を浸漬し置換反
応により金属カドミウムを析出させる工程を経て
金属カドミウム粉末を製造する方法において、前
記硫酸カドミウム溶液中に折出金属カドミウムの
結晶成長を抑制しうる物質を存在させることを特
徴とする金属カドミウム粉末の製造方法。 2 金属カドミウムの結晶成長を抑制しうる物質
が、親液コロイド形成物質である特許請求の範囲
第1項記載の金属カドミウム粉末の製造方法。 3 親液コロイド形成物質がタンパク質である特
許請求の範囲第2項記載の金属カドミウム粉末の
製造方法。 4 タンパク質がニカワ又はゼラチンである特許
請求の範囲第3項記載の金属カドミウム粉末の製
造方法。 5 金属カドミウムの結晶成長を抑制しうる物質
が、金属カドミウムと塩又は錯塩を形成しうる物
質である特許請求の範囲第1項記載の金属カドミ
ウム粉末の製造方法。 6 塩形成物質がカフエインである特許請求の範
囲第5項記載の金属カドミウム粉末の製造方法。 7 錯塩形成物質が硫黄含有アミノ酸である特許
請求の範囲第5項記載の金属カドミウム粉末の製
造方法。 8 金属カドミウムの結晶成長を抑制しうる物質
が、高分子凝集剤である特許請求の範囲第1項記
載の金属カドミウム粉末の製造方法。 9 高分子凝集剤がアニオン型又はノニオン型の
ポリアクリルアミド系凝集剤である特許請求の範
囲第8項記載の金属カドミウム粉末の製造方法。
[Scope of Claims] 1. A method for producing metal cadmium powder through a step of immersing zinc in a cadmium sulfate solution and precipitating metal cadmium by a substitution reaction, wherein crystal growth of precipitated metal cadmium is allowed to occur in the cadmium sulfate solution. A method for producing metal cadmium powder, characterized by the presence of a substance capable of suppressing it. 2. The method for producing metal cadmium powder according to claim 1, wherein the substance capable of suppressing the crystal growth of metal cadmium is a lyophilic colloid forming substance. 3. The method for producing metal cadmium powder according to claim 2, wherein the lyophilic colloid-forming substance is a protein. 4. The method for producing metal cadmium powder according to claim 3, wherein the protein is glue or gelatin. 5. The method for producing metal cadmium powder according to claim 1, wherein the substance capable of suppressing crystal growth of metal cadmium is a substance capable of forming a salt or a complex salt with metal cadmium. 6. The method for producing metal cadmium powder according to claim 5, wherein the salt-forming substance is caffein. 7. The method for producing metal cadmium powder according to claim 5, wherein the complex salt-forming substance is a sulfur-containing amino acid. 8. The method for producing metal cadmium powder according to claim 1, wherein the substance capable of suppressing crystal growth of metal cadmium is a polymer flocculant. 9. The method for producing metal cadmium powder according to claim 8, wherein the polymer flocculant is an anionic or nonionic polyacrylamide flocculant.
JP59108600A 1984-05-30 1984-05-30 Manufactue of metallic cadmium powder Granted JPS60255907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59108600A JPS60255907A (en) 1984-05-30 1984-05-30 Manufactue of metallic cadmium powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59108600A JPS60255907A (en) 1984-05-30 1984-05-30 Manufactue of metallic cadmium powder

Publications (2)

Publication Number Publication Date
JPS60255907A JPS60255907A (en) 1985-12-17
JPS6143402B2 true JPS6143402B2 (en) 1986-09-27

Family

ID=14488908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59108600A Granted JPS60255907A (en) 1984-05-30 1984-05-30 Manufactue of metallic cadmium powder

Country Status (1)

Country Link
JP (1) JPS60255907A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5210467B2 (en) * 2007-11-20 2013-06-12 株式会社ノリタケカンパニーリミテド Method for producing metal fine particle dispersion
JP2019060007A (en) * 2017-09-28 2019-04-18 住友金属鉱山株式会社 Recovery facility and recovery method of cadmium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954452A (en) * 1973-02-26 1976-05-04 Outokumpu-Oy Process for separating Cd from Zn by cementation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954452A (en) * 1973-02-26 1976-05-04 Outokumpu-Oy Process for separating Cd from Zn by cementation

Also Published As

Publication number Publication date
JPS60255907A (en) 1985-12-17

Similar Documents

Publication Publication Date Title
JP5000787B2 (en) Method for producing structured particles comprising silicon or silicon-based materials
JP3644186B2 (en) Metal hydroxide production equipment for battery components
KR101764218B1 (en) The manufacturing method of silver powder using the silver crystal
JP3349750B2 (en) Method for producing metal hydroxide
KR100745355B1 (en) High purity copper sulfate and method for production thereof
JPH11106806A (en) Silver powder composed of hexagonal sheet-shaped crystal silver grain and its production
JPS6143402B2 (en)
CN1041757C (en) Method for producing zinc powder from zinc-containing material by leaching electrolysis method
JPS6143285B2 (en)
US4390447A (en) Manufacturing process for nickel (II) hydroxide
JP3939887B2 (en) Regeneration method of electroless nickel plating solution
JPH01312017A (en) Production of cadmium powder
JP2019183236A (en) Method for producing refined electrolytic manganese dioxide
RU2283208C2 (en) Silver powder production method
JPH0415984B2 (en)
JPS62127430A (en) Method for recovering cadmium
JPS58151437A (en) Treatment of manganese ore
JP4003222B2 (en) Method for producing scaly nickel powder
JPH0526725B2 (en)
JPH07211318A (en) Positive active material for alkaline storage battery and manufacture thereof
JPH01115494A (en) Treatment of drainage
SU1137434A1 (en) Method of regenerating silver salts from silver-halide photographic material
RU2138447C1 (en) Method of production of nickelous hydroxide
JPH03226598A (en) Removing method of metallic ion in plating liquid and metallic zinc additive for removal
JPS604280B2 (en) Reductive regeneration method of tin salt-containing electrolyte