JP2006265592A - Wet treatment method for zinc leaching residue - Google Patents

Wet treatment method for zinc leaching residue Download PDF

Info

Publication number
JP2006265592A
JP2006265592A JP2005082916A JP2005082916A JP2006265592A JP 2006265592 A JP2006265592 A JP 2006265592A JP 2005082916 A JP2005082916 A JP 2005082916A JP 2005082916 A JP2005082916 A JP 2005082916A JP 2006265592 A JP2006265592 A JP 2006265592A
Authority
JP
Japan
Prior art keywords
zinc
solid
liquid
leaching residue
leaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005082916A
Other languages
Japanese (ja)
Other versions
JP4765062B2 (en
Inventor
Harunobu Arima
晴信 有馬
Masato Kudo
理人 工藤
Tetsuo Fujita
哲雄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2005082916A priority Critical patent/JP4765062B2/en
Publication of JP2006265592A publication Critical patent/JP2006265592A/en
Application granted granted Critical
Publication of JP4765062B2 publication Critical patent/JP4765062B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wet treatment method for zinc leaching residue by which the amount of copper source substance to be added required for reducing the grade of rare metal such as indium in a solid content mainly including copper and arsenic as copper arsenide is easily determined, and an increase in cost can be suppressed as a result. <P>SOLUTION: The wet treatment method for zinc leaching residue is provided with: a leaching step where zinc leaching residue removed as a solid content by leaching roasted ore and subjecting the zinc leaching residue to solid-liquid separation in zinc hydrometallurgy is leached with acid, and is subjected to solid-liquid separation; a first neutralizing step where the leach liquor obtained by the leaching step is neutralized, and is subjected to solid-liquid separation; an arsenic removing step where the neutralized liquid obtained by the first neutralizing step is subjected to arsenic removal, and is subjected to solid-liquid separation; a second neutralizing step where the liquid obtained by the arsenic removing step is neutralized, and is subjected to solid-liquid separation; and an iron removing step where the neutralized liquid obtained by the second neutralizing step is subjected to iron removal, and is subjected to solid-liquid separation. In the above method, when the neutralized liquid obtained by the first neutralizing step is subjected to arsenic removal, zinc dust and copper ion source substance such as copper sulfate are added to the neutralized liquid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、亜鉛浸出残渣の湿式処理方法に関し、特に、湿式亜鉛製錬の亜鉛浸出工程で分離された亜鉛浸出残渣に残存する亜鉛を回収するために亜鉛浸出残渣から主に鉄をヘマタイトとして除いて亜鉛浸出工程に戻す、亜鉛浸出残渣の湿式処理方法に関する。   The present invention relates to a method for wet treatment of zinc leaching residue, and in particular, iron is mainly removed from the zinc leaching residue as hematite in order to recover zinc remaining in the zinc leaching residue separated in the zinc leaching step of wet zinc smelting. The present invention relates to a wet processing method for zinc leaching residue that is returned to the zinc leaching step.

湿式亜鉛製錬の原料鉱石は、通常1〜12%の鉄を含んでおり、焙焼炉内で鉄分に相当するジンクフェライトを形成する。このジンクフェライトは、通常の焼鉱(焙焼された鉱石)の浸出条件では不溶性であるため、湿式亜鉛製錬において亜鉛を浸出した際に、亜鉛浸出残渣として亜鉛以外の他の成分とともに除かれる。   The raw ore of wet zinc smelting usually contains 1 to 12% iron, and forms zinc ferrite corresponding to iron in a roasting furnace. This zinc ferrite is insoluble under normal leaching (roasted ore) leaching conditions, so when zinc is leached in wet zinc smelting, it is removed together with other components other than zinc as zinc leaching residue .

この亜鉛浸出残渣には、浸出しきれなかった亜鉛や、鉄や有価金属を含む他の様々な元素が混入しているので、亜鉛浸出残渣に残存する亜鉛を回収するために、亜鉛浸出残渣から亜鉛以外の鉄や有価金属を除去して回収した後に、この処理済液を亜鉛製錬の亜鉛浸出工程に戻している。   This zinc leaching residue contains zinc that could not be leached, and various other elements including iron and valuable metals, so in order to recover the zinc remaining in the zinc leaching residue, After removing iron and valuable metals other than zinc and collecting them, the treated liquid is returned to the zinc leaching process of zinc smelting.

このような亜鉛浸出残渣(ジンクフェライト)から亜鉛を回収するために鉄を分離して除去する方法として、従来から、生成鉄残渣の化学名からジャロサイトプロセス、ゲーサイトプロセスおよびヘマタイトプロセスと呼ばれている3つのプロセスが実操業化されている。   As a method of separating and removing iron in order to recover zinc from such zinc leaching residue (zinc ferrite), it has traditionally been called jarosite process, goethite process and hematite process from the chemical name of the iron residue produced The three processes are in practical use.

これらの3つのプロセスのうち、ジャロサイトプロセスおよびゲーサイトプロセスでは、生成した鉄澱物を有効にリサイクルしている例は殆どなく、鉄澱物を廃棄物ではなく有価金属として利用するには、ヘマタイトプロセスが最も適していると考えられる。しかし、従来のヘマタイトプロセスでは、生成するヘマタイト(Fe)中の不純物の量を満足するレベルまで低減することができなかった。 Of these three processes, the jarosite process and the goethite process have few examples of effectively recycling the produced iron starch, and in order to use iron starch as a valuable metal instead of waste, The hematite process is considered the most suitable. However, in the conventional hematite process, the amount of impurities in the generated hematite (Fe 2 O 3 ) could not be reduced to a satisfactory level.

