JP2006257540A - Method for treating raw zinc material - Google Patents

Method for treating raw zinc material Download PDF

Info

Publication number
JP2006257540A
JP2006257540A JP2005164799A JP2005164799A JP2006257540A JP 2006257540 A JP2006257540 A JP 2006257540A JP 2005164799 A JP2005164799 A JP 2005164799A JP 2005164799 A JP2005164799 A JP 2005164799A JP 2006257540 A JP2006257540 A JP 2006257540A
Authority
JP
Japan
Prior art keywords
oxide
zinc
raw material
leaching
zinc raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005164799A
Other languages
Japanese (ja)
Other versions
JP4635231B2 (en
Inventor
Tetsuo Fujita
哲雄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2005164799A priority Critical patent/JP4635231B2/en
Publication of JP2006257540A publication Critical patent/JP2006257540A/en
Application granted granted Critical
Publication of JP4635231B2 publication Critical patent/JP4635231B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To rapidly precipitate silica in a form of being easily solid-liquid separated, which has eluted into a sulfuric acid solution while a raw zinc material is treated with the sulfuric acid solution in a wet zinc-smelting process. <P>SOLUTION: The method for treating the raw zinc material in the wet zinc-smelting process comprises the steps of: preparing a leaching solution by mixing a liquid part of an electrolysis tail liquid with an iron-removed residual solution; adding one or more substances selected from bismuth oxide, titanium oxide, antimony oxide, tin oxide, gallium oxide, cadmium oxide, calcium phosphate, phosphoric oxide, calcium fluoride, lead oxide, palladium, silver oxide, silver, iron oxide and manganese oxide into the leaching solution; subsequently charging a specified amount of a burnt raw zinc material into the leaching solution; leaching the burnt raw zinc material; and after the leaching has been finished, adding a flocculant into the obtained leaching solution to separate eluted silica and the like in a form of slurry. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は湿式亜鉛製錬工程における亜鉛原料の湿式処理工程に関し、特に、前記亜鉛原料を硫酸酸性溶液で浸出した後に、シリカの沈降性・ろ過性を向上させる亜鉛原料の処理方法に関する。   The present invention relates to a zinc raw material wet treatment process in a wet zinc smelting process, and more particularly to a zinc raw material treatment method for improving the sedimentation and filterability of silica after leaching the zinc raw material with a sulfuric acid acidic solution.

従来、湿式亜鉛製錬は、ZnS(硫化亜鉛)を主成分とする鉱石を選鉱して亜鉛原料とし、当該亜鉛原料の焙焼物を硫酸酸性溶液を用いて浸出し、得られた浸出液を固液分離して亜鉛浸出残査を除去した後、さらに浄液し、当該液体部分より電解採取を経て電気亜鉛を得ている。このとき前記鉱石に不純物が多く存在すると、亜鉛製錬工程の操業において様々な課題が発生する。
例えば、前記亜鉛原料に不純物としてFe(鉄)やSi(ケイ素)が多く含有されていると、焙焼物の浸出後に生成する亜鉛浸出残渣の沈降性が悪化する。特に、不純物がSi化合物であるシリカであると、その含有量が多くなるに従い当該シリカがゲル化し、前記亜鉛浸出残渣と絡み合うため、前記固液分離工程の沈降性・ろ過性が著しく悪くなる。そこで、前記固液分離工程における沈降性・ろ過性を向上させるため、特許文献1を始めとする提案がされている。
Conventionally, wet zinc smelting ore mainly composed of ZnS (zinc sulfide) is used as a zinc raw material, and a roasted product of the zinc raw material is leached using a sulfuric acid acidic solution, and the obtained leachate is solid-liquid. After separating and removing the zinc leaching residue, the liquid is further purified, and electrolytic zinc is obtained from the liquid portion through electrowinning. At this time, if there are many impurities in the ore, various problems occur in the operation of the zinc smelting process.
For example, when the zinc raw material contains a large amount of Fe (iron) or Si (silicon) as impurities, the sedimentation property of the zinc leaching residue generated after leaching of the roasted product is deteriorated. In particular, when the impurity is silica, which is a Si compound, the silica gels as the content increases, and is entangled with the zinc leaching residue, so that the sedimentation and filterability in the solid-liquid separation step are remarkably deteriorated. Then, in order to improve the sedimentation property and filterability in the said solid-liquid separation process, the proposal including patent document 1 is made.

特許第3464602号Japanese Patent No. 3464602

例えば、特許文献1は、前記固液分離工程における沈降性・ろ過性を向上させるため、浸出工程において、浸出を行う酸溶解槽内の組成物中のシリカの量に応じ、所定量以上の可溶性シリカ、またはシリカを含有する亜鉛浸出残渣を前記溶解槽へ供給することを提案している。   For example, in Patent Document 1, in order to improve the sedimentation property and filterability in the solid-liquid separation step, the solubility in a predetermined amount or more is determined according to the amount of silica in the composition in the acid dissolution tank in which leaching is performed in the leaching step. It is proposed to supply silica or zinc leaching residue containing silica to the dissolution tank.

しかし、本発明者らが検討したところ、当該浸出工程において酸溶解槽における組成物中のシリカの量に応じ、所定量以上の可溶性シリカを前記溶解槽へ供給しても、前記固液分離工程におけるシリカの沈降性・ろ過性の向上は、満足できる水準ではなかった。   However, when the present inventors examined, even if it supplies a predetermined amount or more of soluble silica to the dissolution tank according to the amount of silica in the composition in the acid dissolution tank in the leaching step, the solid-liquid separation step The improvement in the sedimentation and filterability of silica was not satisfactory.

本発明は、上述の課題を解決するために成されたものであり、工程の複雑化や浸出時間の延長をもたらすことなく、固液分離工程においてシリカの沈降性・ろ過性を向上させる亜鉛原料の処理方法を提供することにある。   The present invention has been made to solve the above-mentioned problems, and is a zinc raw material that improves the sedimentation and filterability of silica in a solid-liquid separation process without complicating the process and extending the leaching time. It is to provide a processing method.

本発明者らは、上記の課題を解決すべく鋭意研究を続け試行錯誤の結果、前記浸出工程で用いる硫酸酸性溶液へ、亜鉛製錬工程で産出するPb(鉛)・Ag(銀)残査を添加した後に当該浸出を行うと、固液分離工程においてシリカの沈降性・ろ過性が向上することを見出した。本発明者らは、この知見を出発点として研究を続け、Bi酸化物(ビスマス酸化物)を始めとする各種の物質を添加した硫酸酸性溶液を用いると、共沈作用、またはアンカー効果により固液分離工程においてシリカの沈降性・ろ過性が向上することを見出し本発明を完成した。   As a result of trial and error, the present inventors have continued intensive research to solve the above-mentioned problems, and as a result, the Pb (lead) / Ag (silver) residue produced in the zinc smelting process into the sulfuric acid solution used in the leaching process. It has been found that when the leaching is carried out after the addition of the silica, the sedimentation and filterability of silica are improved in the solid-liquid separation step. The present inventors have continued research on this knowledge as a starting point, and when an acidic sulfuric acid solution to which various substances such as Bi oxide (bismuth oxide) are added is used, solidification occurs due to coprecipitation or anchor effect. The present invention was completed by finding that the settling and filtering properties of silica were improved in the liquid separation step.

上述の課題を解決するための第1の手段は、
亜鉛原料から亜鉛を抽出する湿式亜鉛製錬工程において、
焙焼した亜鉛原料を硫酸酸性溶液を用いて浸出する際、ビスマス酸化物、チタン酸化物、アンチモン酸化物、錫酸化物、ガリウム酸化物、カドミニウム酸化物、リン酸カルシウム塩、酸化リン、弗化カルシウム、鉛酸化物、硫酸鉛、硫化鉛、パラジウム、銀酸化物、銀、鉄酸化物、マンガン酸化物、から選択される1種以上の添加物質が添加された硫酸酸性溶液を用いて、浸出をおこなうことを特徴とする亜鉛原料の処理方法である。
The first means for solving the above-mentioned problem is
In the wet zinc smelting process to extract zinc from zinc raw materials,
When leaching the roasted zinc raw material using sulfuric acid acidic solution, bismuth oxide, titanium oxide, antimony oxide, tin oxide, gallium oxide, cadmium oxide, calcium phosphate salt, phosphorus oxide, calcium fluoride, Leaching is performed using a sulfuric acid acidic solution to which one or more additives selected from lead oxide, lead sulfate, lead sulfide, palladium, silver oxide, silver, iron oxide, and manganese oxide are added. This is a method for treating a zinc raw material.

第2の手段は、
前記鉄酸化物として、前記湿式亜鉛製錬工程から産出するヘマタイトを用いることを特徴とする第1の手段に記載の亜鉛原料の処理方法である。
The second means is
The method for treating a zinc raw material according to the first means, wherein hematite produced from the wet zinc smelting step is used as the iron oxide.

第3の手段は、
前記マンガン酸化物として、前記湿式亜鉛製錬工程から産出するMn澱物を用いることを特徴とする第1の手段に記載の亜鉛原料の処理方法である。
The third means is
Mn starch produced from the wet zinc smelting step is used as the manganese oxide, the zinc raw material treatment method according to the first means.

第4の手段は、
前記酸化ビスマスおよび/または銀として、
鉛製錬工程から産出され、BiまたはAgを3wt%以上含有する、Bi密陀および/または鉛電解スライムを用いることを特徴とする第1または第2の手段に記載の亜鉛原料の処理方法である。
The fourth means is
As the bismuth oxide and / or silver,
The zinc raw material treatment method according to the first or second means, characterized in that it uses Bi dense iron and / or lead electrolytic slime produced from a lead smelting process and containing Bi or Ag in an amount of 3 wt% or more. is there.

