JPS58151437A - Treatment of manganese ore - Google Patents

Treatment of manganese ore

Info

Publication number
JPS58151437A
JPS58151437A JP57032643A JP3264382A JPS58151437A JP S58151437 A JPS58151437 A JP S58151437A JP 57032643 A JP57032643 A JP 57032643A JP 3264382 A JP3264382 A JP 3264382A JP S58151437 A JPS58151437 A JP S58151437A
Authority
JP
Japan
Prior art keywords
slurry
manganese
filtration
residue
ferromanganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57032643A
Other languages
Japanese (ja)
Other versions
JPS6142769B2 (en
Inventor
Jitoku Honda
本多 次徳
Minoru Ouchi
稔 大内
Yoshihiro Nakayama
中山 義博
Keiichiro Ishikawa
石川 恵一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP57032643A priority Critical patent/JPS58151437A/en
Publication of JPS58151437A publication Critical patent/JPS58151437A/en
Publication of JPS6142769B2 publication Critical patent/JPS6142769B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To separate easily solid matter by filtration and to obtain an Mn salt soln. free from Fe and Al and the solid matter for ferromanganese by subjecting a slurry of Mn ore powder after reduction roasting to acid extraction at a specified pH and by carrying out solid-liq. separation by filtration. CONSTITUTION:Water is added to Mn ore powder after reduction roasting to prepare a slurry, sulfuric acid is charged so as to keep the slurry at 2.8-4.0pH, and the slurry is well agitated until the pH becomes 4.0-6.0. Solid matter in the slurry is then separated by filtration. Thus, an Mn salt soln. contg. practically no Fe and Al due to the pH and solid residue freed of sulfate radicals by washing because of the high filterability are obtd. The soln. can be utilized as a starting material for electrolytic metallic Mn, electrolytic MnO2, etc. or as various industrial chemicals, and the solid residue can be utilized as a starting material ferromanganese.

Description

【発明の詳細な説明】 本発明はマンガン鉱石の処理法であって、その目的は、
該マンガン鉱石粉末のスラリー中の固形物の濾過分離を
容易ならしめると共に、固形物を分離した溶液中に、実
質的に鉄、アルミニウムを含まない溶液を得る方法を提
供するにある0 また、本発明の他の目的は、スラリー中の固形物を分離
した溶液を電解金属了ンガン、電解二酸化マンガン等の
製造用原料または各種工業用薬品として使用すると共に
、スラリーから濾過分離された固形物をフェロマンガン
用原料として使用することにある。
[Detailed Description of the Invention] The present invention is a method for processing manganese ore, the purpose of which is to
Another object of the present invention is to provide a method that facilitates the filtration separation of solids in a slurry of manganese ore powder and obtains a solution containing substantially no iron or aluminum in the solution from which the solids have been separated. Another object of the invention is to use the solution from which the solids in the slurry have been separated as a raw material for manufacturing electrolytic metallurgical guns, electrolytic manganese dioxide, etc. or as various industrial chemicals, and to use the solids separated by filtration from the slurry as a ferrochemical. It is used as a raw material for manganese.

現在、電解金属マンガン、電解二酸化マンガン等に使用
されるマンガン塩溶液は、予めマンガン鉱石を還元焙焼
したものに1.硫酸または塩酸等の酸を添加し、マンガ
ン鉱石中のマンガン分を硫酸マンガンまたは塩化マンガ
ン等のマンガン塩溶液として製造している。
Currently, manganese salt solutions used for electrolytic manganese metal, electrolytic manganese dioxide, etc. are made by reducing and roasting manganese ore in advance. By adding acid such as sulfuric acid or hydrochloric acid, the manganese content in manganese ore is produced as a manganese salt solution such as manganese sulfate or manganese chloride.

従来、前記抽出工程ではマンガン分を極力抽出するため
、スラリーの−を20以下の強酸性とし、マンガン抽出
率を85%以上としている。
Conventionally, in the extraction step, in order to extract as much manganese as possible, the slurry is made strongly acidic with -20 or less, and the manganese extraction rate is set at 85% or more.

しかし′、マンガン抽出時の−を20以下とするとマン
ガン鉱石中のマンガンのみならず、鉄。
However, if -20 or less during manganese extraction, not only manganese but also iron is extracted from manganese ore.