そのため、湿式亜鉛製錬の亜鉛浸出残渣をヘマタイトプロセスにより処理する際に生じるヘマタイト中の不純物の量を低減してヘマタイトを回収することができるとともに、鉄以外の金、銀、銅または鉛などの有価金属も効果的に分離して回収することができる、亜鉛浸出残渣の湿式処理方法が提案されている(例えば、特許文献1参照)。この方法では、湿式亜鉛製錬で焼鉱を浸出して固液分離することにより固形分として除かれた亜鉛浸出残渣に、湿式亜鉛製錬における電解尾液を加えてパルプ状にした後に還元雰囲気で浸出して固液分離し、主成分として鉛と銀を含む固形分と、その他の成分を含む浸出液に分離し(浸出工程)、この浸出液に炭酸カルシウムを加え、浸出液中の遊離硫酸を中和して固液分離し、石膏を主成分とする固形分と、その他の成分を含む中和液に分離し(第1段中和工程)、この中和液に亜鉛末を加えて固液分離し、主に銅および砒素を砒化銅として含む固形分と、その他の成分を含む液に分離し(脱砒工程)、この脱砒工程で砒化銅を分離した後の液に炭酸カルシウムを加えながらpHを上げて固液分離し、アルミニウムを主成分とする固形分と、その他の成分を含む液に分離し(第2段中和工程)、この第2段中和工程でアルミニウムを分離した後の液を、ヘマタイト生成温度領域で鉄を酸化しながら加水分解した後に固形分離し、鉄をヘマタイトとして含む固形分と、亜鉛を含む液に分離(脱鉄工程)した後、この脱砒鉄液を亜鉛製錬の浸出工程に戻している。   Therefore, hematite can be recovered by reducing the amount of impurities in the hematite generated when the zinc leaching residue of wet zinc smelting is processed by the hematite process, and other than iron, such as gold, silver, copper or lead There has been proposed a wet processing method for zinc leaching residue that can effectively separate and recover valuable metals (see, for example, Patent Document 1). In this method, a zinc oxide leaching residue removed by solid liquefaction by leaching sinter with wet zinc smelting is added to an electrolytic tail solution in wet zinc smelting to form a pulp, and then reduced to a reduced atmosphere. Leached and separated into solid and liquid, separated into solids containing lead and silver as main components and leachate containing other components (leaching process), calcium carbonate was added to this leachate, and free sulfuric acid in the leachate was After mixing and solid-liquid separation, it is separated into a solid containing gypsum as a main component and a neutralized liquid containing other components (first neutralization step), and zinc powder is added to this neutralized liquid to obtain a solid-liquid solution. Separated into a liquid containing mainly copper and arsenic as copper arsenide and a liquid containing other components (de-arsenic process). Calcium carbonate is added to the liquid after separating copper arsenide in this de-arsenic process While raising the pH, solid-liquid separation, Separated into a liquid containing other components (second stage neutralization step), the liquid after separating the aluminum in the second stage neutralization step was hydrolyzed while oxidizing iron in the hematite generation temperature region and then solidified After separation and separation into a solid containing iron as hematite and a liquid containing zinc (deironing step), this dearsenic iron solution is returned to the leaching step of zinc smelting.

特開2002−30355号公報(段落番号0006−0012)JP 2002-30355 (paragraph number 0006-0012)

特許文献1に提案された方法では、第1段中和工程で得られた中和液中の銅イオンの量が少な過ぎると、脱砒工程で得られる主に銅および砒素を砒化銅として含む固形分中のインジウム(In)などのレアメタルの品位が高くなり、レアメタルの回収率が低下する。従来、この銅イオン源は、鉱石中の不可避的に存在する銅源物質によって賄うことができたが、近年の鉱石の組成(原料構成)の変化により銅源物質を添加する必要がある場合が生じ、湿式亜鉛製錬の原料鉱石を焙焼する前に銅源物質を添加していた。しかし、銅源物質を添加する必要がないような原料鉱石を使用する場合にも銅源物質を添加することになり、また、銅源物質の添加量を決定することができないために添加量が多過ぎてしまうと、コストが増大する。   In the method proposed in Patent Document 1, when the amount of copper ions in the neutralized solution obtained in the first stage neutralization step is too small, copper and arsenic obtained in the dearsenation step are mainly contained as copper arsenide. The quality of rare metals such as indium (In) in the solid content increases, and the recovery rate of rare metals decreases. Conventionally, this copper ion source could be covered by the unavoidable copper source material in the ore, but it may be necessary to add the copper source material due to changes in the composition of the ore in recent years (raw material composition). The copper source material was added before roasting the raw ore of the wet zinc smelting. However, when using raw ores that do not require the addition of a copper source material, the copper source material will be added, and the addition amount of the copper source material cannot be determined. If it is too much, the cost increases.

したがって、本発明は、このような従来の問題点に鑑み、亜鉛浸出残渣の湿式処理方法の脱砒工程で得られる主に銅および砒素を砒化銅として含む固形分中のインジウム(In)などのレアメタルの品位の低減に必要な銅源物質の添加量を容易に決定してコストの増大を抑えることができる、亜鉛浸出残渣の湿式処理方法を提供することを目的とする。   Therefore, in view of such a conventional problem, the present invention provides indium (In) in a solid content mainly containing copper and arsenic as copper arsenide obtained in the arsenic removal step of the wet processing method of zinc leaching residue. An object of the present invention is to provide a method for wet treatment of zinc leaching residue, which can easily determine the amount of addition of a copper source material necessary for reducing the quality of rare metal and suppress an increase in cost.

本発明者らは、上記課題を解決するために鋭意研究した結果、第1段中和工程で得られた中和液を脱砒する際に、この中和液に亜鉛末の他に銅イオン源物質を添加することにより、亜鉛浸出残渣の湿式処理方法の脱砒工程で得られる主に銅および砒素を砒化銅として含む固形分中のインジウム(In)などのレアメタルの品位の低減に必要な銅源物質の添加量を容易に決定してコストの増大を抑えることができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that when neutralizing the neutralized solution obtained in the first stage neutralization step, copper ions are added to the neutralized solution in addition to zinc powder. Necessary to reduce the quality of rare metals such as indium (In) in solids mainly containing copper and arsenic as copper arsenide obtained in the arsenic removal process of the wet processing method of zinc leaching residue by adding source materials It has been found that the amount of copper source material added can be easily determined to suppress an increase in cost, and the present invention has been completed.

すなわち、本発明による亜鉛浸出残渣の湿式処理方法は、湿式亜鉛製錬で焼鉱を浸出して固液分離することにより固形分として除かれた亜鉛浸出残渣を、酸で浸出して固液分離する浸出工程と、この浸出工程で得られた浸出液を中和して固液分離する第1段中和工程と、この第1段中和工程で得られた中和液を脱砒して固液分離する脱砒工程と、この脱砒工程で得られた液を中和して固液分離する第2段中和工程と、この第2段中和工程で得られた中和液を脱鉄して固液分離する脱鉄工程とを備えた亜鉛浸出残渣の湿式処理方法において、第1段中和工程で得られた中和液を脱砒する際に、この中和液に亜鉛末と硫酸銅などの銅イオン源物質とを添加することを特徴とする。   That is, the method of wet treatment of zinc leaching residue according to the present invention is a method of leaching zinc leaching residue removed by solid liquefaction by leaching sinter with wet zinc smelting and solid-liquid separation by leaching with acid. A leaching step, a first stage neutralization step of neutralizing and separating the leachate obtained in the leaching step, and a neutralization solution obtained in the first step neutralization step to remove arsenic and solidify The arsenic removal step for liquid separation, the second-stage neutralization step for neutralizing the liquid obtained in this arsenic removal step and solid-liquid separation, and the neutralization solution obtained in this second-stage neutralization step are removed. In the wet leaching process of zinc leaching residue comprising a deironing step of iron and solid-liquid separation, when the neutralized solution obtained in the first stage neutralization step is dearsenized, And a copper ion source material such as copper sulfate.

この亜鉛浸出残渣の湿式処理方法において、銅イオン源物質の添加量が、第1段中和工程で得られた中和液を脱砒する反応槽内のAsの濃度に対するCuの濃度の比(Cu/As比)に基づいて決定されるのが好ましく、このCu/As比が1.5以上になるように決定されるのが好ましい。あるいは、銅イオン源物質の添加量が、第1段中和工程で得られた中和液を脱砒する反応槽内の電位に基づいて決定されるのが好ましく、この電位が−320mV以上になるように決定されるのが好ましく、−300mV以上になるように決定されるのがさらに好ましい。   In this zinc leaching residue wet processing method, the amount of the copper ion source material added is the ratio of the Cu concentration to the As concentration in the reaction tank for de-arsenizing the neutralized solution obtained in the first stage neutralization step ( (Cu / As ratio) is preferably determined based on the Cu / As ratio, and the Cu / As ratio is preferably determined to be 1.5 or more. Alternatively, it is preferable that the amount of the copper ion source material added is determined based on the potential in the reaction vessel for removing the neutralized solution obtained in the first stage neutralization step, and this potential is −320 mV or more. It is preferable to be determined, and it is further preferable to be determined to be −300 mV or higher.

また、亜鉛浸出残渣の湿式処理方法において、亜鉛浸出残渣から金、銀、銅、鉄および鉛からなる群から選ばれる少なくとも1種の有価金属を分離して回収するのが好ましい。浸出工程は、湿式亜鉛製錬における電解尾液を亜鉛浸出残渣に加えてパルプ状にした後に還元雰囲気で浸出して固液分離し、主成分として鉛と銀を含む固形分と、その他の成分を含む浸出液に分離する工程であるのが好ましい。第1段中和工程は、浸出工程で得られた浸出液に炭酸カルシウムを加え、浸出液中の遊離硫酸を中和して固液分離し、石膏を主成分とする固形分と、その他の成分を含む液に分離する工程であるのが好ましい。脱砒工程は、第1段中和工程で得られた中和液に亜鉛末と銅イオン源物質を加えて固液分離し、主に銅および砒素を砒化銅として含む固形分と、その他の成分を含む液に分離する工程であるのが好ましい。第2段中和工程は、脱砒工程で砒化銅を分離した後の液に炭酸カルシウムを加えながらpHを上げて固液分離し、アルミニウムを主成分とする固形分と、その他の成分を含む液に分離する工程であるのが好ましい。脱鉄工程は、第2段中和工程でアルミニウムを分離した後の液を、ヘマタイト生成温度領域で鉄を酸化しながら加水分解した後に固形分離し、鉄をヘマタイトとして含む固形分と、亜鉛を含む液に分離する工程であるのが好ましい。また、第2段中和工程と前記脱鉄工程との間に、第2段中和工程で得られた液に亜鉛末を加えて固液分離し、主成分として砒素、カドミウムおよび鉛を含む固形分と、その他の成分を含む液に分離する第2段脱砒工程を備えてもよい。さらに、浸出工程で得られた浸出液中の銅の量を砒素1モルに対して3モル以上とし、この浸出液を脱砒工程において砒素と反応させて砒化銅を形成させるのが好ましい。   In the wet leaching process for zinc leaching residue, it is preferable that at least one valuable metal selected from the group consisting of gold, silver, copper, iron and lead is separated and recovered from the zinc leaching residue. In the leaching process, electrolytic tail liquor in wet zinc smelting is added to the zinc leaching residue to make a pulp, then leached in a reducing atmosphere and solid-liquid separated, solids containing lead and silver as main components, and other components It is preferable that it is the process of isolate | separating into the leaching liquid containing. In the first stage neutralization step, calcium carbonate is added to the leachate obtained in the leaching step, the free sulfuric acid in the leachate is neutralized and solid-liquid separated, and the solid content mainly composed of gypsum and other components are removed. It is preferable that it is the process of isolate | separating into the liquid to contain. In the arsenic removal process, zinc powder and a copper ion source material are added to the neutralized solution obtained in the first stage neutralization process and separated into solid and liquid, and the solid content mainly containing copper and arsenic as copper arsenide is added. It is preferably a step of separating into a liquid containing components. In the second stage neutralization step, the solution after separation of copper arsenide in the dearsenation step is subjected to solid-liquid separation by increasing the pH while adding calcium carbonate, and contains solids mainly composed of aluminum and other components. The step of separating into liquids is preferred. In the iron removal step, the liquid after the separation of aluminum in the second stage neutralization step is hydrolyzed while oxidizing iron in the hematite generation temperature region, and then solid separated, and the solid content containing iron as hematite and zinc are separated. It is preferable that it is the process of isolate | separating into the liquid to contain. In addition, zinc powder is added to the liquid obtained in the second stage neutralization step and solid-liquid separated between the second stage neutralization step and the iron removal step, and arsenic, cadmium and lead are contained as main components. You may provide the 2nd step | paragraph de-arsenic process isolate | separated into the liquid containing solid content and another component. Further, it is preferable that the amount of copper in the leaching solution obtained in the leaching step is 3 mol or more with respect to 1 mol of arsenic, and this leaching solution is reacted with arsenic in the arsenic removing step to form copper arsenide.

本発明によれば、亜鉛浸出残渣の湿式処理方法の脱砒工程で得られる主に銅および砒素を砒化銅として含む固形分中のインジウム(In)などのレアメタルの品位の低減に必要な銅源物質の添加量を容易に決定してコストの増大を抑えることができる。   According to the present invention, the copper source necessary for reducing the quality of rare metals such as indium (In) in the solid content mainly containing copper and arsenic as copper arsenide obtained in the de-arsenic step of the wet processing method of zinc leaching residue An increase in cost can be suppressed by easily determining the amount of substance added.

以下、添付図面を参照して、本発明による亜鉛浸出残渣の湿式処理方法の実施の形態について説明する。   Hereinafter, an embodiment of a wet processing method for a zinc leaching residue according to the present invention will be described with reference to the accompanying drawings.

図1は、本発明による亜鉛浸出残渣の湿式処理方法の実施の形態の工程を概略的に示している。図1に示すように、本発明による亜鉛浸出残渣の湿式処理方法の実施の形態では、湿式亜鉛製錬で焼鉱を浸出して固液分離することにより固形分として除かれた亜鉛浸出残渣に、浸出工程、第1段中和工程、脱砒工程、第2段中和工程および脱鉄工程からなる処理を施した後、脱砒鉄液を亜鉛製錬の浸出工程に戻して使用する。以下、これらの各工程について説明する。   FIG. 1 schematically shows the steps of an embodiment of the wet processing method for zinc leaching residue according to the present invention. As shown in FIG. 1, in the embodiment of the wet processing method of zinc leaching residue according to the present invention, the zinc leaching residue removed by solid liquefaction by leaching the sinter with wet zinc smelting is separated. After the leaching process, the first stage neutralization process, the dearsenation process, the second stage neutralization process and the iron removal process, the dearsenic iron solution is returned to the zinc smelting leaching process for use. Hereinafter, each of these steps will be described.

まず、湿式亜鉛製錬では、鉱石を焙焼して得られた焼鉱を浸出して固液分離(固体(S)と液体(L)に分離)を行って、亜鉛を多く含む浸出液と、鉄、銅、金、銀、鉛などを含む固形分としての亜鉛浸出残渣に分離する。この固液分離により得られた浸出液に浄液処理を施した後、電解工程により亜鉛を回収する。この電解工程により亜鉛が回収された後の液(電解尾液)は、上記の亜鉛製錬の浸出工程および浄液工程に戻されて使用されるとともに、後述する亜鉛浸出残渣の浸出工程にも供給されて再利用される。   First, in wet zinc smelting, the smelted ore obtained by roasting ore is leached and subjected to solid-liquid separation (separated into solid (S) and liquid (L)), and a leachate rich in zinc, Separated into zinc leaching residues as solids containing iron, copper, gold, silver, lead, etc. After subjecting the leachate obtained by this solid-liquid separation to a liquid purification treatment, zinc is recovered by an electrolysis process. The liquid (electrolytic tail liquid) after zinc is recovered by this electrolysis process is used after being returned to the above-described zinc smelting leaching process and liquid cleaning process, and also in the leaching process of zinc leaching residue described later. Supplied and reused.

(1)浸出工程
この浸出工程では、上記の湿式亜鉛製錬で得られる亜鉛浸出残渣に、上記の亜鉛製錬の電解尾液を加えてパルプ状にした後、SOなどによる還元雰囲気で浸出して固液分離し、主成分として鉛と銀を含む固形分と、その他の成分を含む浸出液に分離する。具体的には、湿式亜鉛製錬で得られる亜鉛浸出残渣に、上記の亜鉛製錬の電解尾液を加えて、150〜250g/Lのパルプ状にする。次に、SO分圧0.15〜0.25MPa、温度80℃以上、好ましくは100℃以上で還元浸出を行なう。このSO浸出により以下の脱銅反応が起こる。
ZnS+HSO=ZnSO+H
2ZnS+2HSO+SO=2ZnSO+2HO+3S
CuSO+S+SO+2HO=CuS+2HSO
CuSO+HS=CuS+HSO
(1) Leaching step In this leaching step, the zinc leaching residue obtained by the above-described wet zinc smelting is added to the zinc smelting electrolytic tail liquor to form a pulp, and then leached in a reducing atmosphere such as SO 2. Then, it is separated into a solid and a liquid and separated into a solid containing lead and silver as main components and a leachate containing other components. Specifically, the zinc leaching residue obtained by wet zinc smelting is added with the electrolytic tail liquor of the above zinc smelting to obtain a pulp of 150 to 250 g / L. Next, reductive leaching is performed at an SO 2 partial pressure of 0.15 to 0.25 MPa and a temperature of 80 ° C. or higher, preferably 100 ° C. or higher. This SO 2 leaching causes the following decoppering reaction.
ZnS + H 2 SO 4 = ZnSO 4 + H 2 S
2ZnS + 2H 2 SO 4 + SO 2 = 2ZnSO 4 + 2H 2 O + 3S
CuSO 4 + S + SO 2 + 2H 2 O = CuS + 2H 2 SO 4
CuSO 4 + H 2 S = CuS + H 2 SO 4

この浸出工程では、亜鉛浸出残渣にZnSやSを加えないで、SOなどによる還元雰囲気で浸出する。このようにして浸出することにより、得られる浸出液中の銅の量を砒素1モルに対して3モル以上として、後の脱砒工程において砒素と反応させて砒化銅(CuAs)を形成するのに十分な濃度の銅を確保することができる。これにより、脱砒工程における脱砒がより完全に進むようになり、脱鉄工程で回収される酸化鉄を主とする固形物中の砒素の量をより低減することができる。一方、浸出工程において亜鉛浸出残渣にZnSやSを加えて浸出液中の銅を沈殿させて含銅残渣にすると、後の脱砒工程における脱砒が難しくなり、脱鉄工程で回収される酸化鉄を主とする固形物中の不純物濃度を低減するのが困難になる。 In this leaching step, leaching is performed in a reducing atmosphere such as SO 2 without adding ZnS or S 0 to the zinc leaching residue. By leaching in this manner, the amount of copper in the obtained leachate is set to 3 mol or more with respect to 1 mol of arsenic, and is reacted with arsenic in a subsequent dearsenic process to form copper arsenide (Cu 3 As). Therefore, it is possible to secure a sufficient concentration of copper. As a result, the arsenic removal in the arsenic removal process proceeds more completely, and the amount of arsenic in the solid material mainly composed of iron oxide recovered in the iron removal process can be further reduced. On the other hand, when the copper containing residue to precipitate the copper in the leaching solution by adding ZnS or S 0 to zinc leaching residue in the leaching step, de砒after de砒process becomes difficult, is recovered by removing iron oxidizing step It becomes difficult to reduce the impurity concentration in the solid mainly composed of iron.

次工程に送られる浸出液(L)は、30〜40g/Lの遊離硫酸と、60〜100g/LのZnと、30〜50g/LのFeと、2〜3g/LのCuと、0.5〜1g/LのAsとを含んでいる。一方、分離されて除去される澱物である固形分(S)は、鉛、シリカ、金、銀などの難溶性の塩などを含んでおり、鉛製錬の原料として使用される。   The leachate (L) sent to the next step is 30-40 g / L free sulfuric acid, 60-100 g / L Zn, 30-50 g / L Fe, 2-3 g / L Cu, 5 to 1 g / L As. On the other hand, the solid content (S), which is a starch that is separated and removed, contains hardly soluble salts such as lead, silica, gold, and silver, and is used as a raw material for lead smelting.

(2)第1段中和工程
この第1段中和工程では、上記の浸出工程で得られた浸出液に炭酸カルシウムを加えて、浸出液中の遊離硫酸を中和して固液分離し、石膏を主成分とする固形分と、その他の成分を含む液に分離する。この中和工程は、上記の浸出工程後の浸出液が後の脱鉄工程におけるヘマタイトの生成を著しく阻害する程度の遊離硫酸を含むので、これを中和するために行われる。中和後の遊離硫酸の濃度は3〜10g/Lに調整され、反応後のスラリーを固液分離することによって石膏を得る。鉄の沈殿による石膏の着色などを防止して販売可能な石膏を得るためには、遊離硫酸の濃度が3g/L未満にならない程度に中和するのがよい。
(2) First stage neutralization step In this first stage neutralization step, calcium carbonate is added to the leachate obtained in the above leaching step to neutralize the free sulfuric acid in the leachate for solid-liquid separation, and gypsum. Is separated into a liquid containing a solid content mainly composed of and other components. This neutralization step is performed in order to neutralize the leachate after the above leaching step, since it contains free sulfuric acid to the extent that it significantly inhibits the formation of hematite in the subsequent deironing step. The concentration of free sulfuric acid after neutralization is adjusted to 3 to 10 g / L, and gypsum is obtained by solid-liquid separation of the slurry after the reaction. In order to prevent gypsum coloring due to iron precipitation and obtain gypsum that can be sold, it is preferable to neutralize the free sulfuric acid so that the concentration does not become less than 3 g / L.

(3)脱砒工程
この脱砒工程では、上記の第1段中和工程で得られた中和液に、銀/塩化銀電極で測定しながら−300mVになるように亜鉛末(ZnD(zinc dust))を加えて固液分離し、主に銅および砒素を砒化銅として含む固形分と、その他の成分を含む液に分離する。この脱砒工程では、液中の砒素を完全には取り除かない。砒素を完全に取り除くことを優先すると、カドミウムも沈殿してしまい、このカドミウムを回収することが困難になるからである。
(3) De-arsenic step In this de-arsenic step, the zinc powder (ZnD (zinc) was added to the neutralization solution obtained in the first-stage neutralization step to -300 mV while measuring with a silver / silver chloride electrode. dust)) to separate into solid and liquid and separate into solid containing mainly copper and arsenic as copper arsenide and liquid containing other components. In this arsenic removal step, arsenic in the liquid is not completely removed. If priority is given to removing arsenic completely, cadmium is also precipitated, making it difficult to recover this cadmium.

このように、第1段中和工程で主として石膏を除いた後に、第2段中和工程前に、脱砒工程において砒素を除くことにより、後の脱鉄工程で回収される酸化鉄を主とする固形物中に所定量以上の不純物が含まないようにすることができる。これにより、回収された主成分として酸化鉄を含む固形物を廃棄物とすることなく、セメントの製造原料などとして利用することができる。   In this way, after mainly removing gypsum in the first stage neutralization step and before the second stage neutralization step, arsenic is removed in the dearsenation step, so that iron oxide recovered in the subsequent deironation step is mainly used. It is possible to prevent a predetermined amount or more of impurities from being included in the solid matter. Thereby, it can utilize as a manufacturing raw material of cement, etc., without making the solid substance which contains iron oxide as a collect | recovered main component into a waste material.

また、この脱砒工程では、この脱砒工程で得られる主に銅および砒素を砒化銅として含む固形分中のインジウム(In)などのレアメタルの品位を少なくしてレアメタルの回収率を上げるように、脱砒反応槽に亜鉛末の他に、必要な量の硫酸銅溶液を添加する。この硫酸銅の添加量を決定するため、脱砒反応槽内の電位とCu/As比(Asの濃度に対するCuの濃度の比)との関係と、脱砒反応槽内の電位と脱砒残渣中のインジウムの品位との関係を調べることにより、脱砒反応槽内のCu/As比と脱砒残渣中のインジウムの品位との関係を調べた。これらの結果を図2〜図4に示す。図4からわかるように、脱砒反応槽内のCu/As比を1.5以上に維持することができれば、脱砒残渣中のインジウムの品位の上昇(脱砒工程におけるインジウムの沈殿量の上昇)を抑えて、次工程で回収するインジウムの回収率を上げることができるとともに、酸化鉄(ヘマタイト)中のAsの品位を低位で維持管理することができる。また、図2からわかるように、脱砒反応槽内のCu/As比を1.5以上に維持すると、脱砒反応槽内の電位管理値が−300mV以上(理想的には−200mV前後)で推移し、図3からわかるように、脱砒反応槽内の電位管理値が−300mV以上で推移すると、脱砒残渣中のインジウムの品位の上昇を抑えることができる。これらの結果から、脱砒反応槽内のCu/As比を1.5以上に維持し、あるいは脱砒反応槽内の電位管理値を−300mV以上に維持するように、硫酸銅の添加量を決定すればよいのがわかる。   Also, in this arsenic removal process, the rare metal grade such as indium (In) in the solid content mainly containing copper and arsenic as copper arsenide obtained in this arsenic removal process is reduced to increase the recovery rate of the rare metal. In addition to the zinc powder, a necessary amount of copper sulfate solution is added to the dearsenic reaction tank. In order to determine the amount of copper sulfate added, the relationship between the potential in the dearsenic reaction tank and the Cu / As ratio (ratio of the Cu concentration to the As concentration), the potential in the dearsenic reaction tank and the dearsenic residue The relationship between the indium quality in the dearsenic residue and the Cu / As ratio in the dearsenic reaction tank was investigated by investigating the relationship with the indium quality in the dearsenic. These results are shown in FIGS. As can be seen from FIG. 4, if the Cu / As ratio in the dearsenic reaction tank can be maintained at 1.5 or more, the quality of indium in the dearsenic residue is increased (the amount of indium precipitated in the dearsenic process is increased). ) And the recovery rate of indium recovered in the next step can be increased, and the quality of As in iron oxide (hematite) can be maintained at a low level. Further, as can be seen from FIG. 2, when the Cu / As ratio in the dearsenic reaction tank is maintained at 1.5 or more, the potential control value in the dearsenic reaction tank is −300 mV or more (ideally around −200 mV). As can be seen from FIG. 3, when the potential control value in the dearsenic reaction tank is changed to −300 mV or more, an increase in the quality of indium in the dearsenic residue can be suppressed. From these results, the amount of copper sulfate added was adjusted so that the Cu / As ratio in the dearsenic reaction tank was maintained at 1.5 or higher, or the potential control value in the dearsenic reaction tank was maintained at -300 mV or higher. You can see that it should be decided.

なお、ここで添加する硫酸銅としては、銅と鉛の製錬において鉄スクラップを使用して銅を沈殿させることにより得られる沈殿銅または清浄銅残渣を湿式亜鉛製錬の電解尾液で浸出することによって製造することができる。但し、銅のままでは浸出されないので、亜鉛の電解採取工程からのMn澱物を含む澱物スラリーを浸出槽に加えるのが好ましい。マンガンは、不純物浄液や亜鉛の電解採取などにおいて必要な元素であり、繰返し浸出される。このように、亜鉛製錬の物量のバランス内でマンガンを利用して銅を浸出し、脱砒残渣中のインジウムの品位を低下させ、また、マンガンも浸出されるので、系内のマンガンのバランスも正常に保つことができる。   In addition, as copper sulfate to be added here, precipitated copper or clean copper residue obtained by precipitation of copper using iron scrap in copper and lead smelting is leached with electrolytic tail liquor of wet zinc smelting. Can be manufactured. However, since it is not leached as it is with copper, it is preferable to add a starch slurry containing Mn starch from the zinc electrowinning step to the leaching tank. Manganese is an element necessary for impurity purification and zinc electrowinning, and is repeatedly leached. In this way, copper is leached using manganese within the balance of the quantity of zinc smelting, degrading the quality of indium in the dearsenic residue, and manganese is also leached, so the balance of manganese in the system Can also keep normal.

この脱砒工程により、液中のCuの濃度が2g/Lから5mg/Lまで低減し、Asの濃度が750mg/Lから15mg/Lまで低減する。液中から除去された砒化銅は、銅製錬に送られる。この銅製錬では、通常、銅および砒素を含有する溶液から銅のみを分離した後に、砒素を砒酸鉄として固定化するプロセスが採用されている。砒化銅は、酸化雰囲気下で容易に溶解することができるため、このプロセスで簡単に処理することができる。このプロセスによる銅の回収率は、浸出工程または後の工程として脱銅工程を備えた従来のヘマタイトプロセスによる回収率と比較しても何ら遜色はない。   By this dearsenation step, the concentration of Cu in the liquid is reduced from 2 g / L to 5 mg / L, and the concentration of As is reduced from 750 mg / L to 15 mg / L. The copper arsenide removed from the liquid is sent to copper smelting. In this copper smelting, a process is generally employed in which only copper is separated from a solution containing copper and arsenic, and then arsenic is immobilized as iron arsenate. Copper arsenide can be easily dissolved in this process because it can be easily dissolved in an oxidizing atmosphere. The copper recovery rate by this process is comparable to the recovery rate by the conventional hematite process with a leaching step or a copper removal step as a subsequent step.

(4)第2段中和工程
この第2段中和工程では、上記の脱砒工程で砒化銅を分離した後の液に炭酸カルシウムを加えながらpHを4〜4.6に上げて固液分離し、アルミニウムを主成分とする固形分と、その他の成分を含む液に分離する。アルミニウムもヘマタイトの生成の阻害因子の一つであるので除去する。pHを4〜4.6にするのは、pH4未満ではアルミニウムの分離が不十分であり、pH4.6を超えるとZnおよびFeの沈殿が始まるからである。
(4) Second stage neutralization process In this second stage neutralization process, the pH is raised to 4 to 4.6 while adding calcium carbonate to the liquid after separation of copper arsenide in the above-mentioned dearsenicization process, and the solid liquid Separated into a liquid containing a solid content mainly composed of aluminum and other components. Aluminum is also removed because it is one of the inhibitors of hematite formation. The reason why the pH is set to 4 to 4.6 is that separation of aluminum is insufficient when the pH is less than 4, and precipitation of Zn and Fe starts when the pH exceeds 4.6.

(5)脱鉄工程
この脱鉄工程では、上記の第2段中和工程でアルミニウムを分離した後の液を、ヘマタイト生成温度領域で鉄を酸化しながら加水分解した後に固形分離し、鉄をヘマタイトとして含む固形分と、亜鉛を含む液に分離する。具体的には、上記の第2段中和工程により得られた液を平衡論的にヘマタイトが沈殿する温度である190℃以上まで昇温し、O分圧0.1〜0.3MPaの酸化雰囲気中で反応させた後に、減圧して濾別することによってヘマタイトを得る。反応後の液は、Znの含有率が60〜100g/Lのまま保たれるが、Feの含有率は6g/L以下まで減少する。この脱鉄工程後の液は再び亜鉛製錬の浸出工程に送られ、亜鉛回収の原料として使用される。
(5) Deironing step In this deironing step, the liquid after the separation of aluminum in the second stage neutralization step is hydrolyzed while oxidizing iron in the hematite generation temperature region, and then solid separated to obtain iron. It separates into a solid containing hematite and a liquid containing zinc. Specifically, the liquid obtained in the second stage neutralization step is heated to 190 ° C. or higher, which is the temperature at which hematite precipitates in an equilibrium manner, and the O 2 partial pressure is 0.1 to 0.3 MPa. After reacting in an oxidizing atmosphere, hematite is obtained by filtering under reduced pressure. In the liquid after the reaction, the Zn content is maintained at 60 to 100 g / L, but the Fe content is decreased to 6 g / L or less. The liquid after the iron removal process is sent again to the zinc smelting leaching process and used as a raw material for zinc recovery.

なお、上記の第2段中和工程と脱鉄工程の間に第2段脱砒工程を加えてもよい。この第2段脱砒工程では、第2段中和工程で得られた液に亜鉛末を加えて固液分離し、主成分として砒素、カドミウムおよび鉛を含む固形分と、その他の成分を含む液に分離する。具体的には、第2段中和工程で得られた液に硫酸を添加してpHを3.0〜3.5に調整し、亜鉛粉末2g/Lを加える。pHを3.0〜3.5に調整するのは、この第2段脱砒工程における処理液中には多量の鉄が存在するので、第2段中和工程で得られた液のpHのままでは、鉄水酸化物の生成によって濾過性が著しく阻害されるからである。この第2段脱砒工程により、砒素、カドミウムおよび鉛などの不純物をほぼ完全に除去した液を次の脱鉄工程に送ることができる。したがって、次の脱鉄工程で回収される酸化鉄に含まれる不純物の量を著しく少なくすることができ、セメントの製造などに有効に利用することができる。   In addition, you may add a 2nd stage dearsenic process between said 2nd stage neutralization process and iron removal process. In this second-stage dearsenation step, zinc powder is added to the liquid obtained in the second-stage neutralization step for solid-liquid separation, and the solid content containing arsenic, cadmium and lead as main components and other components are included. Separate into liquid. Specifically, sulfuric acid is added to the liquid obtained in the second stage neutralization step to adjust the pH to 3.0 to 3.5, and 2 g / L of zinc powder is added. The pH is adjusted to 3.0 to 3.5 because a large amount of iron is present in the treatment liquid in the second stage de-arsenic process, so that the pH of the liquid obtained in the second stage neutralization process is adjusted. This is because the filterability is significantly inhibited by the production of iron hydroxide. By this second stage dearsenation step, a liquid from which impurities such as arsenic, cadmium and lead are almost completely removed can be sent to the next deironation step. Therefore, the amount of impurities contained in the iron oxide recovered in the next deironing step can be remarkably reduced, and can be effectively used for producing cement.

このように、第2段中和工程後、脱鉄工程前の第2段脱砒工程において、脱鉄工程で回収される酸化鉄を主とする固形物中に砒素がほぼ完全に含まれないようにすることができるとともに、カドミウムや鉛などの不純物の量も低減することができる。   In this way, in the second stage dearsenation process after the second stage neutralization process and before the iron removal process, arsenic is almost completely not contained in the solid matter mainly composed of iron oxide recovered in the iron removal process. In addition, the amount of impurities such as cadmium and lead can be reduced.

本発明による亜鉛浸出残渣の湿式処理方法の実施の形態を概略的に示す工程図である。It is process drawing which shows schematically embodiment of the wet processing method of the zinc leaching residue by this invention. 本発明による亜鉛浸出残渣の湿式処理方法の実施の形態において、脱砒反応槽内の電位とCu/As比との関係を示すグラフである。It is a graph which shows the relationship between the electric potential in a dearsenic reaction tank, and Cu / As ratio in embodiment of the wet processing method of the zinc leaching residue by this invention. 本発明による亜鉛浸出残渣の湿式処理方法の実施の形態において、脱砒反応槽内の電位と脱砒残渣中のインジウムの品位との関係を示すグラフである。6 is a graph showing the relationship between the potential in the dearsenic reaction tank and the quality of indium in the dearsenic residue in the embodiment of the wet processing method for zinc leaching residue according to the present invention. 本発明による亜鉛浸出残渣の湿式処理方法の実施の形態において、脱砒反応槽のCu/As比と脱砒残渣中のインジウムの品位との関係を示すグラフである。4 is a graph showing the relationship between the Cu / As ratio of the dearsenic reaction tank and the quality of indium in the dearsenic residue in the embodiment of the wet processing method for zinc leaching residue according to the present invention.

Claims (14)

湿式亜鉛製錬で焼鉱を浸出して固液分離することにより固形分として除かれた亜鉛浸出残渣を、酸で浸出して固液分離する浸出工程と、この浸出工程で得られた浸出液を中和して固液分離する第1段中和工程と、この第1段中和工程で得られた中和液を脱砒して固液分離する脱砒工程と、この脱砒工程で得られた液を中和して固液分離する第2段中和工程と、この第2段中和工程で得られた中和液を脱鉄して固液分離する脱鉄工程とを備えた亜鉛浸出残渣の湿式処理方法において、前記第1段中和工程で得られた中和液を脱砒する際に、この中和液に亜鉛末と銅イオン源物質を添加することを特徴とする、亜鉛浸出残渣の湿式処理方法。 The leaching process in which zinc leaching residue, which was removed as a solid content by leaching calcination ore by wet zinc smelting and solid-separated, was leached with acid and solid-liquid separated, and the leachate obtained in this leaching process A first stage neutralization step for neutralization and solid-liquid separation, a arsenic removal step for removing the neutralized solution obtained in the first stage neutralization step for solid-liquid separation, and a arsenic removal step A second-stage neutralization step of neutralizing the obtained liquid and separating it into a solid and a liquid; and a deironing step of removing iron from the neutralized solution obtained in the second-stage neutralization step and separating it into a solid and liquid In the wet leaching method for zinc leaching residue, when the neutralized solution obtained in the first stage neutralization step is de-arsenized, zinc powder and a copper ion source material are added to the neutralized solution. , Wet processing method of zinc leaching residue. 前記銅イオン源物質が硫酸銅であることを特徴とする、請求項1に記載の亜鉛浸出残渣の湿式処理方法。 The wet processing method for a zinc leaching residue according to claim 1, wherein the copper ion source material is copper sulfate. 前記銅イオン源物質の添加量が、前記第1段中和工程で得られた中和液を脱砒する反応槽内のAsの濃度に対するCuの濃度の比(Cu/As比)に基づいて決定されることを特徴とする、請求項1または2に記載の亜鉛浸出残渣の湿式処理方法。 The amount of the copper ion source material added is based on the ratio of Cu concentration (Cu / As ratio) to the concentration of As in the reaction tank for removing the neutralized solution obtained in the first stage neutralization step. The method for wet treatment of zinc leaching residue according to claim 1 or 2, characterized in that it is determined. 前記銅イオン源物質の添加量が、前記Cu/As比が1.5以上になるように決定されることを特徴とする、請求項3に記載の亜鉛浸出残渣の湿式処理方法。 The wet processing method of a zinc leaching residue according to claim 3, wherein the addition amount of the copper ion source material is determined so that the Cu / As ratio is 1.5 or more. 前記銅イオン源物質の添加量が、前記第1段中和工程で得られた中和液を脱砒する反応槽内の電位に基づいて決定されることを特徴とする、請求項1または2に記載の亜鉛浸出残渣の湿式処理方法。 The amount of the copper ion source material added is determined on the basis of a potential in a reaction tank for de-arsenizing the neutralized solution obtained in the first stage neutralization step. The wet processing method of the zinc leaching residue described in 1. 前記銅イオン源物質の添加量が、前記電位が−320mV以上になるように決定されることを特徴とする、請求項5に記載の亜鉛浸出残渣の湿式処理方法。 6. The method for wet treatment of zinc leaching residue according to claim 5, wherein the addition amount of the copper ion source material is determined so that the potential becomes -320 mV or more. 前記亜鉛浸出残渣から金、銀、銅、鉄および鉛からなる群から選ばれる少なくとも1種の有価金属を分離して回収することを特徴とする、請求項1乃至6のいずれかに記載の亜鉛浸出残渣の湿式処理方法。 The zinc according to any one of claims 1 to 6, wherein at least one valuable metal selected from the group consisting of gold, silver, copper, iron and lead is separated and recovered from the zinc leaching residue. Wet treatment method for leach residue. 前記浸出工程が、湿式亜鉛製錬における電解尾液を前記亜鉛浸出残渣に加えてパルプ状にした後に還元雰囲気で浸出して固液分離し、主成分として鉛と銀を含む固形分と、その他の成分を含む浸出液に分離する工程であることを特徴とする、請求項1乃至7のいずれかに記載の亜鉛浸出残渣の湿式処理方法。 In the leaching step, electrolytic tail liquor in wet zinc smelting is added to the zinc leaching residue to form a pulp, and then leached in a reducing atmosphere to separate into solid and liquid, solids containing lead and silver as main components, and others The method for wet-treating a zinc leaching residue according to any one of claims 1 to 7, wherein the wet leaching residue is a step of separating into a leaching solution containing the components. 前記第1段中和工程が、前記浸出工程で得られた浸出液に炭酸カルシウムを加え、前記浸出液中の遊離硫酸を中和して固液分離し、石膏を主成分とする固形分と、その他の成分を含む液に分離する工程であることを特徴とする、請求項1乃至8のいずれかに記載の亜鉛浸出残渣の湿式処理方法。 In the first stage neutralization step, calcium carbonate is added to the leachate obtained in the leaching step, the free sulfuric acid in the leachate is neutralized and solid-liquid separated, and the solid content mainly composed of gypsum, and others The method for wet treatment of a zinc leaching residue according to any one of claims 1 to 8, wherein the wet leaching residue is a step of separating the leaching residue into a liquid containing the above components. 前記脱砒工程が、前記第1段中和工程で得られた中和液に亜鉛末と銅イオン源物質を加えて固液分離し、主に銅および砒素を砒化銅として含む固形分と、その他の成分を含む液に分離する工程であることを特徴とする、請求項1乃至9のいずれかに記載の亜鉛浸出残渣の湿式処理方法。 The dearsenation step is performed by solid-liquid separation by adding zinc powder and a copper ion source material to the neutralized solution obtained in the first stage neutralization step, and a solid content mainly containing copper and arsenic as copper arsenide; The method for wet-treating a zinc leaching residue according to any one of claims 1 to 9, wherein the method is a step of separating into a liquid containing other components. 前記第2段中和工程が、前記脱砒工程で砒化銅を分離した後の液に炭酸カルシウムを加えながらpHを上げて固液分離し、アルミニウムを主成分とする固形分と、その他の成分を含む液に分離する工程であることを特徴とする、請求項1乃至10のいずれかに記載の亜鉛浸出残渣の湿式処理方法。 In the second-stage neutralization step, the solid after separating copper arsenide in the dearsenation step is subjected to solid-liquid separation by adding pH to calcium carbonate, solid content mainly composed of aluminum, and other components The method for wet treatment of a zinc leaching residue according to any one of claims 1 to 10, wherein the wet leaching residue is a step of separating the leaching residue. 前記脱鉄工程が、前記第2段中和工程でアルミニウムを分離した後の液を、ヘマタイト生成温度領域で鉄を酸化しながら加水分解した後に固形分離し、鉄をヘマタイトとして含む固形分と、亜鉛を含む液に分離する工程であることを特徴とする、請求項1乃至11のいずれかに記載の亜鉛浸出残渣の湿式処理方法。 The iron removal step is a step of separating the liquid after separating the aluminum in the second stage neutralization step, hydrolyzing the iron while oxidizing it in the hematite generation temperature region, and then solid-separating the solid content containing iron as hematite; The method for wet treatment of a zinc leaching residue according to any one of claims 1 to 11, wherein the method is a step of separating into a liquid containing zinc. 前記第2段中和工程と前記脱鉄工程との間に、前記第2段中和工程で得られた液に亜鉛末を加えて固液分離し、主成分として砒素、カドミウムおよび鉛を含む固形分と、その他の成分を含む液に分離する第2段脱砒工程を備えたことを特徴とする、請求項1乃至12のいずれかに記載の亜鉛浸出残渣の湿式処理方法。 Zinc powder is added to the liquid obtained in the second stage neutralization step and solid-liquid separated between the second stage neutralization step and the iron removal step, and arsenic, cadmium and lead are contained as main components. 13. The method for wet treatment of zinc leaching residue according to any one of claims 1 to 12, further comprising a second-stage de-arsenation step for separating a solid and a liquid containing other components. 前記浸出工程で得られた浸出液中の銅の量を砒素1モルに対して3モル以上とし、この浸出液を前記脱砒工程において砒素と反応させて砒化銅を形成させることを特徴とする、請求項1乃至13のいずれかに記載の亜鉛浸出残渣の湿式処理方法。
The amount of copper in the leaching solution obtained in the leaching step is 3 mol or more with respect to 1 mol of arsenic, and the leaching solution is reacted with arsenic in the dearsenic step to form copper arsenide. Item 14. A wet processing method for a zinc leaching residue according to any one of Items 1 to 13.
JP2005082916A 2005-03-23 2005-03-23 Wet treatment method for zinc leaching residue Expired - Fee Related JP4765062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005082916A JP4765062B2 (en) 2005-03-23 2005-03-23 Wet treatment method for zinc leaching residue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005082916A JP4765062B2 (en) 2005-03-23 2005-03-23 Wet treatment method for zinc leaching residue

Publications (2)

Publication Number Publication Date
JP2006265592A true JP2006265592A (en) 2006-10-05
JP4765062B2 JP4765062B2 (en) 2011-09-07

Family

ID=37201863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005082916A Expired - Fee Related JP4765062B2 (en) 2005-03-23 2005-03-23 Wet treatment method for zinc leaching residue

Country Status (1)

Country Link
JP (1) JP4765062B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113076A (en) * 2005-10-20 2007-05-10 Dowa Holdings Co Ltd Treatment method for leach liquor in wet type zinc refining stage
JP2008150659A (en) * 2006-12-15 2008-07-03 Dowa Metals & Mining Co Ltd Method for producing arsenic liquid from copper-arsenic compound
CN106868306A (en) * 2016-12-23 2017-06-20 河南豫光锌业有限公司 A kind of method of zinc leaching residue valuable metal high efficiente callback
CN107723460A (en) * 2017-10-23 2018-02-23 湖南华信稀贵科技股份有限公司 A kind of smelting process of complex lead-zinc copper mine
CN108239699A (en) * 2016-12-26 2018-07-03 北京有色金属研究总院 A kind of method of valuable metal in leaded zinc-silver material of synthetical recovery
CN111041210A (en) * 2019-12-10 2020-04-21 赤峰中色锌业有限公司 Comprehensive recovery and harmless treatment method for zinc hydrometallurgy jarosite slag and high leaching slag
CN111041211A (en) * 2019-12-10 2020-04-21 赤峰中色锌业有限公司 Comprehensive recovery and harmless treatment method for zinc hydrometallurgy high leaching residue
CN111349790A (en) * 2020-03-30 2020-06-30 北京矿冶科技集团有限公司 Method for reducing arsenic content in copper smelting soot leaching slag
CN114606400A (en) * 2022-01-28 2022-06-10 云锡文山锌铟冶炼有限公司 Method for treating arsenic-zinc-containing leaching residues of high-iron

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI122355B (en) * 2009-11-23 2011-12-15 Outotec Oyj A method for removing chloride from a zinc sulfate solution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030355A (en) * 2000-07-11 2002-01-31 Dowa Mining Co Ltd Wet type treating method for zinc leaching residue

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030355A (en) * 2000-07-11 2002-01-31 Dowa Mining Co Ltd Wet type treating method for zinc leaching residue

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113076A (en) * 2005-10-20 2007-05-10 Dowa Holdings Co Ltd Treatment method for leach liquor in wet type zinc refining stage
JP2008150659A (en) * 2006-12-15 2008-07-03 Dowa Metals & Mining Co Ltd Method for producing arsenic liquid from copper-arsenic compound
CN106868306A (en) * 2016-12-23 2017-06-20 河南豫光锌业有限公司 A kind of method of zinc leaching residue valuable metal high efficiente callback
CN108239699A (en) * 2016-12-26 2018-07-03 北京有色金属研究总院 A kind of method of valuable metal in leaded zinc-silver material of synthetical recovery
CN107723460A (en) * 2017-10-23 2018-02-23 湖南华信稀贵科技股份有限公司 A kind of smelting process of complex lead-zinc copper mine
CN107723460B (en) * 2017-10-23 2019-03-19 湖南华信稀贵科技股份有限公司 A kind of smelting process of complex lead-zinc copper mine
CN111041210A (en) * 2019-12-10 2020-04-21 赤峰中色锌业有限公司 Comprehensive recovery and harmless treatment method for zinc hydrometallurgy jarosite slag and high leaching slag
CN111041211A (en) * 2019-12-10 2020-04-21 赤峰中色锌业有限公司 Comprehensive recovery and harmless treatment method for zinc hydrometallurgy high leaching residue
CN111349790A (en) * 2020-03-30 2020-06-30 北京矿冶科技集团有限公司 Method for reducing arsenic content in copper smelting soot leaching slag
CN114606400A (en) * 2022-01-28 2022-06-10 云锡文山锌铟冶炼有限公司 Method for treating arsenic-zinc-containing leaching residues of high-iron
CN114606400B (en) * 2022-01-28 2023-09-22 云锡文山锌铟冶炼有限公司 Treatment method of high-iron arsenic-zinc-containing leaching residues

Also Published As

Publication number Publication date
JP4765062B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP4765062B2 (en) Wet treatment method for zinc leaching residue
JP6077624B2 (en) Method for treating zinc sulfate containing solution
EP1966401A1 (en) Method for recovering rare metals in a zinc leaching process
JP5176053B2 (en) Wet treatment method for zinc leaching residue
JP5439997B2 (en) Method for recovering copper from copper-containing iron
AU2015265793A1 (en) Hydrometallurgical treatment of anode sludge
US4505744A (en) Recovery of zinc from zinc containing sulphidic material
JP3052535B2 (en) Treatment of smelting intermediates
EP2902510A1 (en) A new method for leaching of electric arc furnace dust (EAFD) with sulphuric acid
US4662938A (en) Recovery of silver and gold
JP3411320B2 (en) Zinc smelting method
JP2010138490A (en) Method of recovering zinc
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
JP3955934B2 (en) Wet treatment of zinc leaching residue
US10689732B2 (en) Methods for controlling iron via magnetite formation in hydrometallurgical processes
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
EP3084024A1 (en) Method and process arrangement of separating indium and arsenic from each other
JPH027377B2 (en)
JP2006083457A (en) Treatment method for zinc leach residue and the like
JP2003268462A (en) Method for recovering noble metal from copper electrolysis slime
JP2007154249A (en) Method for recovering silver in wet type copper refining process
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JP2007154234A (en) Wet treatment method for zinc leaching residue
JP2008512569A (en) Formation of zinc drugs from treatment tributaries.
JP2005041711A (en) Iron oxide powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees