JP2005041711A - Iron oxide powder and method for producing the same - Google Patents

Iron oxide powder and method for producing the same Download PDF

Info

Publication number
JP2005041711A
JP2005041711A JP2003200339A JP2003200339A JP2005041711A JP 2005041711 A JP2005041711 A JP 2005041711A JP 2003200339 A JP2003200339 A JP 2003200339A JP 2003200339 A JP2003200339 A JP 2003200339A JP 2005041711 A JP2005041711 A JP 2005041711A
Authority
JP
Japan
Prior art keywords
solution
cadmium
iron
arsenic
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003200339A
Other languages
Japanese (ja)
Other versions
JP4385103B2 (en
Inventor
Yuzuru Nakamura
譲 中村
Noriyuki Sato
則幸 佐藤
Ryoichi Taguchi
良一 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2003200339A priority Critical patent/JP4385103B2/en
Publication of JP2005041711A publication Critical patent/JP2005041711A/en
Application granted granted Critical
Publication of JP4385103B2 publication Critical patent/JP4385103B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low arsenic content low cadmium content iron oxide powder produced from a solution containing iron, arsenic, and cadmium, such as a neutralized liquid produced from a zinc leach residue as a by-product in, e.g., a wet-process zinc refining and to provide a method for producing the same. <P>SOLUTION: The method comprises adjusting a neutralized liquid 16 containing iron, arsenic, and cadmium to 60°C or lower, adding a zinc powder 39 as a reducing agent to the liquid to adjust its oxidation reduction potential to -500 mV or lower, adding sulfuric acid 42 to the resultant liquid to adjust it to a pH of 4.0 or lower, separating a first solution from the obtained solid/liquid mixture, separating the solid/liquid mixture obtained by adding an acid to the first solution and leaving the resulting mixture in an oxidizing atmosphere into a second precipitate being an iron residue (jarosite compound) 18 and a second solution, adding water 44 to the second precipitate to subject it to washing 58 to form a washed iron residue 19, subjecting the iron residue 19 to roasting 59 to form an iron oxide powder material 20, and subjecting this to washing 60, drying 61 and pulverization 62 to obtain an iron oxide powder 23. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、酸化鉄粉およびその製造方法に関する。
【0002】
【従来の技術】
湿式亜鉛製錬を実施すると、亜鉛浸出残渣が副製する。この亜鉛浸出残渣を還元性雰囲気下で酸により浸出し、得られた浸出液を予備中和し、次いでこの予備中和液へさらに中和剤を添加し、かつ酸化性ガスを吹き込んだあと固液分離する。この酸化性ガスの吹き込みと固液分離とによって、中和液中の第1鉄の一部を酸化すると同時に、アルミニウム(Al)、ケイ素(Si)およびヒ素の一部を鉄と共沈物として液から分離させる。そして共沈澱を分離したあとの溶液に、銅イオンの存在下で亜鉛末を添加することによって、溶液中のヒ素を砒化銅の形態で沈澱させた後、150℃の温度以下で酸化性ガスと反応させ、溶液中の鉄を水酸化鉄とし、次いでこれを酸化して酸化鉄を得る製造方法が、特許文献1に提案されている。
【0003】
【特許文献1】
特開昭62−21717号公報
【0004】
一方、製造された酸化鉄粉の用途として、セメント、フェライト、顔料、触媒等の用途が挙げられる。近年、環境の配慮から酸化鉄に含まれる不純物は、少ないことがのぞまれ、特に水銀(Hg)、砒素(As)、カドミウム(Cd)、鉛(Pb)等の環境規制物質、及び塩素(Cl)成分がより少ない酸化鉄が望まれている。
ところが、従来の技術に係る方法では、水銀、鉛、塩素の除去は十分に行えるものの、カドミウム、砒素においては、近年の厳しい要求水準に対応することが難しくなってきていた。
【0005】
【発明が解決しようとする課題】
本発明は、上述の要請を鑑みてなされたものであり、例えば、湿式亜鉛製錬にて副製する亜鉛浸出残渣から製造される中和液のような、鉄、砒素、カドミウムを含む溶液より、砒素、カドミウムの含有量が少ない酸化鉄粉を製造する方法、および、砒素、カドミウムの含有量が少ない酸化鉄粉を提供する。
【0006】
【課題を解決するための手段】
上述の課題を解決するため、本発明者らが研究をおこなった結果、砒素、カドミウムを含む鉄の酸性溶液から酸化鉄粉を製造する際に、当該溶液の温度と酸化還元電位とpHとを制御することにより、選択的に砒素とカドミウムを除去する方法と、この方法により一旦除去されたカドミウムの再溶解を防ぐ方法とを創出し、さらに当該方法を実施することで、従来の方法では除去することが困難であった酸化鉄粉中のマンガンをも削減できることが判明した。この結果、不純物の少ない酸化鉄粉を得ることができたものである。
すなわち、本発明は以下の構成を有する。
【0007】
(構成1) 鉄、砒素およびカドミウムを含む溶液から酸化鉄粉を製造する方法であって、
前記溶液を60℃以下とし、還元剤を添加し前記溶液の酸化還元電位を−500mV以下とした後に、酸を添加してpHを4以下に調整して得られた固液混合体から、第1の溶液を分離する第1の工程と、
前記第1の溶液に酸を添加し、酸化性雰囲気下において加熱して得られた固液混合体から、第2の澱物を分離する第2の工程と、
前記第2の澱物に水を添加して得られた固液混合体から、第3の澱物を分離する第3の工程と、を有することを特徴とする酸化鉄粉の製造方法である。
【0008】
(構成2) 前記溶液とは、亜鉛精鉱を酸化処理した焼鉱に酸を加えて得られた浸出液へ、所定の処理を施して得られた、鉄、砒素およびカドミウムを含む溶液であることを特徴とする構成1に記載の酸化鉄粉の製造方法である。
【0009】
(構成3)カドミウム、砒素の含有量がそれぞれ1ppm以下、且つマンガンの含有量が100ppm以下であることを特徴とする酸化鉄粉である。
【0010】
【発明の実施の形態】
本発明の実施の形態例について、鉄、砒素およびカドミウムを含む原料溶液として、硫化鉱からの亜鉛精鉱を酸化処理した焼鉱へ酸を加え亜鉛浸出を行って得られた浸出液を用いた場合を例とし、図面を参照しながら説明する。
図1は、硫化鉱からの亜鉛精鉱の浸出液から、精製された酸化鉄粉を得るまでの工程例のフロー図である。
亜鉛製錬では、亜鉛鉱石より亜鉛を得るものであるが、例えば、硫化物からなる亜鉛精鉱11を焙焼炉により焙焼51し、亜鉛酸化物である亜鉛焼鉱12とする。この亜鉛焼鉱12を硫酸31等により酸浸出52し、金属を含む浸出液13と残渣32とを生成する。この浸出液13から、所望の金属である亜鉛等を得るため亜鉛電解採取に適した液組成が精製される。この際、亜鉛精鉱11に含まれていた鉄も同様に浸出液13中に存在する。このため亜鉛製錬の工程の中には、当該鉄を除去する工程も含まれ、この工程を活用することで酸化鉄粉材料が得られる。
【0011】
浸出液13は、亜鉛電解採取の際に阻害となる金属を、複数の工程を経て除去する。例えば、浸出液13を、亜硫酸ガス雰囲気下のオートクレーブで温度110℃に加熱し、中和剤33として亜鉛と鉄とを溶解させて第1回中和53を行い、難溶解となった銅、貴金属、鉛などを澱物34として分離し、浸出ろ液14を得る。
【0012】
この浸出ろ液14へ、酸濃度及び銅イオン濃度を調整しながら亜鉛粉末35等の還元剤を添加し、これを還元して脱砒素54し、砒素等の不純物を沈澱させて澱物36とし、これを固液分離して低砒素液15を得る。次にこの低砒素液15へ、中和剤37を添加し、多く含まれる遊離硫酸を第2回中和55する。この第2回中和55において、中和剤37として炭酸カルシウム等を用い、低砒素液15をpH4〜5まで中和処理して、液中のケイ素、アルミニウム、ガリウム、インジウム等の不純物を石膏と共に澱物38として分離し、中和液16を得る。
ここまでは、従来の亜鉛精錬工程と同様である。
【0013】
以下、本発明に係る第1の工程について説明する。
中和液16には、カドミウム(Cd)、砒素(As)、亜鉛(Zn)、硫黄(S)、カルシウム(Ca)、鉄(Fe)と雑多な金属が含有されている。これら雑多な元素が含まれている中和液から純度の高い酸化鉄粉材料である酸化鉄粉を得るために、還元56を行う。還元56においては、中和液16からの砒素、カドミウム除去を目的に、亜鉛粉末39等の還元剤を添加し、反応中の中和液16の酸化還元電位を−500mV以下とし、酸40を添加し、pHを4.0以下に調整する。また、本明細書において、例えば「酸化還元電位−500mV以下」と記載した場合は、「酸化還元電位が−500mVを超えることなく、−500mV付近の電位にある。」ことを意味して用いている。
【0014】
ここで亜鉛粉末39を添加するのは、酸化還元電位を調整するのに好適であることに加え、添加されるものが亜鉛であれば、これは添加前より中和液16に含まれる成分であるため、新たな不純物となり得ないことにより、後工程への影響を最小限にできることによる。さらに加えて、理由は未だ定かではないが、亜鉛粉末39を添加することで、砒素、カドミウム除去を効果的に行うことができるためである。亜鉛粉末39の形態は、亜鉛を主成分とする粉状であって、粒径は細かい方が望ましいが、1μm〜1000μm程度で良い。また、酸40としては硫酸が好ましい。
【0015】
ここで、中和液16への亜鉛粉末39、酸40の添加による、砒素、カドミウムの除去効果について、図2〜図5を用いて詳細に説明する。
【0016】
1.[中和液16への、亜鉛粉末39の添加による砒素、カドミウムの除去の検討]
本発明者らは、中和液16(その組成例を表1に示す。)へ、適宜な条件にて亜鉛粉末39を添加することで、中和液16中の砒素、カドミウムを除去できることを見出した。この解明の過程について説明する。
【0017】
【表1】

Figure 2005041711
【0018】
まず、表1のその組成を示す中和液16へ、表2に示す2水準の条件で、反応温度の制御と、亜鉛粉末の添加とをおこなった。
【0019】
【表2】
Figure 2005041711
【0020】
このときの中和液16の挙動を、図2を参照しながら説明する。
図2は、縦軸に中和液16中のカドミウム濃度を採り、横軸に反応時間を採ったグラフである。当該グラフにおいて、水準1は破線で、水準2は実線で示した。尚、添加した亜鉛粉末濃度が2g/lのとき、中和液16の酸化還元電位は−500mV以下、pHは3.0となり、添加した亜鉛粉末濃度が3g/lのとき、酸化還元電位は−700mV以下、pHは4.0となった。
【0021】
結果は図2に示すように、水準1では、反応時間の進行とともに、一旦は液中のカドミウム濃度は下がるが再び上昇する。これは、カドミウムが、一旦は澱物となるが再び液中に溶出してしまうためであると考えられる。これに対し、水準2では、カドミウム濃度は時間とともに減少する。これは、一旦、澱物となったカドミウムが、再び溶解するのを抑制できるためであると考えられる。
【0022】
このことから、本発明者らは、中和液16中の酸化還元電位を−700mV以下となるように亜鉛粉末39の添加量を調整し、さらには液温を制御することで、カドミウムを中和液16から除去でき、カドミウム含有量の低い脱カドミウム液17を得られることに想到した。そして、カドミウム除去が可能であるなら、中和液16中にて、カドミウムと類似の挙動をとる砒素の除去も同時に可能であることに想到した。
【0023】
2.[液温制御の検討]
表1に記載したものと同様の中和液16を用い、反応温度条件を、20℃、30℃、40℃の3水準とし、中和液16からのカドミウムの除去を行った。尚、亜鉛粉末の添加量は3g/lとし、酸化還元電位は−700mV以下となった。
このときの、中和液16の挙動を図3に示す。但し、図3は、図2と同様のグラフであり、20℃の水準を一点鎖線で、30℃の水準を実線で、40℃の水準を2点鎖線で示した。
上述の結果より、各温度においてもカドミウム濃度が反応時間とともに減少することがわかり、反応時の液温は、60℃以下が好ましく、さらには20〜40℃が適温であることが判明した。そして、この場合も、中和液16中にて、カドミウムと類似の挙動をとる砒素の除去も同時に可能であることに想到した。
【0024】
3.[酸化還元電位制御の検討]
表1に記載したものと同様の中和液16を用い、亜鉛粉末添加濃度を制御することで酸化還元電位を−500mVおよび−800mVの2水準とし、中和液16からのカドミウムの除去を行った。尚、液温は60℃とした。
このときの、中和液16の挙動を図4に示す。但し、図4は、図2と同様のグラフであり−500mVの水準を一点鎖線で、−800mVの水準を実線で示した。
【0025】
図4から明らかなように、酸化還元電位が−500mVのとき、カドミウムの濃度は反応時間の経過と共に下がり、60分後以降はほぼ一定値となった。一方、酸化還元電位が−800mVでは、その濃度が反応時間の経過と共に下がり、遂には、ほぼ0になることが判明した。この結果から、酸化還元電位が−800mVであれば十分に脱カドミウム効果が得られることがわかり、少なくとも酸化還元電位が−500mV以下であることが好ましいと思われる。そして、この場合も、中和液16中にて、カドミウムと類似の挙動をとる砒素の除去も同時に可能であることに想到した。
【0026】
4.[pH制御の検討]
表1に記載したものと同様の中和液16を用い、pHの水準を2.0、3.0、4.0の3水準とし、中和液16からのカドミウムの除去を行った。尚、液温は60℃とし、酸化還元電位は−500mV以下とした。
このときの、中和液16の挙動を図5に示す。但し、図5は、図2と同様のグラフでありpH2.0の水準を一点鎖線で、pH3.0の水準を実線で、pH4.0の水準を2点鎖線で示した。
【0027】
図5から明らかなように、pHが2.0では、カドミウムの濃度は、反応時間の経過と共に、一旦、減少するが、またすぐに濃度が上昇してしまう。pHが3.0では、その濃度が反応時間の経過と共に減少し10mg/l程度までは減少するが、それ以降は、反応時間の経過と共にその濃度が上昇してしまう。一方、pH4.0では、反応時間の経過と共に、その濃度がほぼ0になることから、pHは3.0以上であれば十分に脱カドミウム効果が得られることがわかり、さらにはpHが4.0以上であればさらに効果的である。そして、この場合も、中和液16中にて、カドミウムと類似の挙動をとる砒素の除去も同時に可能であることに想到した。
【0028】
ここで再び図1に戻り、上述した、1〜4の検討事項を要約する。
亜鉛粉末39は、主に中和液16の酸化還元電位を調整するために用いるが、その添加量は、中和液16の酸化還元電位を−500mV以下とする添加量が好ましく、−800mV以下とする添加量がさらに好ましい。中和液16の酸化還元電位を−500mV以下とすることで、カドミウム、砒素沈澱除去及び澱物41の中和液16への再溶解を防ぐことができる。特に、酸化還元電位を−800mV以下とすると、さらにカドミウム、砒素の沈澱除去に効果的である。
【0029】
還元56において中和液16のpHは、2〜4に調整することが好ましい。これはカドミウム、砒素が、中和液16へ再溶解するのを抑制するためであり、特に、pH3〜4であるとカドミウム、砒素の除去に効果的である。
反応時おける液温は、60℃以下が好ましいが、特に、20〜40℃が好ましい。これは液温が高すぎると、一度は沈澱したカドミウム、砒素が再溶解するためであり、液温が低すぎると、反応の進行が遅いためである。