第5の手段は、
前記添加物質の1種以上が添加され、当該添加物質を0.02g/L以上含有する硫酸酸性溶液を用いることを特徴とする第1から第4の手段のいずれかに記載の亜鉛原料の処理方法である。
The fifth means is
The zinc raw material treatment according to any one of the first to fourth means, wherein one or more of the additive substances are added and an acidic sulfuric acid solution containing 0.02 g / L or more of the additive substance is used. Is the method.

第6の手段は、
前記添加物質としてBi2O3を用い、前記硫酸酸性溶液中に4g/L以上添加することを特徴とする第1の手段に記載の亜鉛原料の処理方法である。
The sixth means is
The zinc raw material treatment method according to the first means, wherein Bi 2 O 3 is used as the additive substance and 4 g / L or more is added to the acidic sulfuric acid solution.

第7の手段は、
前記添加物質として鉛製錬工程から産出するBi密陀を用い、前記硫酸酸性溶液中に4g/L以上添加することを特徴とする第1の手段に記載の亜鉛原料の処理方法である。
The seventh means is
The zinc raw material treatment method according to the first means, characterized in that Bi gypsum produced from a lead smelting step is used as the additive substance and 4 g / L or more is added to the sulfuric acid acidic solution.

第8の手段は、
前記添加物質として鉛製錬工程から産出する鉛電解スライムを用い、前記硫酸酸性溶液中に1g/L以上添加することを特徴とする第1の手段に記載の亜鉛原料の処理方法である。
The eighth means is
The zinc raw material treatment method according to the first means, wherein lead electrolysis slime produced from a lead smelting step is used as the additive substance, and 1 g / L or more is added to the sulfuric acid acidic solution.

第9の手段は、
前記浸出前の前記硫酸酸性溶液のpHを、1.5以下とすることを特徴とする第1から第8の手段のいずれかに記載の亜鉛原料の処理方法である。
The ninth means is
The zinc raw material treatment method according to any one of first to eighth means, wherein the pH of the sulfuric acid acidic solution before the leaching is 1.5 or less.

第10の手段は、
前記亜鉛原料を浸出する時間を、10分間以上5時間以下とすることを特徴とする第1から第9の手段のいずれかに記載の亜鉛原料の処理方法である。
The tenth means is
The zinc raw material treatment method according to any one of the first to ninth means, wherein a time for leaching the zinc raw material is 10 minutes to 5 hours.

上述した第1〜第10の手段のいずれかに記載の亜鉛原料の処理方法によれば、当該亜鉛原料を硫酸酸性溶液で浸出した後の固液分離工程において、前記亜鉛原料に含有されたシリカを含む固形成分が、液体成分より容易に分離して沈殿した。   According to the method for treating a zinc raw material according to any of the first to tenth means described above, in the solid-liquid separation step after leaching the zinc raw material with a sulfuric acid acidic solution, the silica contained in the zinc raw material The solid component containing was easily separated from the liquid component and precipitated.

本発明の実施の形態を、湿式亜鉛製錬工程における亜鉛原料の処理フロー例である図1を参照しながら説明する。
図1に示すように、亜鉛鉱石等の亜鉛原料は、まず、焙焼・粉砕されるが、粉砕は浸出の前後で実施され粉砕物となる。この粉砕物へ、後述する電解尾液の液体部分や脱鉄后液の混合液を含む硫酸酸性の浸出液を加え、1次の浸出操作の後、固液分離工程を行って液体の浸出液と固体の亜鉛浸出残査とを得る。次に、当該浸出液を浄液操作の後に電解処理し、電気亜鉛と電解尾液とを得る。当該電気亜鉛は亜鉛製錬の次工程へと送られるが、電解尾液は固液分離工程の後、液体部分は上述した浸出液として循環使用され、固体部分はMn澱物となる。
An embodiment of the present invention will be described with reference to FIG. 1 which is an example of a processing flow of a zinc raw material in a wet zinc smelting process.
As shown in FIG. 1, a zinc raw material such as zinc ore is first roasted and pulverized, but the pulverization is performed before and after leaching and becomes a pulverized product. To this pulverized product, a sulfuric acid-based leachate containing a liquid portion of the electrolytic tail liquor described later and a mixture of the post-deironation solution is added, and after the first leaching operation, a solid-liquid separation step is performed to obtain a liquid leachate and a solid. Get the zinc leaching residue. Next, the leaching solution is subjected to electrolytic treatment after the liquid purification operation to obtain electrozinc and electrolytic tail solution. The electrozinc is sent to the next step of zinc smelting, but the electrolytic tail solution is recycled after the solid-liquid separation step, and the liquid portion is circulated and used as the above-described leachate, and the solid portion becomes Mn starch.

一方、上述の亜鉛浸出残査は、例えばSO2(二酸化硫黄)を用いて2次浸出操作を行った後、固液分離操作を行い、液体の2次浸出液と固体のPb・Ag残査とを得る。この2次浸出液に炭酸カルシウムを加えて1段中和を行い固液分離工程の後、液体の1段中和液と固体の1段石膏とを得る。この1段中和液に亜鉛末を加えて脱砒操作を行い、液体の脱砒液と固体のRT残査とを得る。尚、ここでRT残渣とはResidue Treatmentの略称で、Cu3Asを主成分とした銅・砒素化合物である。この脱砒液に炭酸カルシウムを加えて2段中和を行い固液分離工程の後、液体の2段中和液と固体の2段石膏とを得る。この2段中和液にO2・蒸気を加えて脱鉄処理を行い、液体の脱鉄后液と固体のヘマタイトとを得る。得られた脱鉄后液は、上述した電解尾液の液体部分と伴に浸出液として循環使用する。 On the other hand, in the zinc leaching residue described above, for example, after performing a secondary leaching operation using SO 2 (sulfur dioxide), a solid-liquid separation operation is performed to obtain a liquid secondary leaching solution and a solid Pb / Ag residue. Get. Calcium carbonate is added to the secondary leaching solution for neutralization by one step, and after the solid-liquid separation step, a liquid one-step neutralization solution and a solid one-step gypsum are obtained. Zinc powder is added to this one-stage neutralized solution to carry out a dearsenic operation to obtain a liquid dearsenic solution and a solid RT residue. Here, RT residue is an abbreviation for Residue Treatment, which is a copper / arsenic compound containing Cu 3 As as a main component. Calcium carbonate is added to this dearsenic solution to carry out two-step neutralization, and after the solid-liquid separation step, a liquid two-step neutralization solution and a solid two-step gypsum are obtained. This two-stage neutralized solution is added with O 2 / steam for deironing treatment to obtain a liquid after iron removal and solid hematite. The obtained iron-free post-recycle is circulated and used as a leachate together with the liquid portion of the electrolytic tail solution described above.

この時、当初の亜鉛原料中にSiO2(シリカ)が多量に含有されていると、当該SiO2、が亜鉛焙焼物の浸出時にZnSiO3となって浸出液中に溶解し、当該浸出液のpHの上昇とともに析出してゲル化し、固液分離工程時における亜鉛浸出残査の沈降性・ろ過性を悪くする。ここで、当該固液分離工程時における亜鉛浸出残査の沈降性を良好に保持するには、当初の亜鉛原料中のSiO2品位が1%以下であることが好ましいのだが、それ以上になると亜鉛浸出残査の沈降性不良・ろ過性不良が発生することとなる。しかし、当初の亜鉛原料中のSiO2含有量は多様であり、2%を超える場合もある。 At this time, if the initial zinc raw material contains a large amount of SiO 2 (silica), the SiO 2 becomes ZnSiO 3 and dissolves in the leachate when the zinc roast is leached, and the pH of the leachate is reduced. As it rises, it precipitates and gels, deteriorating the sedimentation and filterability of the zinc leaching residue during the solid-liquid separation process. Here, in order to maintain good sedimentation of the zinc leaching residue during the solid-liquid separation step, it is preferable that the SiO 2 quality in the original zinc raw material is 1% or less, but if it is more than that This results in poor sedimentation and poor filterability in the zinc leaching residue. However, the SiO 2 content in the original zinc raw material varies and may exceed 2%.