アルミニウム等も同時に溶液中に抽出され溶解される。Aluminum etc. are also extracted and dissolved into the solution at the same time.

そのため、従来この鉄、アルミニウム等の不純物を除去
するため、溶液中にアルカリ分、例えば炭酸カルシウム
を加えて中和し、鉄。
Therefore, conventionally, in order to remove impurities such as iron and aluminum, an alkaline component, such as calcium carbonate, is added to the solution to neutralize it.

アルミニウム等を水酸化物の沈澱とし、これを濾過し、
固形物と共に分離している。
Precipitate hydroxide from aluminum etc. and filter it.
Separated with solid matter.

しかし、上述において沈澱する水酸化物は非常に微細で
あって、濾過助剤を使用しても速やかな濾過は困難であ
る。
However, the hydroxide that precipitates in the above case is extremely fine and it is difficult to filter it quickly even if a filter aid is used.

また、炭酸カルシウムの代りに還元マンガン鉱石を中和
剤として使用する方法も提案されているが、濾過性は炭
酸カルシウムに比較して悪い。さらに、炭酸カルシウム
、還元マンガン鉱石等を用いて中和する場合は、固形物
(以下残渣という)の総量が増加し、従って残渣の濾過
を一層困難にするという欠点がある。
Also, a method has been proposed in which reduced manganese ore is used as a neutralizing agent instead of calcium carbonate, but the filterability is poorer than that of calcium carbonate. Furthermore, when neutralizing with calcium carbonate, reduced manganese ore, etc., the total amount of solids (hereinafter referred to as residue) increases, making filtering the residue more difficult.

前述のように残渣の濾過性゛の悪化は、同時に残渣中に
硫酸マンガン等の塩の含有を許し1数回の洗滌はよって
も残渣中の硫酸マンガン等を除去することゆ困難である
。このように残渣中に硫、酸根を含むものは、必然的に
原料中の硫黄の増加を招来し、そのためかかる残渣はフ
ェロマンガン用原料として再利用することができず、ま
た塩化マンガンを含むものは塩素ガスを発生し、環境汚
染はもとより、塩素ガスによって炉上の機器が侵される
ため、かかる残渣は専ら廃棄されている。また、廃棄す
る場合には、水溶性マンガン塩溶出防止のために水酸化
カルシウム、セメント等の添加が必要である。
As mentioned above, the filterability of the residue deteriorates, and at the same time, it is difficult to remove manganese sulfate and the like from the residue even after washing several times, since it allows salts such as manganese sulfate to be contained in the residue. In this way, residues containing sulfur and acid groups inevitably lead to an increase in sulfur in the raw material, and therefore such residues cannot be reused as raw materials for ferromanganese, and those containing manganese chloride This produces chlorine gas, which not only pollutes the environment but also corrodes equipment on the furnace, so the residue is exclusively disposed of. Furthermore, when discarding, it is necessary to add calcium hydroxide, cement, etc. to prevent the elution of water-soluble manganese salts.

本発明は特許請求の範囲に記載した構成とすることによ
って、前述従来法の有する諸欠点を解消し、濾過が容易
で、かつP液中に鉄、アルミニウム等を実質的・に含有
しないものを得ると共に、該溶液を電解金属マンガン、
電解二酸化マンガン等の原料または各種工業薬品として
使用でき、濾過によって分離された残渣をフェロマンガ
ン用原料として再利用できる方法を得る、ことができた
The present invention solves the various drawbacks of the conventional methods described above by having the structure described in the claims, and provides a P liquid that is easy to filter and does not substantially contain iron, aluminum, etc. At the same time, the solution is mixed with electrolytic metal manganese,
We were able to obtain a method that can be used as a raw material for electrolytic manganese dioxide or various industrial chemicals, and in which the residue separated by filtration can be reused as a raw material for ferromanganese.

つぎに、抽出時の−を種々変化させて、−とマンガン、
鉄、アルミニウム等の溶解率との関係を実験例1によっ
て説明する。
Next, by varying the − during extraction, − and manganese,
The relationship with the dissolution rate of iron, aluminum, etc. will be explained using Experimental Example 1.