この処理後、得られた固液混合体からカドミウム、砒素を含んだ第1の澱物41を固液分離し、脱カドミウム、脱砒素を終えた第1の溶液である脱カドミウム溶液17を得る。ここで、本発明に係る第1の工程を完了する。
【0030】
次に、本発明に係る第2の工程について説明する。
本発明に係る第1の溶液である脱カドミウム溶液17は、含有する亜鉛と鉄とを分離するため脱鉄57工程を経る。
本発明者らは、この脱鉄57工程において、脱カドミウム溶液17中の遊離酸の濃度を規定することで、亜鉛と鉄との溶解度差により鉄を分離することができることに想到した。ここで、遊離酸濃度の検討について説明する。
【0031】
5.[遊離酸濃度の検討]
表1に記載したものと同様の中和液16を用い、遊離酸の濃度の水準を10g/l、30g/lの2水準とし、亜鉛と鉄との分離について検討した。尚、液温は120℃とした。尚、このとき添加する酸として硫酸を用いると、鉄と適宜な形成して澱物を形成するので好ましい。
この結果を表3に示す。遊離酸濃度が10g/lの場合は、鉄残渣中の亜鉛は8000ppm、鉄は68wt%であり、遊離酸濃度が30g/lの場合は、亜鉛は1200ppm、鉄は70wt%であった。すなわち、遊離酸濃度を適宜に設定することで、亜鉛と鉄とを分離できることが判明した。
【0032】
【表3】
Figure 2005041711
【0033】
ここで、再び図1に戻り、5の検討事項を要約する。
例えばオートクレーブを用いて、硫酸42を脱カドミウム溶液17に添加して遊離酸濃度を10〜30g/l程度に調整し、反応温度を120℃程度、雰囲気を酸素分圧を0.3MPa程度の酸化性雰囲気とすることで、鉄と硫酸との化合物を形成させて、本発明に係る第2の澱物である鉄残渣18を生成させることが好ましい。遊離酸濃度を30g/l以下とするのは、遊離酸濃度が高いと亜鉛の脱カドミウム溶液17への溶解度が上がり、亜鉛との分離性が低下するためである。鉄残渣18は、酸化鉄や水酸化鉄等の種々のジャロサイト化合物の混合物である。ここで、得られた固液混合体から、ろ液43を分離し、種々のジャロサイト化合物である鉄残渣18を回収して本発明に係る第2の工程を完了する。尚、ろ液43は、亜鉛の製錬工程へ進めることができる。
【0034】
次に、本発明に係る第3の工程を説明する。
本発明に係る第2の澱物である鉄残渣18は、そのままでは、酸や金属イオンが付着しているため、それらを洗い落とすため、水44等により洗浄58する。水44は、塩素を含まない用水が好ましい。塩素が含まれる水では鉄残渣18に塩素分が付着するため、酸化鉄粉の成分に影響を与えるためである。水44の添加は、鉄残渣18がリパルプできる程度よい。得られた固液混合体から、ろ液45を除去するための固液分離と水44の添加とを繰り返し、本発明に係る第3の澱物である洗浄された鉄残渣19を得る。こうして、本発明に係る第3の工程を完了する。
【0035】
洗浄された鉄残渣19の成分の多くは酸化鉄であるが、酸化鉄としての酸化状態が不充分である場合は、さらに酸化処理を行うために焙焼59を施す。焙焼59は、焙焼炉などを用いて、温度700℃以上にて酸素含有の酸化性ガス雰囲気中にて行えば良い。この焙焼59により、組成としては99.9%以上の酸化鉄粉材料20が得られる。この酸化鉄粉材料20が、酸化鉄粉23の原材となる。ここで得た酸化鉄粉材料20は、後工程での粉砕により用途に応じて粒径を変えこともでき、粒径を問わない工程への材料として用いることができる。
【0036】
焙焼工程を経た酸化鉄粉材料20は、前述の水洗工程と同様に、水46により洗浄60処理し、澱物21とろ液47とに分離後、澱物21を乾燥61して乾燥物22とし、所望の粒径にするため粉砕機等により粉砕62して、酸化鉄粉23を得る。
尚、本実施の形態例の説明において、鉄、砒素およびカドミウムを含む原料溶液として、亜鉛精鉱を酸化処理した焼鉱に酸を加えて亜鉛浸出を行って得られた浸出液を用いた場合を例としたが、本発明は、これに限られるものではなく、種々の鉄、砒素および/またはカドミウムを含む溶液に適用することができる。
【0037】
【実施例】
以下、実施例を参照しながら、本発明をより具体的説明する。
(実施例1)
硫化鉱からの亜鉛精鉱を酸化焙焼して亜鉛焼鉱とし、ついで硫酸により酸浸出し、浸出液をオートクレーブで温度110℃に加熱し、さらに亜硫酸ガス雰囲気下において亜鉛と鉄を溶解させ、難溶解である銅、貴金属、鉛などを残渣として浸出ろ液と分離する。
この浸出ろ液において、酸濃度及び銅イオン濃度を調整しながら亜鉛末等の還元剤で還元される砒素等の不純物を沈澱させ低砒素液と残渣に固液分離する。次にこの低砒素液に多く含まれる遊離硫酸をカルシウム塩によりpHを4に中和した中和液を1m(1,000l)採取した。このときの中和液の液組成例を、表4に示す。
【0038】
【表4】
Figure 2005041711
【0039】
組成は、砒素1mg/l、カドミウム 476mg/l、亜鉛 83mg/l、鉄 46g/l、硫黄 77g/l、カルシウム 557mg/lm、マンガン4g/lであった。なお、分析は化学分析を用い、以下同様な分析手法によった。
この中和液に、中和液に対して亜鉛粉により酸化還元電位が−800mV以下になるように3.0g/lの配合量で添加した。また硫酸を添加することで、pHを4.0となるように液を調整しながら、液温を30℃とし、90分間の反応を行い、還元工程を行った。
次いで、液中に発生した澱物と脱カドミウム液との固液分離を行った。
【0040】
これを繰り返し、液量が約15mとなるまで実施した。このときの脱カドミウム液の組成測定例を、表5に示す。
【0041】
【表5】
Figure 2005041711
【0042】
組成は、砒素 未検出(1mg/l以下)、カドミウム 未検出(1mg/l以下)、Zn 65g/l、Fe 37g/l、S 62g/l、Ca 415mg/l、マンガン 1mg/lであった。
【0043】
この液に硫酸を添加し、遊離酸濃度を30g/l以上とした。そして、この遊離酸濃度を維持しながらオートクレーブにて液温を120℃とし、雰囲気を酸素分圧PO0.3MPaとし、2時間の反応を行った。次いで、固液分離をおこない鉄残渣を得た。
【0044】
得られた鉄残渣に水を加えてリパルプし、固液分離することで、鉄残渣の水洗浄を行った。この水洗浄後の鉄残渣の組成測定例、及びBET法により測定した比表面積を、表6に示す。
【0045】
【表6】
Figure 2005041711
【0046】
鉄残渣の組成は、乾燥状態で、Fe 49wt%、砒素 未検出(1ppm以下)、カドミウム 未検出(1ppm以下)、Zn 730ppm、S 132200ppm、Mn 18ppm、Cl 未検出(10ppm以下)であった。また、BET法により測定した比表面積は0.59m/gであった。
【0047】
水洗浄後の残渣を焙焼炉に投入し、焙焼温度を900℃で4時間、雰囲気を大気として酸化させ、酸化鉄粉材料を得た。この酸化鉄粉材料の組成例、及びBET法により測定した比表面積を、表7に示す。
【0048】
【表7】
Figure 2005041711
【0049】
酸化鉄粉材料の組成例は乾燥状態で、Fe 99.96wt%、砒素 未検出(1ppm以下)、カドミウム 未検出(1ppm以下)、Zn 1400ppm、S 136ppm、Mn 21ppm、Cl 未検出(10ppm以下)、という純度の高い酸化鉄粉材料が得られた。特に、砒素、カドミウム、Mn、Clは低濃度であった。また、BET法により測定した比表面積は0.6m/gであった。
【0050】
酸化鉄粉材料へ水を添加し、リパルプ後、固液分離することにより水洗浄を行った。水洗浄後の残渣を乾燥し、乾燥後に粉砕機へ投入して粉砕し、精製された酸化鉄粉が得られた。粉砕は、振動ミルで行い、ボール充填率70%にて60分間実施した。
得られた精製された酸化鉄粉の組成例、及びBET法により測定した比表面積を、表8に示す。
【0051】
【表8】
Figure 2005041711
【0052】
精製された酸化鉄粉の組成は、乾燥状態で、Fe 99.96wt%、砒素 未検出(1ppm以下)、カドミウム 未検出(1ppm以下)、Zn 1400ppm、S 136ppm、Mn 21ppm、Cl 未検出(10ppm以下)であった。また、BET法により測定した比表面積は2.36m/gであった。
当該酸化鉄粉の製造方法によれば、純度を保持したまま粒度を制御でき、純度が高く、より細かい酸化鉄粉を得ることが可能となった。
【0053】
【発明の効果】
以上詳述したように、本発明は、鉄、砒素およびカドミウムを含む溶液から酸化鉄粉を製造する方法であって、
前記溶液を60℃以下とし、還元剤を添加し前記溶液の酸化還元電位を−500mV以下とした後に、酸を添加してpHを4以下に調整して得られた固液混合体から、第1の溶液を分離する第1の工程と、
前記第1の溶液に酸を添加し、酸化性雰囲気下において加熱して得られた固液混合体から、第2の澱物を分離する第2の工程と、
前記第2の澱物に水を添加して得られた固液混合体から、第3の澱物を分離する第3の工程と、を有する酸化鉄粉の製造方法であり、当該製造方法により、鉄、砒素およびカドミウムを含む溶液から、砒素、カドミウムの含有量が少ない酸化鉄粉を製造することができた。