このようなSiO2を多量に含有する亜鉛原料を用いた場合の、固液分離工程時における亜鉛浸出残査の沈降性・ろ過性は悪く、例えば、後述する実施例1で行った沈降性評価結果によれば、1分間後の沈降距離で12mm、ろ過速度で1.75l/m2/minであった。ここで当該浸出液へ、上述のPb・Ag残査を10g/L(約10000ppm)添加したところ、1分間後の沈降距離が39mm、ろ過速度が3.13l/m2/minへと向上した。次に、当該浸出液へ、上述のMn澱物を10g/L添加したところ、1分間後の沈降距離が27mm、ろ過速度が6.45l/m2/minへと向上した。さらに当該浸出液へ、上述のヘマタイトを10g/L添加したところ、1分間後の沈降距離が22mm、ろ過速度が5.32l/m2/minへと向上した。これらの知見から、当該浸出液へ添加することで亜鉛浸出残査の沈降性・ろ過性を向上させることの出来る物質を探索したところ、ビスマス酸化物(BiO、Bi2O3、およびそれらの混合物)、チタン酸化物(TiO2)、アンチモン酸化物(Sb2O3)、錫酸化物(SnO2)、ガリウム酸化物(Ga2O3)、カドミニウム酸化物(CdO)、リン酸カルシウム塩(Ca3(PO4)2)、酸化リン(P2O5)、弗化カルシウム(CaF2)、鉛酸化物(PbO2)、硫酸鉛(PbSO4)、硫化鉛(PbS)、パラジウム(Pb)粉、銀酸化物(AgO)、銀(Ag)粉、鉄酸化物(Fe2O3)、マンガン酸化物(MnO2)が見出された。そして、これらの物質から選択される1種以上の物質を、当該浸出液に添加してから亜鉛原料の浸出操作を行うことで、亜鉛浸出残査の固液分離工程において亜鉛残査の沈降性、ろ過性を向上させることが出来た。 When such a zinc raw material containing a large amount of SiO 2 is used, the sedimentation / filterability of the zinc leaching residue during the solid-liquid separation process is poor. For example, the sedimentation evaluation performed in Example 1 described later is performed. According to the results, the sedimentation distance after 1 minute was 12 mm, and the filtration rate was 1.75 l / m 2 / min. Here, when 10 g / L (about 10,000 ppm) of the above-mentioned Pb · Ag residue was added to the leachate, the sedimentation distance after 1 minute was improved to 39 mm and the filtration rate to 3.13 l / m 2 / min. Next, when 10 g / L of the above Mn starch was added to the leachate, the sedimentation distance after 1 minute was improved to 27 mm and the filtration rate to 6.45 l / m 2 / min. Furthermore, when 10 g / L of the above-mentioned hematite was added to the leachate, the sedimentation distance after 1 minute was improved to 22 mm and the filtration rate to 5.32 l / m 2 / min. Based on these findings, we searched for substances that can improve the sedimentation and filterability of zinc leaching residue by adding to the leachate. Bismuth oxide (BiO, Bi 2 O 3 , and their mixtures) , Titanium oxide (TiO 2 ), antimony oxide (Sb 2 O 3 ), tin oxide (SnO 2 ), gallium oxide (Ga 2 O 3 ), cadmium oxide (CdO), calcium phosphate (Ca 3 ( PO 4 ) 2 ), phosphorus oxide (P 2 O 5 ), calcium fluoride (CaF 2 ), lead oxide (PbO 2 ), lead sulfate (PbSO 4 ), lead sulfide (PbS), palladium (Pb) powder, Silver oxide (AgO), silver (Ag) powder, iron oxide (Fe 2 O 3 ), and manganese oxide (MnO 2 ) were found. And, by adding one or more substances selected from these substances to the leaching solution and then performing the leaching operation of the zinc raw material, the sedimentation property of the zinc residue in the solid-liquid separation process of the zinc leaching residue, The filterability could be improved.

ここで、上述した物質についてさらに説明する。
Pb・Ag残査とは、上述した1次の浸出操作で産出した固形分である亜鉛浸出残渣(ジンクフェライトというFeとZn(亜鉛)との化合物である。)を、さらにSO2等により2次浸出した残査のことである。主成分は、PbSO4とSiO2とであり、他に、少量のSn・Sb化合物、極少量のAgが含有されている。これらの各成分は、当初の亜鉛原料(亜鉛精鉱や、それを焙焼した焼鉱)の成分比率により変化する。即ち、当初の亜鉛原料において、Pbが少ないものはPbが少なくなるし、Agが極少量含まれれば、極少量のAgを含むこととなる。当社での操業におけるPbAg残渣の代表的な組成比率としては、SiO2が20%、Pbが20%その他、SO4などの塩類やSn・Sb化合物であり、Agは約2000ppmである。尤も、Ag濃度は鉱石ブレンドによって変動し、4000〜5000ppmになることもある。
Here, the above-described substances will be further described.
The Pb / Ag residue is a zinc leaching residue (a compound of Fe and Zn (zinc) called zinc ferrite), which is a solid content produced by the above-described primary leaching operation, and is further reduced to 2 by SO 2 or the like. It is the next leaching residue. The main components are PbSO 4 and SiO 2 , and in addition, a small amount of Sn · Sb compound and a very small amount of Ag are contained. Each of these components varies depending on the component ratio of the original zinc raw material (zinc concentrate or roasted ore obtained by roasting it). That is, in the original zinc raw material, Pb is small, Pb is small, and if a very small amount of Ag is included, a very small amount of Ag is included. Typical composition ratios of the PbAg residue in our operation are 20% for SiO 2 , 20% for Pb, other salts such as SO 4 and Sn · Sb compounds, and Ag is about 2000 ppm. However, the Ag concentration varies depending on the ore blend, and may be 4000 to 5000 ppm.

当該Pb・Ag残査を浸出液に添加した際、残査中のSiO2は、上記2次浸出時に熱作用を受けるため結晶性のSiO2となっており浸出液に溶解しない。Pbも、PbSO4の形態で存在しているため硫酸にはほとんど溶解しない。この結果、当該Pb・Ag残査を添加した浸出液で亜鉛原料の焙焼物を浸出する際、析出するシリカの沈降性・ろ過性向上の効果をもたらしたと考えられる。
また、Agは、非酸化性の酸には溶解しないので、当該Agが析出するシリカの種晶として効果をもたらしていると考えられる。
When the Pb / Ag residue is added to the leaching solution, the SiO 2 in the residue is crystalline SiO 2 because it receives a thermal action during the secondary leaching and does not dissolve in the leaching solution. Pb is also hardly dissolved in sulfuric acid because it exists in the form of PbSO 4 . As a result, when the zinc raw material was leached with the leachate to which the Pb / Ag residue was added, it is considered that the effect of improving the sedimentation and filterability of the precipitated silica was brought about.
Moreover, since Ag does not dissolve in a non-oxidizing acid, it is considered that the Ag is effective as a seed crystal of silica on which Ag is deposited.

さらに、当該Agが析出するシリカの種晶として効果をもたらす際、Agの絶対的存在量という観点から見ると、バルク時のAgを添加する場合よりも少ないAg量を含むAg・Pb残査でも、沈降性・ろ過性に効果がある。これは、上述したPbSO4とSiO2との協働効果の他に、PbAg残渣中に含有されているAgが微細に分散しており、その表面積が大きいことも原因と考えられる。さらに、Agは、浸出液中に含まれる酸化性の酸(4価のMn)により極少量が浸出液に溶解するが、亜鉛原料の焙焼物が浸出されていくと同時に、浸出液の酸化還元電位(以下ORPと記載する。)が低下することで、一旦溶解したAgが析出するので、その際の共沈効果も考えられる。加えて、Agの形態は、必ずしも単体のAgである必要はなく、Ag2S、AgCuS等の硫化物であってもよい。これら硫化物によっても、単体と同様にSiO2の沈降性・ろ過性を改善する。 Further, when the Ag is effective as a seed crystal of precipitated silica, from the viewpoint of the absolute abundance of Ag, even in the case of an Ag / Pb residue containing less Ag than in the case of adding Ag in bulk Effective in sedimentation and filterability. This is considered to be caused by the fact that Ag contained in the PbAg residue is finely dispersed and has a large surface area in addition to the above-mentioned cooperative effect of PbSO 4 and SiO 2 . Furthermore, although an extremely small amount of Ag is dissolved in the leachate by the oxidizing acid (tetravalent Mn) contained in the leachate, the redox potential of the leachate (below) (Described as ORP.) Decreases, so that once dissolved Ag is precipitated, the coprecipitation effect at that time can also be considered. In addition, the form of Ag is not necessarily a single Ag, and may be a sulfide such as Ag 2 S or AgCuS. These sulfides also improve the settling and filterability of SiO 2 as with the simple substance.

Mn澱物は、亜鉛原料の鉱石中に含まれるMnより供給される澱物である。当該鉱石の種類により差はあるが、当該亜鉛原料中にしめるMnの含有率はおよそ1000ppm程度である。当該Mnは硫酸酸性溶液である浸出液により1次浸出され、2価のMnイオン(Mn2+)として浸出液中に存在することとなる。当該1次浸出液からZnを電解採取する際、アノードとしてPb板を用いることが一般的であるが(将来、他の材料を使うことも検討されている。)、当該電解採取を進めていくと、上述した浸出液中に含まれるMn2+が酸化されMn4+となる。このときMn4+は溶解度が小さいため、MnO2となりアノードにスケールとして析出・付着する。そのスケールを除去・収集したものがMn澱物と呼ばれ、主成分はMnO2であるが、その他PbO2やSrSO4(硫酸ストロンチウム)などが不純物として含まれている。 Mn starch is a starch supplied from Mn contained in the ore of the zinc raw material. Although there is a difference depending on the type of the ore, the content of Mn contained in the zinc raw material is about 1000 ppm. The Mn is firstly leached by a leachate which is an acidic solution of sulfuric acid and is present in the leachate as divalent Mn ions (Mn 2+ ). When electrolytically collecting Zn from the primary leachate, it is common to use a Pb plate as an anode (the use of other materials in the future is also being considered). Mn 2+ contained in the above-described leachate is oxidized to Mn 4+ . At this time, since Mn 4+ has low solubility, it becomes MnO 2 and precipitates and adheres as a scale to the anode. A material obtained by removing and collecting the scale is called Mn starch and the main component is MnO 2 , but other impurities such as PbO 2 and SrSO 4 (strontium sulfate) are contained.

当該Mn澱物を浸出液に添加した場合、Mn澱物中の固形分はほとんど溶解しない。このため、浸出液からシリカが析出する際の種晶として作用し、当該シリカの沈降性・ろ過性向上の効果をもたらしていると考えられる。加えて、MnO2には、酸化還元電位を上昇させる効果があるため為、浸出液に添加されることで亜鉛原料の鉱石中に含まれるCuの浸出に役立ち、塩基性硫酸銅の析出防止にも役に立つことで、沈降性低下防止の効果を発揮していると考えられる。 When the Mn starch is added to the leachate, the solid content in the Mn starch is hardly dissolved. For this reason, it acts as a seed crystal when silica is precipitated from the leachate, and is considered to bring about the effect of improving the sedimentation and filterability of the silica. In addition, since MnO 2 has the effect of increasing the oxidation-reduction potential, adding it to the leaching solution helps leaching Cu contained in the ore of the zinc raw material, and also prevents the precipitation of basic copper sulfate. By being useful, it is thought that the effect of preventing sedimentation deterioration is exhibited.