実験例1 第1表に示すごとき還元マンガン鉱石を、攪拌機付きl
O7容器に該還元マンガン鉱石25009、水6tを加
えてスラリーとし、50%硫酸を注加し、1.5時間復
温度85℃で1.5時間保持した後濾過して溶液中のマ
ンガン、鉄、アルミニウムの溶解率を求め、第2表の結
果を得た。
Experimental Example 1 Reduced manganese ore as shown in Table 1 was prepared using a stirrer.
The reduced manganese ore 25009 and 6 tons of water were added to an O7 container to form a slurry, 50% sulfuric acid was added, the temperature was kept at 85°C for 1.5 hours, and then filtered to remove the manganese and iron in the solution. , the dissolution rate of aluminum was determined, and the results shown in Table 2 were obtained.

第  1  表 第2表から明らかなごと<5pf43.0におけるマン
ガンの溶解率は82%であり、p)10.5では90.
5%で、その溶解率の増加し1僅力)であるに対し、鉄
、・アルミニウムの溶解率&ま、−2,8以上では極〈
僅かであるに対し、pH2,5以下では急激に増加して
いるのが認められる。
As is clear from Table 1 and Table 2, the dissolution rate of manganese at pf<5pf43.0 is 82%, and at pf10.5 it is 90.
At 5%, the dissolution rate increases by 1%), whereas the dissolution rate of iron and aluminum increases by -2.8 or more.
While it is slight, it is observed that it increases rapidly at pH 2.5 or lower.

つぎに、マンガンを抽出した後のスラIJ −を濾過分
離する状態を実験例2として説明する。
Next, a description will be given as Experimental Example 2 of a condition in which the sura IJ- after extracting manganese is filtered and separated.

実験例2 実験例1と同一原料、同一装置で各…値で溶解処理し、
攪°拌しつつ−を5.0〜52とした後、直径23CI
Iのヌツチェで減圧吸引濾過して残渣を濾過分離し、該
残渣を1.5ノの水を3回に分けて洗滌し、第3表のご
とき結果を得た。なお、PHO,″5〜25の場合は還
元マンガン鉱を添加して−5,0〜5.2に調整する。
Experimental example 2 The same raw materials and the same equipment as experimental example 1 were melted at each value,
After adjusting the - to 5.0 to 52 while stirring, the diameter was 23CI.
The residue was filtered and separated by vacuum suction filtration using a No. In addition, when PHO is 5 to 25, reduced manganese ore is added to adjust it to -5.0 to 5.2.

第3表から明らかなように濾過速度はpH2,5以下で
は、−の低下と共に大巾に減少しており、他方濾過分離
した残液量は−の低下と共に増大しているのが認められ
る。
As is clear from Table 3, the filtration rate significantly decreases with a decrease in pH below 2.5, while the amount of residual liquid after filtration increases as the pH decreases.

これに対し、pH,2,8〜1+、0において&tf”
過速度および残渣量にはヤしい変、化は認められない。
On the other hand, at pH 2,8~1+,0
No significant changes were observed in overspeed or residue amount.

また、残渣中の水分含量はpH2,5以下で&ま−の低
下と共に増加しており、また残渣中の水溶性マンガン量
および全硫黄もpH2,5以下では−の低下と共に増加
している0 以上の結果から、p)12.5以下の場合では溶液中に
抽出された。鉄、アルミニウムが−を5.0〜5.2と
することによってゲル状の沈澱となり、残渣として分離
されるが、鉄の沈殿物がゲル状であるため、これに水分
および硫酸塩が捕扮されているため、pJ(0,5〜2
.5では洗滌が充分に行えず、また濾過速度も大巾に減
少しているものと考えられる。
In addition, the water content in the residue increases as the temperature decreases below pH 2.5, and the amount of water-soluble manganese and total sulfur in the residue also increases as the temperature decreases below pH 2.5. From the above results, in the case of p) 12.5 or less, it was extracted into the solution. By setting - to 5.0 to 5.2, iron and aluminum form a gel-like precipitate and are separated as a residue, but since the iron precipitate is gel-like, moisture and sulfate are trapped in this. Since pJ(0,5~2
.. It is considered that in case No. 5, washing could not be carried out sufficiently and the filtration rate was also significantly reduced.

これに対し、PH28〜I+、0とした場合には溶液中
に鉄、アルミニウムがほとんど抽出されていないため、
前記のごときゲル状の沈澱物による濾過速度の大巾な低
下もなく、また残渣の洗滌不充分ということがなく、従
って残渣中にマンガン塩の残存するおそれは大巾に減少
する。
On the other hand, when the pH is set to 0 from 28 to I+, almost no iron or aluminum is extracted into the solution, so
There is no significant decrease in filtration rate due to the gel-like precipitate as described above, and the residue is not washed insufficiently, so the possibility that manganese salt remains in the residue is greatly reduced.

さらにまた、本発明のようにスラリーの−を213〜I
+、0と保持して攪拌するときは、何等これに炭酸カル
シウムのごとき中和剤を添加することなく単1る攪拌操
作によって−5,0〜5.2とすることができるから、
溶液中の遊離硫酸および溶液中に抽出されている微量の
鉄、アルミニウム等も除去することができる。なお、前
記実験例2では攪拌保持後の−が5、θ〜5.2である
が、マンガン塩溶液と残液とのマンガンの分配割合によ
ってp)14.0〜6.0の範囲で適宜調整することが
でき、また−調整時に攪拌しつつ還元マンガン鉱を少量
添加してもよい。
Furthermore, as in the present invention, - of the slurry can be adjusted to 213 to I
When stirring while maintaining +, 0, it is possible to set it to -5.0 to 5.2 by a single stirring operation without adding any neutralizing agent such as calcium carbonate.
Free sulfuric acid in the solution and trace amounts of iron, aluminum, etc. extracted in the solution can also be removed. In addition, in Experimental Example 2, - after stirring and holding is 5, θ ~ 5.2, but p) can be adjusted as appropriate in the range of 14.0 to 6.0 depending on the distribution ratio of manganese between the manganese salt solution and the residual solution. It is also possible to add a small amount of reduced manganese ore while stirring during the adjustment.

以上のごとく本発明はマンガン鉱石のスラリーの−を2
.8〜I+、0と保持し、何等中和剤を加えず攪拌する
ことによって濾過速度を大巾に向上することができ、し
かも濾過によって得られるマンガン塩溶液は鉄、アルミ
ニウムの抽出のほとんどなく、かつ遊離硫酸も除去する
ことができるから、該マンガン塩溶液を電解金属マンガ
ン、電解二酸化マンガンの製造さらに各種工業用薬品の
原料として使用することができると共に、p過分離によ
って得られる残渣は硫酸塩。
As described above, the present invention has the advantage that the manganese ore slurry has -2
.. The filtration rate can be greatly improved by maintaining the 8 to I+, 0 and stirring without adding any neutralizing agent, and the manganese salt solution obtained by filtration has almost no extraction of iron or aluminum. Since free sulfuric acid can also be removed, the manganese salt solution can be used to produce electrolytic manganese metal, electrolytic manganese dioxide, and as a raw material for various industrial chemicals. .

塩酸塩等が除去され、ているため、との残渣をフェロマ
ンガン用原料として再使用することができ、未利用資源
の活用が図られ、さらにコストの低減を図ることができ
る。
Since hydrochloride and the like are removed, the residue can be reused as a raw material for ferromanganese, making it possible to utilize unused resources and further reduce costs.

実施例1 実験例1で使用した還元マンガン鉱石粉末100119
を、内容積5001の攪拌機付き溶解タンクに投入し、
水21+Otを加えてスラリーとした。
Example 1 Reduced manganese ore powder 100119 used in Experimental Example 1
into a dissolution tank with an internal volume of 5001 and equipped with a stirrer,
21+Ot of water was added to form a slurry.

つぎに(1+1)硫酸150”9を、スラリーの−が約
3.0を維持するように1.5時間を費やして注加した
Next, 150"9 of (1+1) sulfuric acid was added over a period of 1.5 hours so that the - of the slurry was maintained at approximately 3.0.

その後30分間攪拌を継続した後、直径60CvAの真
空濾過器で残渣を分離し、水l+O7を3回に分けて残
渣を洗滌する(なお、この洗滌液は次回のスラリー調整
用として使用)。
Thereafter, stirring was continued for 30 minutes, and the residue was separated using a vacuum filter with a diameter of 60 CvA, and the residue was washed with water 1+O7 divided into three portions (this washing liquid was used for the next slurry preparation).

この場合の濾過速度ば16 o t、7♂・Hrで濾過
操作は非常に容易であった。
In this case, the filtration operation was very easy with a filtration speed of 16 ot, 7♂·Hr.

前述p過分−によって2..9 mol/lの硫酸マ、
ンガン溶液2721と、O,B 7 mo17’l (
D硫酸マンガンの洗滌液11−q lが得られた。これ
はマンガン抽出率78.8%に相当する。またこの場合
の鉄、アルミニウムはほとんど抽出されていない。
2. Due to the excess p mentioned above. .. 9 mol/l of sulfuric acid,
Gungan solution 2721 and O, B 7 mo17'l (
11-ql of washing solution of D manganese sulfate was obtained. This corresponds to a manganese extraction rate of 78.8%. Also, almost no iron or aluminum is extracted in this case.

また、残渣は乾重量37.9kgであり全マンガン含有
率31.5%、全硫黄含有率1.1%で、これをフェル
マンガン製造の前処理工程の焼結工程においてマンガン
鉱石に対し10%配合して使用し、従来・品と遜、色の
ないフェロマンガンを得た。
The dry weight of the residue is 37.9 kg, and the total manganese content is 31.5% and the total sulfur content is 1.1%. By blending and using it, we obtained colorless ferromanganese that was inferior to conventional products.

実施例2 実施例1と同一の還元マンガン鉱石粉末10J9を内容
積60/の攪拌機付き溶解タンクに投入し、水6tを加
えてスラリーとした。
Example 2 The same reduced manganese ore powder 10J9 as in Example 1 was put into a dissolution tank with an internal volume of 60/m and equipped with a stirrer, and 6 tons of water was added to form a slurry.

つぎK(1+1)[a!31.9J9を、スラリーの−
が5.0〜3.5を維持するように1.5時間を費やし
て注加した〇 その後、30分間攪拌を継続した後、直径3Qc+mの
ヌツチェで真空濾過し、水157を2回に分けて残渣を
洗滌する(洗滌液は実施例1と同様次回のスラリー調整
用として使用)。
Next K(1+1)[a! 31.9J9, slurry -
The mixture was poured over 1.5 hours to maintain a value of 5.0 to 3.5.After that, stirring was continued for 30 minutes, and vacuum filtration was carried out through a Nutsche with a diameter of 3Qc+m, and water 157 was divided into two portions. (The washing liquid will be used for the next slurry preparation as in Example 1.)

この場合の濾過速度は1501/♂・Hrで濾過操作は
非常に容易であった。
The filtration rate in this case was 1501/♂·Hr, and the filtration operation was very easy.

前述において得られた塩酸マンガン溶液。Manganese hydrochloride solution obtained above.

洗滌液および残渣は第1+iの通りである。The washing solution and residue are as in 1st+i.

第  ヰ  表 なお、前記残渣はフェロマンガン用原料として充分使用
できるものである。
Table 1 Note that the above residue can be fully used as a raw material for ferromanganese.

Claims (1)

【特許請求の範囲】[Claims] 予め還元焙焼したマンガン鉱石粉末を水中に添加してス
ラリーとし、該スラリーの−を2.8〜4.0の範囲に
保持するように酸を注加した後、該スラリーの−が4.
0〜6.0となるまで充分攪拌し、ついで前記スラリー
中の固形物を濾過分離してマンガン塩溶液、を得ると共
に、前記固形物をフェロマンガン用原料として再利用す
ることを特徴とするマンガン鉱石の処理法。
Manganese ore powder that has been reduced and roasted in advance is added to water to make a slurry, and after adding acid to keep the - of the slurry in the range of 2.8 to 4.0, the - of the slurry becomes 4.
0 to 6.0, and then the solid matter in the slurry is separated by filtration to obtain a manganese salt solution, and the solid matter is reused as a raw material for ferromanganese. Ore processing methods.
JP57032643A 1982-03-02 1982-03-02 Treatment of manganese ore Granted JPS58151437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57032643A JPS58151437A (en) 1982-03-02 1982-03-02 Treatment of manganese ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57032643A JPS58151437A (en) 1982-03-02 1982-03-02 Treatment of manganese ore

Publications (2)

Publication Number Publication Date
JPS58151437A true JPS58151437A (en) 1983-09-08
JPS6142769B2 JPS6142769B2 (en) 1986-09-24

Family

ID=12364526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57032643A Granted JPS58151437A (en) 1982-03-02 1982-03-02 Treatment of manganese ore

Country Status (1)

Country Link
JP (1) JPS58151437A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010097347A (en) * 2000-04-21 2001-11-08 우종일 Method for preparing nonferrous metal salts and nonferrous metal salts prepared using the method
CN103194768A (en) * 2013-04-16 2013-07-10 中南大学 Method for preparing electrolytic manganese metal by using high-iron and high-phosphor manganese ores
CN105886781A (en) * 2016-06-29 2016-08-24 广西桂柳化工有限责任公司 Method for recovering manganese dioxide from electrolytic manganese anode mud
CN114984974A (en) * 2022-06-10 2022-09-02 常州大学 Method for improving low-temperature SCR denitration performance of natural ferro-manganese ore catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109645A (en) * 1987-10-21 1989-04-26 Nec Corp Chip-in glass type fluorescent character display module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010097347A (en) * 2000-04-21 2001-11-08 우종일 Method for preparing nonferrous metal salts and nonferrous metal salts prepared using the method
CN103194768A (en) * 2013-04-16 2013-07-10 中南大学 Method for preparing electrolytic manganese metal by using high-iron and high-phosphor manganese ores
CN105886781A (en) * 2016-06-29 2016-08-24 广西桂柳化工有限责任公司 Method for recovering manganese dioxide from electrolytic manganese anode mud
CN105886781B (en) * 2016-06-29 2018-01-02 广西桂柳化工有限责任公司 Method for recovering manganese dioxide from electrolytic manganese anode mud
CN114984974A (en) * 2022-06-10 2022-09-02 常州大学 Method for improving low-temperature SCR denitration performance of natural ferro-manganese ore catalyst
CN114984974B (en) * 2022-06-10 2024-05-14 常州大学 Method for improving low-temperature SCR denitration performance of natural ferro-manganese ore catalyst

Also Published As

Publication number Publication date
JPS6142769B2 (en) 1986-09-24

Similar Documents

Publication Publication Date Title
JPH0517832A (en) Method for recovering lithium from waste lithium battery
JPS58151437A (en) Treatment of manganese ore
EP2883969B1 (en) Method for effluent treatment in smelting of nickel oxide ore
WO2018225638A1 (en) Method for separating heavy metal
TWI694057B (en) Method for manufacturing gypsum and method for manufacturing cement composition
US11512368B2 (en) Method for removing fluoride from a zinc-containing solution or suspension, defluoridated zinc sulfate solution and use thereof, and method for producing zinc and hydrogen fluoride or hydrofluoric acid
CN111961863B (en) Method for removing lead from electrolytic manganese anode slime
JP7331329B2 (en) Method for producing liquid fertilizer
JP7415226B2 (en) Method for producing metal cadmium
JP4735943B2 (en) Zinc raw material processing method
US8993828B2 (en) Method of radium stabilizing in solid effluent or effluent containing substances in suspension
US2180692A (en) Process of treating ores
JPS6345130A (en) Removal of zinc from aqueous solution acidified with sulfuric acid
JP2006257540A (en) Method for treating raw zinc material
JP2024030548A (en) Method for producing cobalt hydroxide
RU2576819C1 (en) Procedure for processing silicon containing wastes of uranium production
JPS59133338A (en) Heavy metal separation for copper containing waste
CN115449629B (en) Device and method for recycling magnesium sulfate solution and reacting with lime
JPS62127430A (en) Method for recovering cadmium
SU1325016A1 (en) Method of producing zink aluminate
US2622020A (en) Treatment of galvanizing skimmings
US1989603A (en) Recovery of gold from colloidal slum and other colloidal materials
CN117083402A (en) Desilication and silicon reutilization method in cobalt nickel hydroxide leaching process
JPH0585726A (en) Method for recovery of silver sulfate
JPS6214617B2 (en)