【図面の簡単な説明】
【図1】亜鉛精鉱の浸出液から精製された酸化鉄粉を得るまでの工程フロー図である。
【図2】反応温度条件および酸化還元電位を変化させた時の、中和液の挙動を示したグラフである。
【図3】反応温度条件を変化させた時の、中和液の挙動を示したグラフである。
【図4】酸化還元電位を変化させた時の、中和液の挙動を示したグラフである。
【図5】pHを変化させた時の、中和液の挙動を示したグラフである。
【符号の説明】
17.脱カドミウム液(第1の溶液)
18.鉄残査(第2の澱物)
19.洗浄された鉄残査(第3の澱物)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to iron oxide powder and a method for producing the same.
[0002]
[Prior art]
When wet zinc smelting is performed, zinc leaching residue is produced as a by-product. This zinc leaching residue is leached with an acid in a reducing atmosphere, the resulting leachate is pre-neutralized, then a neutralizing agent is further added to the pre-neutralization solution, and an oxidizing gas is blown into a solid liquid. To separate. This oxidizing gas blowing and solid-liquid separation oxidize a part of ferrous iron in the neutralized liquid, and at the same time, part of aluminum (Al), silicon (Si) and arsenic as iron and coprecipitate Separate from liquid. Then, zinc powder is added to the solution after separating the coprecipitate in the presence of copper ions, so that arsenic in the solution is precipitated in the form of copper arsenide, and at a temperature of 150 ° C. or less, an oxidizing gas and Patent Document 1 proposes a production method in which iron in a solution is made to be iron hydroxide and then oxidized to obtain iron oxide.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 62-21717
On the other hand, applications of the manufactured iron oxide powder include applications such as cement, ferrite, pigment, and catalyst. In recent years, it has been suggested that the amount of impurities contained in iron oxide is small due to environmental considerations, especially mercury (Hg), arsenic (As), cadmium (Cd), lead (Pb) and other environmentally regulated substances, and chlorine ( An iron oxide with less Cl) component is desired.
However, although the method according to the prior art can sufficiently remove mercury, lead, and chlorine, it has become difficult for cadmium and arsenic to meet recent strict requirements.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned demands, for example, from a solution containing iron, arsenic, and cadmium, such as a neutralized solution produced from a zinc leaching residue by-produced by wet zinc smelting. The present invention provides a method for producing iron oxide powder having a low content of arsenic and cadmium, and an iron oxide powder having a low content of arsenic and cadmium.
[0006]
[Means for Solving the Problems]
As a result of studies conducted by the present inventors to solve the above-mentioned problems, when producing iron oxide powder from an acidic solution of iron containing arsenic and cadmium, the temperature, oxidation-reduction potential, and pH of the solution are determined. By controlling, a method of selectively removing arsenic and cadmium and a method of preventing re-dissolution of cadmium once removed by this method are created, and further, this method is carried out, and the conventional method removes it. It was found that manganese in iron oxide powder, which was difficult to do, could be reduced. As a result, iron oxide powder with few impurities could be obtained.
That is, the present invention has the following configuration.
[0007]
(Configuration 1) A method for producing iron oxide powder from a solution containing iron, arsenic and cadmium,
From the solid-liquid mixture obtained by adjusting the solution to 60 ° C. or lower, adding a reducing agent to set the oxidation-reduction potential of the solution to −500 mV or lower, and adjusting the pH to 4 or lower by adding an acid, A first step of separating one solution;
A second step of separating a second starch from a solid-liquid mixture obtained by adding an acid to the first solution and heating in an oxidizing atmosphere;
And a third step of separating the third starch from the solid-liquid mixture obtained by adding water to the second starch. .
[0008]
(Configuration 2) The solution is a solution containing iron, arsenic and cadmium obtained by subjecting a leachate obtained by adding an acid to a sinter obtained by oxidizing zinc concentrate to a predetermined treatment. It is a manufacturing method of the iron oxide powder of the structure 1 characterized by these.
[0009]
(Configuration 3) An iron oxide powder characterized in that the content of cadmium and arsenic is 1 ppm or less and the content of manganese is 100 ppm or less.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the case of using the leachate obtained by performing zinc leaching by adding an acid to a calcined ore obtained by oxidizing zinc concentrate from sulfide ore as a raw material solution containing iron, arsenic and cadmium for the embodiment of the present invention Will be described with reference to the drawings.
FIG. 1 is a flow diagram of an example of a process from obtaining zinc concentrate concentrate leachate from sulfide ore to obtaining purified iron oxide powder.
In zinc smelting, zinc is obtained from zinc ore. For example, zinc concentrate 11 made of sulfide is roasted 51 in a roasting furnace to obtain zinc sinter 12 that is zinc oxide. The zinc sinter 12 is acid leached 52 with sulfuric acid 31 or the like to produce a leaching solution 13 containing metal and a residue 32. From this leachate 13, a liquid composition suitable for zinc electrowinning is purified in order to obtain zinc or the like as a desired metal. At this time, iron contained in the zinc concentrate 11 is also present in the leachate 13. For this reason, the process of removing the said iron is also included in the process of zinc refining, and an iron oxide powder material is obtained by utilizing this process.
[0011]
The leachate 13 removes the metal that becomes an obstacle during zinc electrowinning through a plurality of steps. For example, the leachate 13 is heated to 110 ° C. in an autoclave under a sulfurous acid gas atmosphere, zinc and iron are dissolved as a neutralizing agent 33, and the first neutralization 53 is performed. , Lead and the like are separated as a starch 34 to obtain a leachable filtrate 14.
[0012]
A reducing agent such as zinc powder 35 is added to the leached filtrate 14 while adjusting the acid concentration and the copper ion concentration, and this is reduced to dearsenide 54 to precipitate impurities such as arsenic to form a starch 36. This is solid-liquid separated to obtain a low arsenic liquid 15. Next, a neutralizing agent 37 is added to the low arsenic solution 15 to neutralize 55 a second amount of free sulfuric acid. In this second neutralization 55, calcium carbonate or the like is used as the neutralizing agent 37, and the low arsenic solution 15 is neutralized to pH 4 to 5, so that impurities such as silicon, aluminum, gallium and indium in the solution are gypsum. At the same time, it is separated as a starch 38 to obtain a neutralized solution 16.
So far, it is the same as that of the conventional zinc refining process.
[0013]
Hereinafter, the 1st process concerning the present invention is explained.
The neutralizing solution 16 contains various metals such as cadmium (Cd), arsenic (As), zinc (Zn), sulfur (S), calcium (Ca), and iron (Fe). Reduction 56 is performed in order to obtain iron oxide powder, which is a high-purity iron oxide powder material, from the neutralized solution containing these various elements. In the reduction 56, for the purpose of removing arsenic and cadmium from the neutralization solution 16, a reducing agent such as zinc powder 39 is added, the oxidation-reduction potential of the neutralization solution 16 during the reaction is set to −500 mV or less, and the acid 40 is added. Add to adjust pH to 4.0 or lower. Further, in this specification, for example, when “redox potential −500 mV or less” is described, it is used to mean “the redox potential is in the vicinity of −500 mV without exceeding −500 mV”. Yes.
[0014]
Here, the addition of the zinc powder 39 is suitable for adjusting the oxidation-reduction potential, and if the added material is zinc, this is a component contained in the neutralizing solution 16 before the addition. For this reason, it cannot be a new impurity, and the influence on the subsequent process can be minimized. In addition, the reason is not yet clear, but the addition of the zinc powder 39 can effectively remove arsenic and cadmium. The form of the zinc powder 39 is a powder containing zinc as a main component, and it is desirable that the particle diameter is finer, but it may be about 1 μm to 1000 μm. The acid 40 is preferably sulfuric acid.
[0015]
Here, the removal effect of arsenic and cadmium by the addition of the zinc powder 39 and the acid 40 to the neutralizing solution 16 will be described in detail with reference to FIGS.
[0016]
1. [Examination of removal of arsenic and cadmium by adding zinc powder 39 to neutralizing solution 16]
The present inventors can remove arsenic and cadmium in the neutralized solution 16 by adding zinc powder 39 to the neutralized solution 16 (examples of compositions are shown in Table 1) under appropriate conditions. I found it. This elucidation process will be explained.
[0017]
[Table 1]
Figure 2005041711
[0018]
First, the reaction temperature was controlled and the zinc powder was added to the neutralizing solution 16 having the composition shown in Table 1 under the two levels of conditions shown in Table 2.
[0019]
[Table 2]
Figure 2005041711
[0020]
The behavior of the neutralizing solution 16 at this time will be described with reference to FIG.
FIG. 2 is a graph in which the vertical axis represents the cadmium concentration in the neutralizing solution 16 and the horizontal axis represents the reaction time. In the graph, level 1 is indicated by a broken line and level 2 is indicated by a solid line. When the added zinc powder concentration is 2 g / l, the oxidation-reduction potential of the neutralizing solution 16 is −500 mV or less and the pH is 3.0. When the added zinc powder concentration is 3 g / l, the oxidation-reduction potential is -700 mV or less, pH became 4.0.
[0021]
As shown in FIG. 2, at level 1, as the reaction time progresses, the cadmium concentration in the liquid once decreases but increases again as the reaction time progresses. This is thought to be because cadmium once becomes a starch but elutes again in the liquid. In contrast, at level 2, the cadmium concentration decreases with time. This is considered to be because the cadmium once converted to starch can be prevented from dissolving again.
[0022]
From this, the present inventors adjusted the addition amount of the zinc powder 39 so that the oxidation-reduction potential in the neutralization solution 16 was −700 mV or less, and further controlled the solution temperature, so that cadmium was contained in the medium. It was conceived that a decadmium solution 17 having a low cadmium content that can be removed from the sum solution 16 can be obtained. If cadmium removal is possible, it has been conceived that arsenic that behaves similarly to cadmium in the neutralizing solution 16 can be removed at the same time.
[0023]
2. [Examination of liquid temperature control]
The neutralization solution 16 similar to that described in Table 1 was used, and the reaction temperature conditions were set to three levels of 20 ° C., 30 ° C., and 40 ° C., and cadmium was removed from the neutralization solution 16. The amount of zinc powder added was 3 g / l, and the oxidation-reduction potential was −700 mV or less.
The behavior of the neutralizing solution 16 at this time is shown in FIG. However, FIG. 3 is a graph similar to FIG. 2, and the level of 20 ° C. is indicated by a one-dot chain line, the level of 30 ° C. is indicated by a solid line, and the level of 40 ° C. is indicated by a two-dot chain line.
From the above results, it was found that the cadmium concentration decreased with the reaction time at each temperature, and it was found that the liquid temperature during the reaction is preferably 60 ° C. or less, and more preferably 20 to 40 ° C. In this case as well, it was conceived that arsenic having a behavior similar to that of cadmium can be removed in the neutralizing solution 16 at the same time.
[0024]
3. [Examination of redox potential control]
The neutralization solution 16 similar to that described in Table 1 is used, and the concentration of zinc powder added is controlled so that the oxidation-reduction potential becomes two levels of -500 mV and -800 mV, and cadmium is removed from the neutralization solution 16. It was. The liquid temperature was 60 ° C.
The behavior of the neutralizing solution 16 at this time is shown in FIG. However, FIG. 4 is a graph similar to FIG. 2, and the level of −500 mV is indicated by a one-dot chain line, and the level of −800 mV is indicated by a solid line.
[0025]
As is apparent from FIG. 4, when the oxidation-reduction potential was −500 mV, the cadmium concentration decreased with the lapse of the reaction time, and became substantially constant after 60 minutes. On the other hand, when the oxidation-reduction potential was −800 mV, the concentration decreased with the lapse of the reaction time, and finally became almost zero. From this result, it can be seen that if the oxidation-reduction potential is −800 mV, a sufficient cadmium effect can be obtained, and it is preferable that at least the oxidation-reduction potential is −500 mV or less. In this case as well, it was conceived that arsenic having a behavior similar to that of cadmium can be removed in the neutralizing solution 16 at the same time.
[0026]
4). [Examination of pH control]
The neutralization solution 16 similar to that described in Table 1 was used, the pH level was set to three levels of 2.0, 3.0, and 4.0, and cadmium was removed from the neutralization solution 16. The liquid temperature was 60 ° C., and the oxidation-reduction potential was −500 mV or less.
The behavior of the neutralizing solution 16 at this time is shown in FIG. However, FIG. 5 is a graph similar to FIG. 2, in which the level of pH 2.0 is indicated by a one-dot chain line, the level of pH 3.0 is indicated by a solid line, and the level of pH 4.0 is indicated by a two-dot chain line.
[0027]
As is apparent from FIG. 5, when the pH is 2.0, the concentration of cadmium once decreases with the lapse of the reaction time, but immediately increases. At pH 3.0, the concentration decreases with the lapse of the reaction time and decreases to about 10 mg / l, but thereafter, the concentration increases with the lapse of the reaction time. On the other hand, at pH 4.0, the concentration becomes almost zero with the lapse of the reaction time, so that it can be seen that a sufficient cadmium removal effect can be obtained if the pH is 3.0 or more. If it is 0 or more, it is more effective. In this case as well, it was conceived that arsenic having a behavior similar to that of cadmium can be removed in the neutralizing solution 16 at the same time.
[0028]
Here, returning to FIG. 1 again, the considerations 1 to 4 described above are summarized.
The zinc powder 39 is mainly used for adjusting the oxidation-reduction potential of the neutralization solution 16, and the addition amount is preferably an addition amount that makes the oxidation-reduction potential of the neutralization solution 16 −500 mV or less, and −800 mV or less. The addition amount is more preferable. By setting the oxidation-reduction potential of the neutralization solution 16 to −500 mV or less, it is possible to prevent cadmium and arsenic precipitation and re-dissolution of the starch 41 in the neutralization solution 16. In particular, when the oxidation-reduction potential is −800 mV or less, it is more effective for removing cadmium and arsenic precipitates.
[0029]
In the reduction 56, the pH of the neutralizing solution 16 is preferably adjusted to 2-4. This is to prevent cadmium and arsenic from redissolving in the neutralizing solution 16, and is particularly effective for removing cadmium and arsenic at pH 3-4.
The liquid temperature during the reaction is preferably 60 ° C. or less, and particularly preferably 20 to 40 ° C. This is because, if the liquid temperature is too high, cadmium and arsenic precipitated once are redissolved. If the liquid temperature is too low, the reaction proceeds slowly.
After this treatment, the first starch 41 containing cadmium and arsenic is solid-liquid separated from the obtained solid-liquid mixture to obtain a decadmium solution 17 which is the first solution after the removal of cadmium and arsenic. . Here, the first step according to the present invention is completed.
[0030]
Next, the second step according to the present invention will be described.
The decadmium solution 17, which is the first solution according to the present invention, undergoes a deironing 57 step in order to separate the contained zinc and iron.
The present inventors have conceived that in this deironation 57 step, iron can be separated by the solubility difference between zinc and iron by defining the concentration of the free acid in the decadmium solution 17. Here, the examination of the free acid concentration will be described.
[0031]
5. [Examination of free acid concentration]
The neutralization solution 16 similar to that described in Table 1 was used, and the concentration of free acid was set to two levels of 10 g / l and 30 g / l, and the separation of zinc and iron was examined. The liquid temperature was 120 ° C. In this case, it is preferable to use sulfuric acid as the acid to be added, because it forms a starch by appropriately forming with iron.
The results are shown in Table 3. When the free acid concentration was 10 g / l, the zinc in the iron residue was 8000 ppm and iron was 68 wt%. When the free acid concentration was 30 g / l, zinc was 1200 ppm and iron was 70 wt%. That is, it was found that zinc and iron can be separated by appropriately setting the free acid concentration.
[0032]
[Table 3]
Figure 2005041711
[0033]
Here, returning to FIG. 1 again, the five considerations are summarized.
For example, using an autoclave, sulfuric acid 42 is added to the cadmium solution 17 to adjust the free acid concentration to about 10 to 30 g / l, the reaction temperature is about 120 ° C., and the atmosphere is an oxygen partial pressure of about 0.3 MPa. It is preferable to form an iron residue 18 as the second starch according to the present invention by forming a compound of iron and sulfuric acid by using a neutral atmosphere. The reason why the free acid concentration is set to 30 g / l or less is that when the free acid concentration is high, the solubility of zinc in the decadmium solution 17 increases and the separability from zinc decreases. The iron residue 18 is a mixture of various jarosite compounds such as iron oxide and iron hydroxide. Here, the filtrate 43 is separated from the obtained solid-liquid mixture, and the iron residue 18 as various jarosite compounds is recovered to complete the second step according to the present invention. In addition, the filtrate 43 can be advanced to the smelting process of zinc.
[0034]
Next, the 3rd process concerning the present invention is explained.
The iron residue 18 which is the second starch according to the present invention is washed 58 with water 44 or the like in order to wash off the acid and metal ions as they are. The water 44 is preferably water that does not contain chlorine. This is because, in the water containing chlorine, the chlorine component adheres to the iron residue 18, which affects the components of the iron oxide powder. The addition of water 44 is so good that the iron residue 18 can be repulped. From the obtained solid-liquid mixture, the solid-liquid separation for removing the filtrate 45 and the addition of water 44 are repeated to obtain the washed iron residue 19 which is the third starch according to the present invention. Thus, the third step according to the present invention is completed.
[0035]
Most of the components of the washed iron residue 19 are iron oxide. However, when the oxidation state as iron oxide is insufficient, roasting 59 is applied to perform further oxidation treatment. The roasting 59 may be performed in an oxygen-containing oxidizing gas atmosphere at a temperature of 700 ° C. or higher using a roasting furnace or the like. By this roasting 59, the iron oxide powder material 20 having a composition of 99.9% or more is obtained. This iron oxide powder material 20 becomes a raw material of the iron oxide powder 23. The iron oxide powder material 20 obtained here can be changed in particle size according to the application by pulverization in a subsequent process, and can be used as a material for a process regardless of the particle diameter.
[0036]
The iron oxide powder material 20 that has been subjected to the roasting process is washed 60 with water 46 and separated into starch 21 and filtrate 47 in the same manner as the above-described washing process, and then the starch 21 is dried 61 and dried 22 In order to obtain a desired particle size, the iron oxide powder 23 is obtained by pulverizing 62 using a pulverizer or the like.
In the description of the present embodiment, as a raw material solution containing iron, arsenic and cadmium, a case where a leachate obtained by leaching zinc by adding an acid to a sinter obtained by oxidizing zinc concentrate is used. As an example, the present invention is not limited to this, and can be applied to a solution containing various iron, arsenic and / or cadmium.
[0037]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
(Example 1)
Zinc concentrate from sulfide ore is oxidized and roasted to make zinc sinter, then acid leached with sulfuric acid, the leachate is heated to 110 ° C in an autoclave, and zinc and iron are dissolved in a sulfurous acid gas atmosphere, making it difficult Dissolve copper, noble metal, lead, etc. as a residue from the leach filtrate.
In this leaching filtrate, impurities such as arsenic reduced by a reducing agent such as zinc dust are precipitated while adjusting the acid concentration and copper ion concentration, and solid-liquid separation is performed into a low arsenic solution and a residue. Next, 1 m 3 (1,000 l) of a neutralized solution obtained by neutralizing free sulfuric acid contained in a large amount in the low arsenic solution to a pH of 4 with a calcium salt was collected. Table 4 shows examples of the liquid composition of the neutralization liquid at this time.
[0038]
[Table 4]
Figure 2005041711
[0039]
The composition was 1 mg / l arsenic, 476 mg / l cadmium, 83 mg / l zinc, 46 g / l iron, 77 g / l sulfur, 557 mg / l calcium, 4 g / l manganese. The analysis used chemical analysis, and the same analysis method was used hereinafter.
To this neutralization liquid, it added with the compounding quantity of 3.0 g / l so that oxidation-reduction potential may be set to -800 mV or less with zinc powder with respect to the neutralization liquid. Further, by adding sulfuric acid, the liquid temperature was adjusted to 30 ° C. while adjusting the liquid so that the pH became 4.0, and the reaction was performed for 90 minutes to perform the reduction step.
Next, solid-liquid separation between the starch generated in the liquid and the decadmium liquid was performed.
[0040]
This was repeated until the liquid volume reached about 15 m 3 . Table 5 shows a composition measurement example of the decadmium solution at this time.
[0041]
[Table 5]
Figure 2005041711
[0042]
The composition was arsenic not detected (1 mg / l or less), cadmium not detected (1 mg / l or less), Zn 65 g / l, Fe 37 g / l, S 62 g / l, Ca 415 mg / l, manganese 1 mg / l. .
[0043]
Sulfuric acid was added to this solution to make the free acid concentration 30 g / l or more. Then, while maintaining this free acid concentration, the reaction temperature was 120 ° C. in an autoclave, the atmosphere was oxygen partial pressure PO 2 0.3 MPa, and the reaction was performed for 2 hours. Next, solid-liquid separation was performed to obtain an iron residue.
[0044]
Water was added to the obtained iron residue for repulping and solid-liquid separation to wash the iron residue with water. Table 6 shows composition measurement examples of the iron residue after washing with water and specific surface areas measured by the BET method.
[0045]
[Table 6]
Figure 2005041711
[0046]
The composition of the iron residue was 49 wt% Fe 2 O 3 in a dry state, arsenic not detected (1 ppm or less), cadmium not detected (1 ppm or less), Zn 730 ppm, S 132200 ppm, Mn 18 ppm, Cl not detected (10 ppm or less) there were. The specific surface area measured by the BET method was 0.59 m 2 / g.
[0047]
The residue after washing with water was put into a roasting furnace, and the roasting temperature was 900 ° C. for 4 hours to oxidize the atmosphere as air to obtain an iron oxide powder material. Table 7 shows composition examples of this iron oxide powder material and specific surface areas measured by the BET method.
[0048]
[Table 7]
Figure 2005041711
[0049]
The composition example of the iron oxide powder material is dry, Fe 2 O 3 99.96 wt%, arsenic not detected (1 ppm or less), cadmium not detected (1 ppm or less), Zn 1400 ppm, S 136 ppm, Mn 21 ppm, Cl not detected ( An iron oxide powder material having a high purity of 10 ppm or less) was obtained. In particular, arsenic, cadmium, Mn, and Cl were low in concentration. The specific surface area measured by the BET method was 0.6 m 2 / g.
[0050]
Water washing was performed by adding water to the iron oxide powder material, repulping, and solid-liquid separation. The residue after washing with water was dried, and after drying, it was put into a pulverizer and pulverized to obtain a purified iron oxide powder. The pulverization was performed with a vibration mill, and was performed for 60 minutes at a ball filling rate of 70%.
Table 8 shows composition examples of the obtained purified iron oxide powder and specific surface areas measured by the BET method.
[0051]
[Table 8]
Figure 2005041711
[0052]
The composition of the refined iron oxide powder was as follows: Fe 2 O 3 99.96 wt%, arsenic not detected (1 ppm or less), cadmium not detected (1 ppm or less), Zn 1400 ppm, S 136 ppm, Mn 21 ppm, Cl not Detection (10 ppm or less). The specific surface area measured by the BET method was 2.36 m 2 / g.
According to the method for producing iron oxide powder, the particle size can be controlled while maintaining the purity, and it is possible to obtain a finer and finer iron oxide powder with high purity.
[0053]
【The invention's effect】
As described above in detail, the present invention is a method for producing iron oxide powder from a solution containing iron, arsenic and cadmium,
From the solid-liquid mixture obtained by adjusting the solution to 60 ° C. or lower, adding a reducing agent to set the oxidation-reduction potential of the solution to −500 mV or lower, and adjusting the pH to 4 or lower by adding an acid, A first step of separating one solution;
A second step of separating a second starch from a solid-liquid mixture obtained by adding an acid to the first solution and heating in an oxidizing atmosphere;
A third step of separating the third starch from the solid-liquid mixture obtained by adding water to the second starch, and a method for producing the iron oxide powder. From the solution containing iron, arsenic and cadmium, iron oxide powders with low contents of arsenic and cadmium could be produced.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a process flow diagram for obtaining purified iron oxide powder from a zinc concentrate leachate.
FIG. 2 is a graph showing the behavior of the neutralizing solution when the reaction temperature condition and the oxidation-reduction potential are changed.
FIG. 3 is a graph showing the behavior of the neutralizing solution when the reaction temperature conditions are changed.
FIG. 4 is a graph showing the behavior of the neutralizing solution when the oxidation-reduction potential is changed.
FIG. 5 is a graph showing the behavior of the neutralizing solution when the pH is changed.
[Explanation of symbols]
17. Decadmium solution (first solution)
18. Iron residue (second starch)
19. Washed iron residue (third starch)

Claims (3)

鉄、砒素およびカドミウムを含む溶液から酸化鉄粉を製造する方法であって、前記溶液を60℃以下とし、還元剤を添加し前記溶液の酸化還元電位を−500mV以下とした後に、酸を添加してpHを4以下に調整して得られた固液混合体から、第1の溶液を分離する第1の工程と、
前記第1の溶液に酸を添加し、酸化性雰囲気下において加熱して得られた固液混合体から、第2の澱物を分離する第2の工程と、
前記第2の澱物に水を添加して得られた固液混合体から、第3の澱物を分離する第3の工程と、を有することを特徴とする酸化鉄粉の製造方法。
A method for producing iron oxide powder from a solution containing iron, arsenic, and cadmium, wherein the solution is adjusted to 60 ° C. or less, a reducing agent is added, and the oxidation-reduction potential of the solution is set to −500 mV or less, and then an acid is added. A first step of separating the first solution from the solid-liquid mixture obtained by adjusting the pH to 4 or less;
A second step of separating a second starch from a solid-liquid mixture obtained by adding an acid to the first solution and heating in an oxidizing atmosphere;
And a third step of separating the third starch from the solid-liquid mixture obtained by adding water to the second starch. A method for producing iron oxide powder, comprising:
前記溶液とは、亜鉛精鉱を酸化処理した焼鉱に酸を加えて得られた浸出液へ、所定の処理を施して得られた、鉄、砒素およびカドミウムを含む溶液であることを特徴とする請求項1に記載の酸化鉄粉の製造方法。The solution is a solution containing iron, arsenic, and cadmium obtained by subjecting a leachate obtained by adding an acid to a sinter obtained by oxidizing zinc concentrate to a predetermined treatment. The manufacturing method of the iron oxide powder of Claim 1. カドミウム、砒素の含有量がそれぞれ1ppm以下、且つマンガンの含有量が100ppm以下であることを特徴とする酸化鉄粉。An iron oxide powder characterized in that the content of cadmium and arsenic is 1 ppm or less and the content of manganese is 100 ppm or less.
JP2003200339A 2003-07-23 2003-07-23 Iron oxide powder and method for producing the same Expired - Lifetime JP4385103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200339A JP4385103B2 (en) 2003-07-23 2003-07-23 Iron oxide powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200339A JP4385103B2 (en) 2003-07-23 2003-07-23 Iron oxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005041711A true JP2005041711A (en) 2005-02-17
JP4385103B2 JP4385103B2 (en) 2009-12-16

Family

ID=34260776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200339A Expired - Lifetime JP4385103B2 (en) 2003-07-23 2003-07-23 Iron oxide powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4385103B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091643A (en) * 2012-11-01 2014-05-19 Tdk Corp Ferrite composition, ferrite core and electronic component
JP2014091644A (en) * 2012-11-01 2014-05-19 Tdk Corp Ferrite composition, ferrite core and electronic component
JP2014156383A (en) * 2013-01-18 2014-08-28 Tdk Corp Ferrite composition, ferrite core and electronic part
CN110352254A (en) * 2018-02-01 2019-10-18 高丽亚铅株式会社 From the method for solution of zinc sulfate recycling iron

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101315A (en) * 1996-06-14 1998-01-06 Tetsugen:Kk Production of high purity iron oxide powder
JP2000302447A (en) * 1999-04-22 2000-10-31 Chemi Light Kogyo Kk High-purity iron oxide powder for ferrite and its production
JP2001354426A (en) * 2000-06-07 2001-12-25 Toagosei Co Ltd Method for manufacturing high purity ferric chloride aqueous solution
JP2002030355A (en) * 2000-07-11 2002-01-31 Dowa Mining Co Ltd Wet type treating method for zinc leaching residue
JP2004181431A (en) * 2002-12-06 2004-07-02 Tsurumi Soda Co Ltd Purification method of aqueous solution and purified aqueous solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101315A (en) * 1996-06-14 1998-01-06 Tetsugen:Kk Production of high purity iron oxide powder
JP2000302447A (en) * 1999-04-22 2000-10-31 Chemi Light Kogyo Kk High-purity iron oxide powder for ferrite and its production
JP2001354426A (en) * 2000-06-07 2001-12-25 Toagosei Co Ltd Method for manufacturing high purity ferric chloride aqueous solution
JP2002030355A (en) * 2000-07-11 2002-01-31 Dowa Mining Co Ltd Wet type treating method for zinc leaching residue
JP2004181431A (en) * 2002-12-06 2004-07-02 Tsurumi Soda Co Ltd Purification method of aqueous solution and purified aqueous solution

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091643A (en) * 2012-11-01 2014-05-19 Tdk Corp Ferrite composition, ferrite core and electronic component
JP2014091644A (en) * 2012-11-01 2014-05-19 Tdk Corp Ferrite composition, ferrite core and electronic component
JP2014156383A (en) * 2013-01-18 2014-08-28 Tdk Corp Ferrite composition, ferrite core and electronic part
CN110352254A (en) * 2018-02-01 2019-10-18 高丽亚铅株式会社 From the method for solution of zinc sulfate recycling iron
EP3719146A4 (en) * 2018-02-01 2021-03-31 Korea Zinc Co., Ltd. Method for recovering iron from zinc sulfate solution
US11001507B2 (en) 2018-02-01 2021-05-11 Korea Zinc Co., Ltd. Method of recovering iron from zinc sulphate solution
CN110352254B (en) * 2018-02-01 2021-06-11 高丽亚铅株式会社 Method for recovering iron from zinc sulfate solution

Also Published As

Publication number Publication date
JP4385103B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
EP1583848B1 (en) Recovering metals from sulfidic materials
JP4765062B2 (en) Wet treatment method for zinc leaching residue
JP5495418B2 (en) Method for recovering manganese
JP5176053B2 (en) Wet treatment method for zinc leaching residue
US4505744A (en) Recovery of zinc from zinc containing sulphidic material
KR20130077889A (en) Method for treating a solution containing zinc sulphate
JP3052535B2 (en) Treatment of smelting intermediates
JP4971933B2 (en) Method for producing iron arsenic compound
JPS5916940A (en) Recovery of zinc
JP4801372B2 (en) Method for removing manganese from cobalt sulfate solution
JP4385103B2 (en) Iron oxide powder and method for producing the same
JP3411320B2 (en) Zinc smelting method
KR20150050630A (en) Method for producing high purity manganese oxide from byproduct of manganese steel alloy smelting furnace and electric furnace and high purity manganese oxide produced thereby
JP6233177B2 (en) Method for producing rhenium sulfide
RU2680767C1 (en) Iron-containing sludge processing method
JP2007313505A (en) Method for treating arsenic containing solution
JP2008119690A (en) Method for treating arsenic containing solution
JP2002030355A (en) Wet type treating method for zinc leaching residue
FI126884B (en) Method and arrangement for separating arsenic from starting material
JP4206472B2 (en) Method for adjusting manganese concentration in zinc electrolyte
JP2006257540A (en) Method for treating raw zinc material
JP2019060018A (en) Separation method of zinc, manufacturing method of zinc material, and manufacturing method of iron material
JP6060877B2 (en) Method for producing rhenium-containing solution
JP2007154234A (en) Wet treatment method for zinc leaching residue
JP2009167442A (en) Method for separating arsenic and antimony in arsenic acid aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090902

R150 Certificate of patent or registration of utility model

Ref document number: 4385103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term