ヘマタイトは、上述した亜鉛浸出残査を脱鉄処理する際に生成するα-Fe2O3である。当該ヘマタイトを浸出液に添加した場合、溶解する傾向にはあるが僅かに固形分が残っており、当該固形分が種晶として、またはSiO2析出の際の共沈物として作用し、SiO2の沈降性向上、ろ過性向上の効果をもたらしていると考えられる。 Hematite is α-Fe 2 O 3 produced when the above-described zinc leaching residue is subjected to iron removal treatment. If the hematite was added to the leaching solution, there is a tendency to dissolve but there remains slight solids, the solids as a seed crystal, or act as a co-precipitate during the SiO 2 deposition, the SiO 2 It is thought that the effect of improving sedimentation and filterability is brought about.

これに対し、Bi2O3を浸出液に添加すると、ほぼ全量溶解するが、pHが0.5となった時点でBi濃度は3000mg/Lとなり、浸出液中にて種晶として存在していると考えられる。
この種晶として存在しているBi2O3が、一旦、再溶解したSiO2が再析出する際の種晶として作用していると考えられる。さらに、BiはPbと同様に、非常に重い元素である為、化合物自身の比重が重いことによるアンカー効果によって、SiO2の沈降性、ろ過性を改善していると考えられる。ここでBi濃度範囲を調整して浸出液に添加したところ、浸出液中のBi濃度の増加に伴い、シリカの沈降性・ろ過性向上の効果が現れるが、4g/L以上になると、該効果が顕著になることが判明した。
On the other hand, when Bi 2 O 3 is added to the leaching solution, almost the entire amount is dissolved, but when the pH reaches 0.5, the Bi concentration becomes 3000 mg / L and exists as a seed crystal in the leaching solution. Conceivable.
It is considered that Bi 2 O 3 existing as a seed crystal acts as a seed crystal when SiO 2 once dissolved again reprecipitates. Furthermore, since Bi is an extremely heavy element like Pb, the anchor effect due to the high specific gravity of the compound itself is considered to improve the settling and filtering properties of SiO 2 . Here, the Bi concentration range was adjusted and added to the leachate. As the Bi concentration in the leachate increased, the effect of improving the sedimentation and filterability of silica appeared. However, when the concentration was 4 g / L or more, the effect was significant. Turned out to be.

TiO2、Sb2O3、SnO2、Ga2O3、CdO、Ca3(PO4)2、P2O5、CaF2、PbO2、Pd、PbSO4、PbS、AgO、Ag、Fe2O3、MnO2の各化合物等を浸出液に添加した場合、浸出液に溶解するが、これらの物質は、浸出液に添加され溶解することで、当該浸出液の液性を変化させて沈降性・ろ過速度などを改善していると考えられる。 TiO 2, Sb 2 O 3, SnO 2, Ga 2 O 3, CdO, Ca 3 (PO 4) 2, P 2 O 5, CaF 2, PbO 2, Pd, PbSO 4, PbS, AgO, Ag, Fe 2 When each compound such as O 3 and MnO 2 is added to the leachate, it dissolves in the leachate, but these substances are added to the leachate and dissolved to change the liquidity of the leachate and settling / filtration rate This is considered to be improving.

以上説明した各物質は、当該物質粒子の表面に酸化物が存在することにより、SiO2の種晶になり得るという効果があると考えられる。さらに、当該種晶になり得る効果だけでなく、各物質自身の比重が重いことによるアンカー効果によって、SiO2の沈降性、ろ過性を改善していると考えられる。 Each of the substances described above is considered to have an effect that it can become a seed crystal of SiO 2 due to the presence of an oxide on the surface of the substance particles. Furthermore, it is considered that not only the effect of becoming a seed crystal but also the anchor effect due to the high specific gravity of each substance itself improves the sedimentation and filterability of SiO 2 .

一方、Pbの酸化物を浸出液に添加した場合、PbS、PbSO4、PbOに比較してPbO2であると、SiO2の沈降性、ろ過性を改善に非常に効果があることが判明した。これは、同じPb化合物ではあっても、当該粒子の表面性である酸化物の違いによると考えられる。 On the other hand, when Pb oxide was added to the leachate, it was found that PbO 2 is very effective in improving the sedimentation and filterability of SiO 2 compared to PbS, PbSO 4 , and PbO. This is considered to be due to the difference in oxide which is the surface property of the particles even if they are the same Pb compound.

また、Ca3(PO4)2を浸出液に添加すると、SiO2の沈降性は却って低下したが、ろ過性は非常に良くなった。この原因は詳しいところは不明であるが、当該Ca3(PO4)2と、上記他の種晶となる化合物とを組合わせて使用することで、容易にSiO2の沈降性・ろ過性を改善することが出来る。以上説明した各物質は、浸出液にそれぞれ単独で添加しても効果を発揮するが、上述したCa3(PO4)2を始めとして、他の物質と混合使用することも好ましい構成である。 In addition, when Ca 3 (PO 4 ) 2 was added to the leachate, the sedimentation property of SiO 2 was lowered, but the filterability was very good. The cause of this is unknown in detail, but by using the Ca 3 (PO 4 ) 2 in combination with the other seed crystal compounds, the SiO 2 sedimentation and filterability can be easily achieved. It can be improved. Each of the substances described above is effective even when added alone to the leachate. However, it is also preferable to use a mixture with other substances such as Ca 3 (PO 4 ) 2 described above.

ここで、本発明者らは、ビスマス酸化物、チタン酸化物、アンチモン酸化物、錫酸化物、ガリウム酸化物、カドミニウム酸化物、リン酸カルシウム塩、酸化リン、弗化カルシウム、鉛酸化物、硫酸鉛、硫化鉛、パラジウム、銀酸化物、銀、鉄酸化物、マンガン酸化物から選択される1種以上の添加物質において、浸出液の沈降性・ろ過性改善効果を発揮する最小添加量についても検討した。その結果、対象とする亜鉛原料中のSiO2品位が2.3%程度であったとしても、各物質の1種以上が当該浸出液中に0.02g/L(約20ppm)以上存在すれば効果があるが、作業性等の観点から、好ましくは4g/L以上、さらに好ましくは10g/L以上添加すれば良いことが判明した。また、添加する各物質は、当該浸出液中にて小さく分散していることが肝要であるが、純度の観点からは100%の純品である必要はない。 Here, the present inventors are bismuth oxide, titanium oxide, antimony oxide, tin oxide, gallium oxide, cadmium oxide, calcium phosphate, phosphorus oxide, calcium fluoride, lead oxide, lead sulfate, For one or more additive substances selected from lead sulfide, palladium, silver oxide, silver, iron oxide, and manganese oxide, the minimum addition amount that exerts the effect of improving the sedimentation and filterability of the leachate was also examined. As a result, even if the SiO 2 quality in the target zinc raw material is about 2.3%, it is effective if one or more of each substance is present in the leachate in an amount of 0.02 g / L (about 20 ppm) or more. However, from the viewpoint of workability and the like, it has been found that it is preferable to add 4 g / L or more, more preferably 10 g / L or more. In addition, it is important that each substance to be added is dispersed in the leachate, but it is not necessary to be 100% pure from the viewpoint of purity.

一方、本発明者らは、本発明を実施するためのコストを低減するために、ビスマス酸化物および/または銀の供給源として、鉛製錬工程で生成するBi密陀および/または鉛電解スライムに注目した。また、鉛電解スライムとは、鉛の電解精製において陽極に付着したスライムであり、その組成分析例は鉛が2〜20wt%、ビスマスが1〜20wt%、アンチモンが1〜20wt%、この他、金、銀も含まれる。ここで、Bi密陀とは、このスライムを酸化処理して、酸化鉛中にビスマスを濃縮させたものであり、その組成分析例は、鉛が1〜10wt%、ビスマスが50〜90wt%である。従って、Bi密陀および鉛電解スライムとも、多量のビスマス酸化物および銀を含有しており、ビスマス酸化物および/または銀の供給源として好適である。尚、ビスマス酸化物としては、BiO、Bi2O3、および、それらの混合物がある。 On the other hand, in order to reduce the cost for carrying out the present invention, the present inventors have used Bi dense iron and / or lead electrolytic slime produced in the lead smelting process as a source of bismuth oxide and / or silver. I paid attention to. The lead electrolysis slime is a slime attached to the anode in the electrolytic refining of lead, and its compositional analysis example includes 2 to 20 wt% of lead, 1 to 20 wt% of bismuth, 1 to 20 wt% of antimony, Gold and silver are also included. Here, Bi dense rice cake is obtained by oxidizing this slime and concentrating bismuth in lead oxide. The composition analysis example is 1 to 10 wt% of lead and 50 to 90 wt% of bismuth. is there. Therefore, both Bi dense and lead electrolysis slime contain a large amount of bismuth oxide and silver and are suitable as a source of bismuth oxide and / or silver. Bismuth oxides include BiO, Bi 2 O 3 , and mixtures thereof.

そして、本発明者らが検討した結果、Bi密陀や鉛電解スライム中に、ビスマス酸化物または銀が3wt%以上含有されている場合、上記ビスマス酸化物や銀と同様に使用することが出来、Bi密陀であれば4g/L以上、鉛電解スライムであれば1g/L以上を、浸出液に含有させることで、沈降性・ろ過性改善効果を発揮することが判明した。   As a result of the study by the present inventors, when Bi bismuth oxide or silver is contained in 3% by weight or more in Bi dense or lead electrolytic slime, it can be used in the same manner as bismuth oxide or silver. In addition, it was found that by adding 4 g / L or more for Bi dense and 1 g / L or more for lead electrolytic slime to the leachate, the effect of improving sedimentation and filterability is exhibited.

好ましいことには、Bi密陀、鉛電解スライムとも、Bi2O3およびAgよりコストが安いので、これらを用いることにより、原料コストを削減することができる。さらに好ましいことに、浸出液へ該Bi密陀や鉛電解スライムを加えて、SiO2を沈降・ろ過した後、2次侵出工程を経て得られた残査を再び鉛製錬工程へ戻すことが出来る。当該構成を採ることで、原料コストを大きく削減することも出来る。 Preferably, both Bi dense and lead electrolysis slime are cheaper than Bi 2 O 3 and Ag, and the cost of raw materials can be reduced by using these. More preferably, after adding the Bi dense liquid or lead electrolytic slime to the leachate and precipitating and filtering SiO 2 , the residue obtained through the secondary leaching process can be returned to the lead smelting process again. I can do it. By adopting this configuration, the raw material cost can be greatly reduced.

また、以上説明した物質を含む浸出前の前記硫酸酸性溶液のpHは1.5以下とすることが好ましい構成である。これは当該pH1.5以下とすると、浸出液の酸濃度が確保されるため、化学工学でいうところの拡散・物質移動(dC/dt=k・A・(CL−CS)の関係で、時間当たりの濃度変化は、物質移動係数k・抽出面積A(撹拌による接触回数の増加も含まれる)・および濃度差(CL−CS))の効果により、亜鉛原料からの亜鉛が浸出され易くなるためである。この結果、浸出時間を短縮できるため、浸出槽を多く設置する等の工程複雑化を回避でき、亜鉛の浸出率が向上するからである。 In addition, the pH of the sulfuric acid acidic solution before leaching containing the substance described above is preferably 1.5 or less. If the pH is 1.5 or less, the acid concentration of the leachate is ensured. Therefore, in terms of diffusion / mass transfer (dC / dt = k · A · (C L −C S ) in chemical engineering, The change in concentration per hour is due to the leaching of zinc from the zinc raw material due to the effects of mass transfer coefficient k, extraction area A (including the increase in the number of contacts by stirring), and concentration difference (C L -C S ) This is because it becomes easier. As a result, since the leaching time can be shortened, it is possible to avoid complication of processes such as installing many leaching tanks, and the zinc leaching rate is improved.

さらに、以上説明した物質を含む浸出前の前記硫酸酸性溶液を用いて、前記亜鉛原料を浸出する際の時間は、10分間以上行えばSiO2の沈降性・ろ過性を改善することが出来るし、5時間以下であれば処理コストの増加にはつながらないので好ましい構成である。 Furthermore, if the time for leaching the zinc raw material is 10 minutes or longer using the sulfuric acid acid solution before leaching containing the substances described above, the settling / filterability of SiO 2 can be improved. If it is 5 hours or less, it does not lead to an increase in processing cost, which is a preferable configuration.

以下、実施例を参照しながら本発明をより具体的に説明する。ただし、本発明はこれらによって限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by these.

(実施例1)
原料として用いた亜鉛原料の焙焼物の組成を表1に示し、浸出液として用いた電解尾液の液体部分および脱鉄后液の組成を表2に示す。

Figure 2006257540
Figure 2006257540
電解尾液の液体部分440g、脱鉄后液272gを混合したものを浸出液とし、ビーカーにセットして温度を60℃に加温した。この時、当該浸出液のpHは、おおむね0.0を示し、ORP(Ag/AgCl電極)は、1150mVであった。 Example 1
The composition of the roasted zinc raw material used as the raw material is shown in Table 1, and the liquid part of the electrolytic tail solution used as the leaching solution and the composition of the iron free solution are shown in Table 2.
Figure 2006257540
Figure 2006257540
A mixture obtained by mixing 440 g of the liquid portion of the electrolytic tail solution and 272 g of the post-deironation solution was used as a leachate, which was set in a beaker and heated to 60 ° C. At this time, the pH of the leachate was approximately 0.0, and the ORP (Ag / AgCl electrode) was 1150 mV.

次に、添加物質として、PbS、PbSO4、PbO、PbO2、AgO、Ag粉、ヘマタイト、Mn澱物、Bi2O3、TiO2、Sb2O3、SnO2、Ga2O3、CdO、Pd粉、Ca3(PO4)2、P2O5、CaF2を準備した。
ここで、AgO、Ag粉は、同和ハイテック(株)製のAgO(粒径約10ミクロン)、Ag粉(粒径約1ミクロン)、Pb・Ag残渣を準備した。
ヘマタイトは、上述した亜鉛製錬工程の脱鉄工程で発生するヘマタイト(純度90%以上)を乾燥し解砕したものを準備した。
Mn澱物は、上述した亜鉛錬工程の電解工程でアノードに付着する澱物を採集し、乾燥・解砕して準備した。
Pb・Ag残渣は、上述した亜鉛製錬工程における亜鉛残査を2次浸出して採取されたものを乾燥・解砕して調整し準備した。
Pd粉は、小坂製錬(株)製のPd粉体(粒径約100ミクロン)を準備した。
その他の添加物は、市販の試薬を準備した。
Next, PbS, PbSO 4 , PbO, PbO 2 , AgO, Ag powder, hematite, Mn starch, Bi 2 O 3 , TiO 2 , Sb 2 O 3 , SnO 2 , Ga 2 O 3 , CdO , Pd powder, Ca 3 (PO 4 ) 2 , P 2 O 5 and CaF 2 were prepared.
Here, for AgO and Ag powder, AgO (particle size: about 10 microns), Ag powder (particle size: about 1 micron), and Pb / Ag residue made by Dowa Hightech Co., Ltd. were prepared.
Hematite was prepared by drying and crushing hematite (purity 90% or more) generated in the iron removal process of the zinc smelting process described above.
Mn starch was prepared by collecting starch adhering to the anode in the electrolysis step of the zinc smelting step described above, drying and crushing.
Pb / Ag residue was prepared by drying and crushing what was collected by secondary leaching of the zinc residue in the zinc smelting process described above.
As the Pd powder, Pd powder (particle size: about 100 microns) manufactured by Kosaka Smelting Co., Ltd. was prepared.
As other additives, commercially available reagents were prepared.

各添加物質を各々6.6g計量し、焼鉱添加に先立って、各々を前記浸出液へ添加し5分間撹拌した。尚、撹拌速度は300rpmである。この攪拌後の浸出液の液温、pH、ORPを測定し、さらに0.2ミクロンのフィルターでろ過し、液中の金属元素の分析を行った。その結果を表3に示す。

Figure 2006257540
6.6 g of each additive material was weighed and each was added to the leachate and stirred for 5 minutes prior to the addition of the sinter. The stirring speed is 300 rpm. The liquid temperature, pH, and ORP of the leachate after stirring were measured, and further filtered through a 0.2 micron filter to analyze the metal elements in the liquid. The results are shown in Table 3.
Figure 2006257540

次に、亜鉛原料の焙焼物を132gずつ計量し、各々の添加物質が添加された浸出液中に一気に投入した。浸出液の液温は直ちに80℃以上にまで上昇し、5分後のpHは4.0から4.2となった。焙焼物添加後の浸出液のpHを4.2に保持する為、若干量の浸出液を添加して調整し、加温しながら30分撹拌を継続し、亜鉛原料の焙焼物を浸出した。尚、当該浸出の際、浸出液の温度は80℃に制御した。このとき浸出液のpHは4.1〜4.2、ORPは170〜620mVであった。   Next, 132 g of the roasted zinc raw material was weighed and poured all at once into the leachate to which each additive substance was added. The temperature of the leachate immediately rose to 80 ° C. or higher, and the pH after 5 minutes was changed from 4.0 to 4.2. In order to maintain the pH of the leachate after the addition of the roasted product at 4.2, a slight amount of the leachate was added and adjusted, and stirring was continued for 30 minutes while heating to leach the roasted zinc raw material. During the leaching, the temperature of the leachate was controlled at 80 ° C. At this time, the pH of the leachate was 4.1 to 4.2, and the ORP was 170 to 620 mV.

浸出完了後、浸出液の液温、pH、ORPを測定し、さらに0.2ミクロンのフィルターでろ過し、金属元素の分析を行った。その結果を表4に示す。

Figure 2006257540
After completion of the leaching, the temperature, pH, and ORP of the leaching solution were measured, and further filtered with a 0.2 micron filter to analyze the metal elements. The results are shown in Table 4.
Figure 2006257540

また、浸出完了後の浸出液からのSiO2等の沈降性評価を行うため、各々の浸出液へ凝集剤として三洋化成(株)製のサンポリーA511を15ppm添加した。具体的には、サンポリー1gを1Lの純水に希釈し、当該希釈液を内容量9mlの注射器で計量して添加した。凝集剤の添加後、さらに10秒間手撹拌した後、当該浸出液を1Lのメスシリンダーに移して30分間の沈降性を評価した。当該評価は目視とストップウォッチとでおこなった。この沈降性評価結果の一覧を表5に示し、併せて、時間毎の当該沈降性評価結果を図2に縦軸を沈降距離、横軸を時間としたグラフで示し、1分間後の沈降性評価結果を棒グラフで図3に示し、同様に30分間後の沈降性評価結果を図4に示した。

Figure 2006257540
Further, in order to evaluate the sedimentation properties of SiO 2 and the like from the leachate after completion of leaching, 15 ppm of Sanyo Kasei Co., Ltd. Sanpoly A511 was added as a flocculant to each leachate. Specifically, 1 g of Sunpoly was diluted in 1 L of pure water, and the diluted solution was measured and added with a syringe having an internal volume of 9 ml. After adding the flocculant, the mixture was further stirred manually for 10 seconds, and then the leachate was transferred to a 1 L graduated cylinder to evaluate the sedimentation property for 30 minutes. The evaluation was made visually and with a stopwatch. A list of the sedimentation evaluation results is shown in Table 5. In addition, the sedimentation evaluation results for each time are shown in FIG. 2 as a graph with the sedimentation distance on the vertical axis and the time on the horizontal axis. The evaluation results are shown in FIG. 3 as a bar graph, and similarly, the sedimentation evaluation results after 30 minutes are shown in FIG.
Figure 2006257540

ここで、1分間後の沈降性評価結果より、1次浸出後の固液分離工程における固形分の沈降速度の速さを評価することができる。また、30分間後の沈降性評価結果より、後工程におけるのスラリー密度の評価を行うことが出来る。即ち、後工程におけるアンダーフローのスラリーは、フィルタープレス等により固液分離され、得られた固形分は、2次浸出工程で処理される。このとき30分間後の沈降性評価結果が小さいと、当該スラリー密度が低くなり、フィルタープレス等にかけられるスラリーのケーキ密度も低くなるという相関がある。当該ケーキ密度が低いとフィルタープレス等の開板作業が増え、生産性が低下するという問題が生じる。また、30分間後の沈降性評価結果が小さいと、ろ過速度も遅くなる傾向があり、これも生産性低下という問題を生じる。   Here, from the sedimentation evaluation result after 1 minute, it is possible to evaluate the speed of sedimentation speed of the solid content in the solid-liquid separation step after the primary leaching. Moreover, the slurry density in a post process can be evaluated from the sedimentation evaluation result after 30 minutes. That is, the underflow slurry in the subsequent process is subjected to solid-liquid separation by a filter press or the like, and the obtained solid content is processed in the secondary leaching process. At this time, if the sedimentation evaluation result after 30 minutes is small, there is a correlation that the slurry density is low and the cake density of the slurry applied to the filter press and the like is also low. When the cake density is low, there is a problem that the plate opening work such as a filter press increases and the productivity is lowered. Moreover, if the sedimentation evaluation result after 30 minutes is small, the filtration rate tends to be slow, which also causes the problem of reduced productivity.

前記30分間の評価後、メスシリンダー内に沈降したスラリーを、116mm直径、3ミクロンPTFEろ紙が設置された加圧ろ過器に入れて4kgf/cm2で加圧ろ過し、全量排出となる時間を計測してろ過速度を測定し、各スラリーのろ過性評価をおこなった。このろ過性評価結果の一覧を表5に示し、併せて、各添加物質毎のろ過速度を図5に棒グラフで示した。この時、浸出液は若干冷めており、液温は60℃から45℃となっていた。 After the 30-minute evaluation, the slurry settled in the graduated cylinder was placed in a pressure filter equipped with a 116 mm diameter, 3 micron PTFE filter paper and pressure filtered at 4 kgf / cm 2 to allow time for total discharge. Measurement was performed to measure the filtration rate, and the filterability of each slurry was evaluated. A list of the filterability evaluation results is shown in Table 5, and the filtration rate for each additive substance is shown in a bar graph in FIG. At this time, the leachate was slightly cooled, and the temperature of the solution was 60 ° C to 45 ° C.

(比較例1)
原料、浸出液は、実施例1と同様のものを用いるが、浸出液へ添加物質を加えることなく実施例1と同様の操作をおこなった。
まず、各添加物質を添加しない浸出液の液温を60℃とし、pH、ORPを測定し、さらに0.2ミクロンのフィルターでろ過し、金属元素の分析を行った。その結果も表3に示す。
(Comparative Example 1)
The raw materials and the leachate used were the same as in Example 1, but the same operation as in Example 1 was performed without adding any additional substances to the leachate.
First, the temperature of the leachate to which each additive substance was not added was set to 60 ° C., pH and ORP were measured, and further filtered through a 0.2 micron filter to analyze metal elements. The results are also shown in Table 3.

次に、亜鉛原料の焙焼物を132g計量し、浸出液中に一気に投入した。浸出液の液温は直ちに約80℃にまで上昇し、5分後のpHは4.1となった。その結果も表4に示す。焙焼物添加後の浸出液のpHを4.2に保持する為、若干量の浸出液を添加して調整し、加温しながら30分撹拌を継続し、亜鉛原料の焙焼物を浸出した。尚、当該浸出中の時、温度は80℃に制御した。   Next, 132 g of the roasted zinc raw material was weighed and poured all at once into the leachate. The temperature of the leachate immediately increased to about 80 ° C., and the pH after 5 minutes was 4.1. The results are also shown in Table 4. In order to maintain the pH of the leachate after the addition of the roasted product at 4.2, a slight amount of the leachate was added and adjusted, and stirring was continued for 30 minutes while heating to leach the roasted zinc raw material. The temperature was controlled at 80 ° C. during the leaching.

浸出完了後、浸出液の液温、pH、ORPを測定し、さらに0.2ミクロンのフィルターでろ過し、金属元素の分析を行った。その結果を表4に示す。
実施例1と同様に浸出液へ凝集剤を15ppm添加し、さらに10秒間手撹拌した後、30分間の沈降性を評価した。この沈降性評価結果の一覧も表5に示し、併せて、当該沈降性評価結果を、図4に縦軸を沈降距離、横軸を時間としたグラフで示し、1分間後の沈降性評価結果を棒グラフで図2に示し、同様に30分間後の沈降性評価結果を図3に示した。
さらに実施例1と同様にスラリーのろ過性評価をおこなった。このろ過性評価結果の一覧も表5に示し、併せて、ろ過速度を図5に棒グラフで示した。この時、浸出液は若干冷めており液温は60℃となっていた。
After completion of the leaching, the temperature, pH, and ORP of the leaching solution were measured, and further filtered with a 0.2 micron filter to analyze the metal elements. The results are shown in Table 4.
In the same manner as in Example 1, 15 ppm of a flocculant was added to the leachate, and the mixture was further stirred by hand for 10 seconds, and then the settling property for 30 minutes was evaluated. A list of the sedimentation evaluation results is also shown in Table 5. In addition, the sedimentation evaluation results are shown in FIG. 4 as a graph with the vertical axis representing the sedimentation distance and the horizontal axis representing time. Is shown by a bar graph in FIG. 2, and similarly, the sedimentation evaluation results after 30 minutes are shown in FIG.
Further, the filterability of the slurry was evaluated in the same manner as in Example 1. The list of the filterability evaluation results is also shown in Table 5, and the filtration rate is shown in a bar graph in FIG. At this time, the leachate was slightly cooled and the liquid temperature was 60 ° C.

(実施例1、比較例1のまとめ)
表3〜5に示した試験結果より、種晶となる各物質を添加する実施例1と、添加しない比較例1とを比較した。すると表3より、いずれの物質を添加した場合であっても、無添加の場合より沈降性またはろ過性の少なくとも一方で向上が見られた。そして、PbO2、AgO、Ag粉、ヘマタイト、Mn澱物、Bi2O3、TiO2、Sb2O3、SnO2、Ga2O3、CdO、Pd、P2O5、CaF2を添加した場合は、無添加の場合より沈降性およびろ過性で向上が見られた。さらに、PbO2、Ag粉、Bi2O3、Ca3(PO4)2、CaF2を添加した場合は、PbAg残渣を添加した場合以上のろ過性改善の効果があることが判明した。
(Summary of Example 1 and Comparative Example 1)
From the test results shown in Tables 3 to 5, Example 1 in which each substance to be a seed crystal was added was compared with Comparative Example 1 in which each substance was not added. Then, from Table 3, even when any substance was added, at least one of sedimentation or filterability was improved as compared with the case where no substance was added. Then, added PbO 2, AgO, Ag powder, hematite, Mn grout material, Bi 2 O 3, TiO 2 , Sb 2 O 3, SnO 2, Ga 2 O 3, CdO, Pd, and P 2 O 5, CaF 2 In this case, the sedimentation and filterability were improved as compared with the case of no addition. Furthermore, it was found that when PbO 2 , Ag powder, Bi 2 O 3 , Ca 3 (PO 4 ) 2 , and CaF 2 were added, the filterability was improved more than when PbAg residue was added.

また、表4の結果より以下のことが考えられた。
前記浸出液にPbO2を添加しても、それほどPb濃度は上がらないが、Mn濃度が下がる。この時、MnがMnO2となって析出しているのが観察される。つまり、PbO2の大半が種晶となっていると推測される。
AgO添加では、ほぼ全量が溶解し、浸出後も溶解したままであった。それにも拘わらず、比較例1と比較して沈降性が改善されているのは、液性の変化によると考えられる。
Ag粉添加では、約半分が溶解したが、pHの上昇と共に析出した為、液中には残っていない。つまりAgは、共沈による効果と種晶としての効果との両方の効果を発現した可能性が考えられる。
ヘマタイト添加では、若干Fe濃度が上昇していることから、一部溶解したと考えられるが、大部分は種晶として残ることで効果を発揮したと考えられる。
Bi2O3添加では、浸出前に、ほぼ全量溶解している。そして、浸出後はBiが液中に存在しないことから、共沈による効果と種晶としての効果との両方の効果を発現した可能性が考えられる。
Sb2O3添加では、一部が溶解し、一部が未溶解であることから共沈による効果と種晶としての効果との両方の効果を発現した可能性が考えられる。
SnO2およびGa2O3添加では、ほとんど未溶解であることから種晶として効果を発揮したと考えられる。
CdO添加では全量が溶解し、pHが上昇しても溶解したままであった。それにも拘わらず、比較例1と比較して沈降性が改善されているのは、液性の変化によると考えられる。
Ca3(PO4)2およびCaF2添加では、亜鉛原料の焙焼物添加前における浸出液のCa濃度が若干上昇していることから、ごく僅かは溶解していると考えられるが、ほとんど未溶解であることから種晶として効果を発揮したと考えられる。
P2O5添加では、P25+3H2O→2H3PO4の反応により、H3PO4となり浸出液に入れると同時に溶解している。
Moreover, the following thing was considered from the result of Table 4.
Even if PbO 2 is added to the leachate, the Pb concentration does not increase so much, but the Mn concentration decreases. At this time, it is observed that Mn is precipitated as MnO 2 . That is, it is estimated that most of PbO 2 is a seed crystal.
With the addition of AgO, almost the entire amount was dissolved and remained dissolved even after leaching. Nevertheless, the improvement in sedimentation compared to Comparative Example 1 is believed to be due to a change in liquidity.
When Ag powder was added, about half was dissolved, but it was deposited with an increase in pH, so it did not remain in the liquid. In other words, it is possible that Ag has developed both the effect of coprecipitation and the effect as a seed crystal.
When hematite is added, the Fe concentration is slightly increased, so it is considered that it has partially dissolved, but most of it is considered that the effect was exhibited by remaining as a seed crystal.
With Bi 2 O 3 addition, almost the entire amount is dissolved before leaching. And since Bi does not exist in the liquid after leaching, it is possible that both the effect of coprecipitation and the effect as a seed crystal have been developed.
When Sb 2 O 3 was added, partly dissolved and partly undissolved, so it is possible that both the effect of coprecipitation and the effect as a seed crystal were expressed.
The addition of SnO 2 and Ga 2 O 3 is considered to be effective as a seed crystal because it is almost undissolved.
When CdO was added, the entire amount was dissolved and remained dissolved even when the pH increased. Nevertheless, the improvement in sedimentation compared to Comparative Example 1 is believed to be due to a change in liquidity.
With the addition of Ca 3 (PO 4 ) 2 and CaF 2 , the Ca concentration in the leachate before the addition of the roasted zinc raw material was slightly increased. It is thought that the effect was demonstrated as a seed crystal.
The P 2 O 5 addition, the reaction of P 2 O 5 + 3H 2 O → 2H 3 PO 4, are dissolved at the same time taking into H 3 PO 4 next leachate.

(実施例2)
原料として、実施例1で説明したものと同様の亜鉛原料の焙焼物、浸出液として電解尾液の液体部分および脱鉄后液を準備した。実施例1と同様に、電解尾液の液体部分440g、脱鉄后液272gを混合したものを浸出液とした。
(Example 2)
As raw materials, a roasted zinc raw material similar to that described in Example 1, a liquid portion of an electrolytic tail solution and a post-iron removal solution were prepared as a leachate. In the same manner as in Example 1, a mixture of 440 g of the liquid portion of the electrolytic tail solution and 272 g of the post-deironation solution was used as the leachate.

市販のBi2O3を準備し、これを前記浸出液へ添加し5分間撹拌して、Bi2O3濃度が0g/L(0wt%)、1g/L(0.5wt%)、2g/L(1wt%)、4g/L(2wt%)、8g/L(4wt%)の各試料を調製した。尚、撹拌速度は300rpmである。 Commercially available Bi 2 O 3 was prepared, added to the leachate and stirred for 5 minutes, and the Bi 2 O 3 concentration was 0 g / L (0 wt%), 1 g / L (0.5 wt%), 2 g / L. (1 wt%), 4 g / L (2 wt%), and 8 g / L (4 wt%) samples were prepared. The stirring speed is 300 rpm.

次に、亜鉛原料の焙焼物を132gずつ計量し、各試料液中に一気に投入したのち、実施例1と同様の処理を行い、浸出完了後、pH、ORPを測定し、さらに0.2ミクロンのフィルターでろ過し、金属元素の分析を行った。その結果を表6に示す。   Next, weighed 132 g of the zinc raw material and put it into each sample solution at once, followed by the same treatment as in Example 1. After leaching was completed, pH and ORP were measured, and a 0.2 micron filter was added. The metal element was analyzed by filtration. The results are shown in Table 6.

Figure 2006257540
Figure 2006257540

また、実施例1と同様に浸出完了後の浸出液からのSiO2等の沈降性評価を行った。該沈降性評価結果を時間毎の沈降性評価結果として、縦軸を沈降距離、横軸を時間としたグラフを用いて図6に示す。さらに、ろ過速度を図7に示す。尚、図7において縦軸はろ過速度、横軸はBi2O3の添加量である。 Further, in the same manner as in Example 1, the sedimentation properties of SiO 2 and the like from the leachate after completion of leaching were evaluated. The sedimentation evaluation result is shown in FIG. 6 using a graph in which the vertical axis represents the sedimentation distance and the horizontal axis represents time, with the sedimentation evaluation result for each hour. Furthermore, the filtration rate is shown in FIG. In FIG. 7, the vertical axis represents the filtration rate, and the horizontal axis represents the amount of Bi 2 O 3 added.

図6、図7の結果より、Bi2O3の浸出液へ添加により、沈降距離およびろ過速度とも向上していることが判明した。そして、この添加効果は、Bi2O3の添加量が4g/L(2wt%)以上となると顕著になった。 From the results shown in FIGS. 6 and 7, it was found that both the sedimentation distance and the filtration rate were improved by adding Bi 2 O 3 to the leachate. Then, the effect of addition, the addition amount of Bi 2 O 3 becomes remarkable when a 4g / L (2wt%) or more.

(実施例3)
実施例1、2と同様に浸出液を準備した。実施例2で説明したBi2O3に加えて、市販のAg、鉛製錬工程から採取したBi密陀、およびPb電解スライムを準備した。これらを前記浸出液へ10g/L(5wt%)添加し、各試料を調製した。尚、撹拌速度は300rpmである。
尚、該Bi密陀、およびPb電解スライムの分析結果を表7に示す。表8より、該Bi密陀、およびPb電解スライムとも、3wt%以上のBiおよびAgを含有していることが判明した。
(Example 3)
A leachate was prepared in the same manner as in Examples 1 and 2. In addition to Bi 2 O 3 described in Example 2, commercially available Ag, Bi dense iron taken from the lead smelting process, and Pb electrolytic slime were prepared. Each sample was prepared by adding 10 g / L (5 wt%) of these to the leachate. The stirring speed is 300 rpm.
Table 7 shows the analysis results of the Bi dense and Pb electrolytic slime. From Table 8, it was found that both the Bi dense shell and the Pb electrolytic slime contained 3 wt% or more of Bi and Ag.

Figure 2006257540
Figure 2006257540

次に、実施例12と同様に、亜鉛原料の焙焼物を計量し、各試料液中に一気に投入したのち、実施例1、2と同様の処理を行い、浸出完了後、pH、ORPを測定し、さらに0.2ミクロンのフィルターでろ過し、金属元素の分析を行った。その結果を表8に示す。   Next, in the same manner as in Example 12, the zinc raw material was weighed and poured into each sample solution at once, and then the same treatment as in Examples 1 and 2 was performed. After leaching was completed, pH and ORP were measured. Further, the metal element was analyzed by filtering through a 0.2 micron filter. The results are shown in Table 8.

Figure 2006257540
Figure 2006257540

また、実施例1、2と同様に浸出完了後の浸出液からのSiO2等の沈降性評価を行った。該沈降性評価結果を時間毎の沈降性評価結果として、縦軸を沈降距離、横軸を時間としたグラフを用いて図8に示す。さらに、各試料のろ過速度を図9に、沈降性試験結果(2分間後)を図10に、沈降性試験結果(30分間後)を図11に示す。 In addition, as in Examples 1 and 2 , the sedimentation properties of SiO 2 and the like from the leachate after completion of leaching were evaluated. FIG. 8 shows a graph using the sedimentation evaluation result as the sedimentation evaluation result for each hour, with the vertical axis representing the sedimentation distance and the horizontal axis representing the time. Further, the filtration rate of each sample is shown in FIG. 9, the sedimentation test result (after 2 minutes) is shown in FIG. 10, and the sedimentation test result (after 30 minutes) is shown in FIG.

図8〜図11の結果より、Bi密陀、およびPb電解スライムの浸出液へ添加により、沈降距離およびろ過速度とも、顕著に向上していることが判明した。そして、この添加効果は、同量のBi2O3および銀の添加効果に勝ることも判明した。 From the results of FIGS. 8 to 11, it was found that the sedimentation distance and the filtration rate were remarkably improved by the addition of Bi dense cake and Pb electrolytic slime to the leachate. This addition effect was also found to be superior to that of the same amount of Bi 2 O 3 and silver.

本発明の実施の形態に係る亜鉛原料の処理フロー例である。It is an example of the processing flow of the zinc raw material which concerns on embodiment of this invention. 本発明の実施例1および比較例に係る各添加物質を添加したときの時間毎の沈降性評価結果を示すグラフである。It is a graph which shows the sedimentation evaluation result for every time when each additive substance which concerns on Example 1 of this invention and a comparative example is added. 本発明の実施例1および比較例に係る各添加物質を添加したときの1分間後の沈降性評価結果示した棒グラフである。It is the bar graph which showed the sedimentation evaluation result after 1 minute when each additive substance which concerns on Example 1 of this invention and a comparative example was added. 本発明の実施例1および比較例に係る各添加物質を添加したときの30分間後の沈降性評価結果示した棒グラフである。It is the bar graph which showed the sedimentation evaluation result after 30 minutes when each additive substance which concerns on Example 1 of this invention and a comparative example was added. 本発明の実施例1および比較例に係る各添加物質を添加したときのろ過性評価結果を示す棒グラフである。It is a bar graph which shows the filterability evaluation result when each additive substance which concerns on Example 1 and a comparative example of this invention is added. 本発明の実施例2に係るBi23を添加したときの時間毎の沈降性評価結果を示すグラフである。Is a graph showing the sedimentation property evaluation results of each time upon addition of Bi 2 O 3 according to the second embodiment of the present invention. 本発明の実施例2に係るBi23を添加したときのろ過速度を示すグラフである。It is a graph showing the filtration rate when adding a Bi 2 O 3 according to the second embodiment of the present invention. 本発明の実施例3に係る各添加物質を添加したときの時間毎の沈降性評価結果を示すグラフである。It is a graph which shows the sedimentation evaluation result for every time when each additive substance which concerns on Example 3 of this invention is added. 本発明の実施例3に係る各添加物質を添加したときのろ過速度を示す棒グラフである。It is a bar graph which shows the filtration rate when each additive substance which concerns on Example 3 of this invention is added. 本発明の実施例3に係る各添加物質を添加したときの2分間後の沈降性評価結果示した棒グラフである。It is the bar graph which showed the sedimentation evaluation result after 2 minutes when each additive substance which concerns on Example 3 of this invention was added. 本発明の実施例3に係る各添加物質を添加したときの30分間後の沈降性評価結果示した棒グラフである。It is the bar graph which showed the sedimentation evaluation result after 30 minutes when each additive substance which concerns on Example 3 of this invention was added.

Claims (10)

亜鉛原料から亜鉛を抽出する湿式亜鉛製錬工程において、
焙焼した亜鉛原料を硫酸酸性溶液を用いて浸出する際、ビスマス酸化物、チタン酸化物、アンチモン酸化物、錫酸化物、ガリウム酸化物、カドミニウム酸化物、リン酸カルシウム塩、酸化リン、弗化カルシウム、鉛酸化物、硫酸鉛、硫化鉛、パラジウム、銀酸化物、銀、鉄酸化物、マンガン酸化物から選択される1種以上の添加物質が添加された硫酸酸性溶液を用いて、浸出をおこなうことを特徴とする亜鉛原料の処理方法。
In the wet zinc smelting process to extract zinc from zinc raw materials,
When leaching the roasted zinc raw material using sulfuric acid acidic solution, bismuth oxide, titanium oxide, antimony oxide, tin oxide, gallium oxide, cadmium oxide, calcium phosphate salt, phosphorus oxide, calcium fluoride, Leaching using an acidic sulfuric acid solution with at least one additive selected from lead oxide, lead sulfate, lead sulfide, palladium, silver oxide, silver, iron oxide, and manganese oxide A method for processing a zinc raw material.
前記鉄酸化物として、前記湿式亜鉛製錬工程から産出するヘマタイトを用いることを特徴とする請求項1に記載の亜鉛原料の処理方法。 The method for treating a zinc raw material according to claim 1, wherein hematite produced from the wet zinc smelting step is used as the iron oxide . 前記マンガン酸化物として、前記湿式亜鉛製錬工程から産出するMn澱物を用いることを特徴とする請求項1に記載の亜鉛原料の処理方法。 The method for treating a zinc raw material according to claim 1, wherein Mn starch produced from the wet zinc smelting step is used as the manganese oxide . 前記ビスマス酸化物および/またはとして、
鉛製錬工程から産出され、BiまたはAgを3wt%以上含有する、Bi密陀および/または鉛電解スライムを用いることを特徴とする請求項1または2に記載の亜鉛原料の処理方法。
As the bismuth oxide and / or silver ,
The zinc raw material treatment method according to claim 1 or 2, wherein Bi dense iron and / or lead electrolytic slime produced from a lead smelting step and containing 3 wt% or more of Bi or Ag is used.
前記添加物質の1種以上が添加され、当該添加物質を0.02g/L以上含有する硫酸酸性溶液を用いることを特徴とする請求項1から4のいずれかに記載の亜鉛原料の処理方法。   5. The method for treating a zinc raw material according to claim 1, wherein one or more of the additive substances are added and a sulfuric acid acidic solution containing 0.02 g / L or more of the additive substance is used. 前記添加物質としてBi2O3を用い、前記硫酸酸性溶液中に4g/L以上添加することを特徴とする請求項1に記載の亜鉛原料の処理方法。 2. The method for treating a zinc raw material according to claim 1, wherein Bi 2 O 3 is used as the additive substance and 4 g / L or more is added to the sulfuric acid acidic solution. 前記添加物質として鉛製錬工程から産出するBi密陀を用い、前記硫酸酸性溶液中に4g/L以上添加することを特徴とする請求項1に記載の亜鉛原料の処理方法。   2. The zinc raw material treatment method according to claim 1, wherein Bi additive from the lead smelting process is used as the additive substance, and 4 g / L or more is added to the sulfuric acid acidic solution. 前記添加物質として鉛製錬工程から産出する鉛電解スライムを用い、前記硫酸酸性溶液中に1g/L以上添加することを特徴とする請求項1に記載の亜鉛原料の処理方法。   2. The method for treating a zinc raw material according to claim 1, wherein 1 g / L or more is added to the sulfuric acid acidic solution using lead electrolytic slime produced from a lead smelting step as the additive substance. 前記浸出前の前記硫酸酸性溶液のpHを、1.5以下とすることを特徴とする請求項1から8のいずれかに記載の亜鉛原料の処理方法。   The zinc raw material treatment method according to any one of claims 1 to 8, wherein a pH of the sulfuric acid acidic solution before the leaching is set to 1.5 or less. 前記亜鉛原料を浸出する時間を、10分間以上5時間以下とすることを特徴とする請求項1から9のいずれかに記載の亜鉛原料の処理方法。   The method for treating a zinc raw material according to any one of claims 1 to 9, wherein a time for leaching the zinc raw material is 10 minutes to 5 hours.
JP2005164799A 2005-02-16 2005-06-03 Zinc raw material processing method Expired - Fee Related JP4635231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005164799A JP4635231B2 (en) 2005-02-16 2005-06-03 Zinc raw material processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005039072 2005-02-16
JP2005164799A JP4635231B2 (en) 2005-02-16 2005-06-03 Zinc raw material processing method

Publications (2)

Publication Number Publication Date
JP2006257540A true JP2006257540A (en) 2006-09-28
JP4635231B2 JP4635231B2 (en) 2011-02-23

Family

ID=37097116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005164799A Expired - Fee Related JP4635231B2 (en) 2005-02-16 2005-06-03 Zinc raw material processing method

Country Status (1)

Country Link
JP (1) JP4635231B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038963A1 (en) * 2007-09-19 2009-03-26 Freeport-Mcmoran Corporation Silica removal from pregnant leach solutions
CN115612860A (en) * 2022-10-26 2023-01-17 云南驰宏资源综合利用有限公司 Leaching method of high-silicon zinc roasted ore
WO2023234562A1 (en) * 2022-11-03 2023-12-07 고려아연 주식회사 Method for removing chlorine in zinc hydrometallurgy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212304A (en) * 1993-01-19 1994-08-02 Akita Seiren Kk Method for smelting zinc
JP2001214224A (en) * 2000-01-31 2001-08-07 Dowa Mining Co Ltd Method for leaching zinc concentrate
JP2002053310A (en) * 2000-08-08 2002-02-19 Dowa Mining Co Ltd Method for recovering sulfur from mineral

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212304A (en) * 1993-01-19 1994-08-02 Akita Seiren Kk Method for smelting zinc
JP2001214224A (en) * 2000-01-31 2001-08-07 Dowa Mining Co Ltd Method for leaching zinc concentrate
JP2002053310A (en) * 2000-08-08 2002-02-19 Dowa Mining Co Ltd Method for recovering sulfur from mineral

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038963A1 (en) * 2007-09-19 2009-03-26 Freeport-Mcmoran Corporation Silica removal from pregnant leach solutions
US7691347B2 (en) 2007-09-19 2010-04-06 Freeport-Mcmoran Corporation Silica removal from pregnant leach solutions
US8506673B2 (en) 2007-09-19 2013-08-13 Freeport-Mcmoran Corporation Silica removal from pregnant leach solutions
CN115612860A (en) * 2022-10-26 2023-01-17 云南驰宏资源综合利用有限公司 Leaching method of high-silicon zinc roasted ore
CN115612860B (en) * 2022-10-26 2023-09-19 云南驰宏资源综合利用有限公司 Leaching method of high-silicon zinc roasted ore
WO2023234562A1 (en) * 2022-11-03 2023-12-07 고려아연 주식회사 Method for removing chlorine in zinc hydrometallurgy

Also Published As

Publication number Publication date
JP4635231B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP3999805B1 (en) Arsenic-containing solution processing method
JP4846677B2 (en) Arsenic-containing solution processing method
JPH10503552A (en) Chemical value recovery method from industrial waste
JP6077624B2 (en) Method for treating zinc sulfate containing solution
JP5439997B2 (en) Method for recovering copper from copper-containing iron
JP3802046B1 (en) Method for processing heavy metal-containing powder
CN103781923A (en) Process for purifying zinc oxide
JP2013155432A (en) Recovery method of bismuth
JP2006265592A (en) Wet treatment method for zinc leaching residue
JP2009179841A (en) Method for treating molten fly ash
JP6193603B2 (en) Method for producing scorodite from non-ferrous smelting ash
JP4635231B2 (en) Zinc raw material processing method
JPH10509212A (en) Recovery of metal and chemical value
JP2010138490A (en) Method of recovering zinc
JP4615561B2 (en) Arsenic-containing solution processing method
JP4087433B2 (en) Arsenic-containing solution processing method
US20210292927A1 (en) Method for refining bismuth
JP2008260683A (en) Iron arsenate powder
JP4735943B2 (en) Zinc raw material processing method
JP2007314405A (en) Iron arsenate powder
JP3113307B2 (en) Method for separating and recovering zinc and manganese from waste dry batteries
CN110036123A (en) The method for controlling iron via the formation of magnetic iron ore in hydrometallurgical processes
JP5288778B2 (en) Method for processing heavy metal-containing powder
US20090291307A1 (en) Iron arsenate powder
JP4735947B2 (en) Zinc raw material processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees