JP2000302447A - High-purity iron oxide powder for ferrite and its production - Google Patents

High-purity iron oxide powder for ferrite and its production

Info

Publication number
JP2000302447A
JP2000302447A JP11114905A JP11490599A JP2000302447A JP 2000302447 A JP2000302447 A JP 2000302447A JP 11114905 A JP11114905 A JP 11114905A JP 11490599 A JP11490599 A JP 11490599A JP 2000302447 A JP2000302447 A JP 2000302447A
Authority
JP
Japan
Prior art keywords
iron oxide
oxide powder
ferrite
content
ferric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11114905A
Other languages
Japanese (ja)
Other versions
JP3466504B2 (en
Inventor
Masahiko Mizuma
正彦 水間
Hiroko Yamada
浩子 山田
Junji Omori
惇二 大森
Yoshio Kitazawa
良雄 北澤
Toru Murase
徹 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHEMI LIGHT KOGYO KK
Original Assignee
CHEMI LIGHT KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHEMI LIGHT KOGYO KK filed Critical CHEMI LIGHT KOGYO KK
Priority to JP11490599A priority Critical patent/JP3466504B2/en
Publication of JP2000302447A publication Critical patent/JP2000302447A/en
Application granted granted Critical
Publication of JP3466504B2 publication Critical patent/JP3466504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain high-purity iron oxide powder for ferrite used for electronic parts for telecommunication equipment, computers, televisions, VTR, etc., especially chip parts and provide a method for producing the iron oxide powder. SOLUTION: This high-purity iron oxide powder for ferrite has <=10 ppm P content and <=0.01 wt.% SO42- content and further has <=0.3 μm particle diameter or the iron oxide powder is obtained by wet method by using a ferric salt as a starting raw material and has <=10 ppm P content and <=0.01 wt.% SO42- content or the iron oxide powder feathers comprising <=0.06 wt.% MnO content and >=99.8 wt.% Fe2O3 content and optionally <=0.006 SiO2 content in addition to the P content and the SO42- content of the above iron oxide powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、通信機器、コンピ
ューター、テレビ、VTR等の電子部品、特にチップ部
品等に用いられるフェライト用高純度酸化鉄粉およびそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-purity iron oxide powder for ferrite used in electronic parts such as communication equipment, computers, televisions and VTRs, particularly chip parts, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、酸化第2鉄の製造方法としては、
大別して乾式法と湿式法とが知られている。乾式法とし
ては、例えば微細な含水酸化鉄を加熱脱水する方法や微
細マグネタイトを加熱酸化する方法が知られている。一
方、湿式法としては、第二鉄塩にアルカリを添加して、
水酸化第二鉄を生成させ、これを濾過し、洗浄した後、
乾燥させる方法が、例えば特許第2600562号公報
に記載されている。さらに、金属鉄のアルカリ懸濁液中
に酸化鉄の種晶を加えた後、酸化する方法が開示されて
いる。このように湿式法としての基本的な処理方法は既
に知られている。
2. Description of the Related Art Conventionally, ferric oxide production methods include:
Generally, a dry method and a wet method are known. As the dry method, for example, a method of heating and dehydrating fine hydrous iron oxide and a method of heating and oxidizing fine magnetite are known. On the other hand, as a wet method, an alkali is added to a ferric salt,
After producing ferric hydroxide, which is filtered and washed,
A method of drying is described in, for example, Japanese Patent No. 26000562. Further, a method is disclosed in which a seed crystal of iron oxide is added to an alkaline suspension of metallic iron and then oxidized. Thus, a basic processing method as a wet method is already known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た例えば特許第2600562号公報に示されているも
のは、フェライト用としての開示はなく、しかも純度の
点でフェライト用には適用できず、未だ、新しい電子部
品に最適なフェライト用高純度酸化鉄粉を得るまでには
至っていないのが実状である。また、本発明酸化鉄の主
要用途である積層フェライト等では、Ag等の回路とフ
ェライトが一体焼結される。このとき、Ag等の回路を
構成する金属の拡散移動等、悪影響を引き起こさないた
めに、低温での反応性に優れた原料酸化鉄等の使用が必
要とされている。現在、この目的のために、CuO等低
温でフェライトを形成しやすい原料を混合使用している
が、磁気特性の向上のためにも、CuOの使用量を出来
るだけ削減することが望まれている。
However, the above-mentioned one disclosed in, for example, Japanese Patent Publication No. 26000562 is not disclosed for ferrite, and cannot be applied to ferrite in terms of purity. The reality is that high purity iron oxide powder for ferrite, which is optimal for new electronic components, has not yet been obtained. In a laminated ferrite or the like which is a main use of the iron oxide of the present invention, a ferrite and a circuit such as Ag are sintered integrally. At this time, it is necessary to use a raw material iron oxide having excellent reactivity at a low temperature so as not to cause an adverse effect such as diffusion and movement of a metal constituting a circuit such as Ag. At present, for this purpose, raw materials that easily form ferrite at a low temperature, such as CuO, are mixed and used. However, in order to improve magnetic properties, it is desired to reduce the amount of CuO used as much as possible. .

【0004】[0004]

【課題を解決するための手段】上述したような問題を解
消するために鋭意開発を進めた結果、本発明において
は、特にチップ部品である積層チップインダクター等に
必要な特性である低温焼結性が可能で、しかも電磁気特
性のよい高純度な微粒子から構成されるフェライト用高
純度酸化鉄粉およびその製造方法を提供することにあ
る。その発明の要旨とするところは、 (1)P≦10ppm、SO4 2-≦0.01重量%であ
る酸化鉄粉で、さらに、粒径≦0.3μmとしたことを
特徴とするフェライト用高純度酸化鉄粉。 (2)第二鉄塩を出発原料として、湿式法により得られ
る酸化鉄粉で、P≦10ppm、SO4 2-≦0.01重
量%であることを特徴とするフェライト用高純度酸化鉄
粉。
As a result of intensive development to solve the above-mentioned problems, the present invention has revealed that low-temperature sintering, which is a characteristic required for a chip component such as a multilayer chip inductor, is particularly required. It is an object of the present invention to provide a high-purity iron oxide powder for ferrite composed of high-purity fine particles having high electromagnetic properties and good electromagnetic properties, and a method for producing the same. The gist of the invention is (1) an iron oxide powder having P ≦ 10 ppm and SO 4 2− ≦ 0.01% by weight, and further having a particle size ≦ 0.3 μm. High purity iron oxide powder. (2) High-purity iron oxide powder for ferrite, wherein P ≦ 10 ppm and SO 4 2− ≦ 0.01% by weight, obtained by a wet method using a ferric salt as a starting material. .

【0005】(3)前記(1)または(2)記載の酸化
鉄粉に、さらに、MnO≦0.06重量%であって、F
2 3 ≧99.8%の酸化鉄粉からなることを特徴と
するフェライト用高純度酸化鉄粉。 (4)前記(1)から(3)記載の酸化鉄粉に、さら
に、SiO2 ≦0.006重量%としたことを特徴とす
るフェライト用高純度酸化鉄粉。
(3) The iron oxide powder according to the above (1) or (2) further comprises MnO ≦ 0.06% by weight,
A high-purity iron oxide powder for ferrite, comprising iron oxide powder having e 2 O 3 ≧ 99.8%. (4) A high-purity iron oxide powder for ferrite, wherein the iron oxide powder according to (1) to (3) is further set to SiO 2 ≦ 0.006% by weight.

【0006】(5)鉄鋼酸洗廃液等を精製してなる塩化
鉄溶液を焙焼して得る酸化第二鉄、または蓚酸塩を用い
て得られる蓚酸第二鉄をHClに溶解して得られた塩化
第二鉄、あるいは精製された硝酸第二鉄、あるいは精製
された第一鉄塩をO2 、Cl2、HNO3 等の酸化剤を
用いて、第二鉄化合物としたものを出発原料とし、該第
二鉄塩をアルカリ性水溶液を用いて、を出発原料とし、
該第二鉄塩をアルカリ性水溶液を用いて、pH2.5〜
6.0の範囲に調整した後、65〜99℃の温度範囲
で、12時間以上保持することにより、保持最終時のp
Hを1.5以下とし、該保持後に生成した沈澱物中の不
純物を洗浄、除去し、該沈澱物を脱水し、乾燥すること
を特徴とするフェライト用高純度酸化鉄粉の製造方法に
ある。
(5) Ferric oxide obtained by roasting an iron chloride solution obtained by purifying a steel pickling waste liquid or the like, or ferric oxalate obtained by using oxalate dissolved in HCl. Ferric chloride, or purified ferric nitrate, or purified ferrous salt as a ferric compound using an oxidizing agent such as O 2 , Cl 2 , or HNO 3 as a starting material And using the ferric salt in an alkaline aqueous solution as a starting material,
The ferric salt is adjusted to pH 2.5 to
After adjusting to the range of 6.0, by holding for 12 hours or more in the temperature range of 65 to 99 ° C., p at the end of holding is maintained.
A method for producing high-purity iron oxide powder for ferrite, wherein H is 1.5 or less, impurities in a precipitate formed after the holding are washed and removed, and the precipitate is dehydrated and dried. .

【0007】以下、本発明について図面に従って詳細に
説明する。図1は、P含有量と焼結密度との関係を示す
図である。P含有量が増大するとフェライト焼結体(多
結晶体)中に異常粒成長が多くなり、焼結密度が低下
し、結果として必要な電磁特性が確保できない。異常粒
成長の少ない多結晶フェライトを得るために、P含有量
を10ppm以下にする必要があることから本発明にお
いては、P含有量を10ppm以下とした。この場合の
焼結密度については、図1に示すように、5.0g/c
3 以上の値を得ることが出来る。このようにP含有量
を10ppm以下にすれば焼結密度は5.0g/cm3
以上得られることが判る。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing the relationship between the P content and the sintered density. When the P content increases, abnormal grain growth increases in the ferrite sintered body (polycrystalline body), the sintered density decreases, and as a result, required electromagnetic characteristics cannot be secured. In order to obtain polycrystalline ferrite with less abnormal grain growth, the P content needs to be 10 ppm or less. Therefore, in the present invention, the P content is set to 10 ppm or less. Regarding the sintered density in this case, as shown in FIG.
m 3 or more can be obtained. When the P content is set to 10 ppm or less, the sintered density becomes 5.0 g / cm 3.
It turns out that it can obtain above.

【0008】図2は、焼成温度と焼結密度との関係を示
す図である。この図に示すように、本発明では従来例に
比較して焼結密度が高いことが判る。しかも、本発明に
よれば800℃以上の焼成温度によって焼結密度5.0
g/cm3 以上の値を得ることが出来る。このように焼
結密度5.0g/cm3 以上の値を得るためには、従来
例に比べて焼結温度の低い温度で達成することができる
ことが判る。すなわち、本発明は比較例に比べて極めて
優れた低温焼結性を有するものである。このように、本
発明においては、P含有量を10ppm以下にすること
により焼結密度を高め、その結果、磁気特性への悪影響
を及ぼす高温焼成から低温焼成が可能となった。
FIG. 2 is a diagram showing the relationship between the sintering temperature and the sintering density. As shown in this figure, it can be seen that the sintered density of the present invention is higher than that of the conventional example. In addition, according to the present invention, the sintering density is 5.0 at a sintering temperature of 800 ° C. or more.
g / cm 3 or more can be obtained. It can be seen that in order to obtain a sintered density of 5.0 g / cm 3 or more as described above, it is possible to achieve a lower sintering temperature than in the conventional example. That is, the present invention has extremely low temperature sinterability as compared with the comparative example. As described above, in the present invention, the sintering density was increased by reducing the P content to 10 ppm or less, and as a result, high-temperature sintering from low-temperature sintering, which adversely affects magnetic properties, became possible.

【0009】図3は、粒径0.1μmでのSO4 2-含有
量による焼成温度と酸化鉄の熱収縮率との関係を示す図
である。また、図4は、図3に示す熱収縮曲線から、8
00℃での収縮率の1200℃に対する割合(以下、8
00℃収縮割合という)を算出し、SO4 2-含有量に対
してプロットした図である。この図に示すように、SO
4 2-含有量が低くなるほど800℃収縮割合が高くな
り、熱収縮し易い(反応性が高い)酸化鉄となることを
示す。
FIG. 3 is a diagram showing the relationship between the sintering temperature and the heat shrinkage of iron oxide depending on the content of SO 4 2- at a particle size of 0.1 μm. FIG. 4 shows that the heat shrinkage curve shown in FIG.
The ratio of the shrinkage at 00 ° C. to 1200 ° C. (hereinafter, 8
FIG. 3 is a diagram in which the percentage of shrinkage at 00 ° C. is calculated and plotted against the SO 4 2− content. As shown in FIG.
The lower the 42- content, the higher the percentage shrinkage at 800 ° C, indicating that the resulting iron oxide is likely to thermally shrink (highly reactive).

【0010】すなわち、SO4 2-含有量が低くなるほ
ど、焼結性が良く、低温焼結性が可能であることを示し
ている。SO4 2-含有量が1ppm程度の酸化鉄では、
800℃収縮割合が90%にも達することを示す。SO
4 2-含有量が100ppm(0.01%)以下で急激に
反応性が高まることから、フェライトの中間原料である
仮焼粉特性を制御する手段として、酸化鉄中のSO4 2-
含有量を制御することも採用できる。従って、本発明に
おいては、SO4 2-含有量を0.01%以下とした。こ
れによって、低温焼結性が得られ、優れた磁気特性を得
ることが出来た。
That is, the lower the SO 4 2- content, the better the sinterability and the lower the sinterability. For iron oxide with an SO 4 2- content of about 1 ppm,
This shows that the shrinkage ratio at 800 ° C. reaches as much as 90%. SO
4 2- because the content is increased rapidly reactive below 100ppm (0.01%), as a means of controlling the calcined powder characteristics is a ferrite of the intermediate material, SO in the iron oxide 4 2-
Controlling the content can also be employed. Therefore, in the present invention, the SO 4 2- content is set to 0.01% or less. Thereby, low-temperature sinterability was obtained, and excellent magnetic properties were obtained.

【0011】図5は、FeCl3 にNaOH添加した時
のpHとMnOとの関係を示す図である。この図に示す
ようにpH6.0以下において、MnO0.06%以下
の値を示していることが判る。本発明の主要適用範囲で
ある積層部品用のフェライトには、NiOを主要成分と
する原材料が使用されており、不純物としてのMnOの
存在は、磁気特性等の目標値達成を阻害する原因の一つ
となる。
FIG. 5 is a diagram showing the relationship between pH and MnO when NaOH is added to FeCl 3 . As shown in this figure, it can be seen that at pH 6.0 or less, MnO shows a value of 0.06% or less. Raw materials containing NiO as a main component are used in ferrites for laminated parts, which are the main application range of the present invention. The presence of MnO as an impurity is one of the factors that hinder achievement of target values such as magnetic properties. One.

【0012】図6は、FeCl3 にNaOH添加後の反
応終了時のpHとFe2 3 の純度の関係を示す図であ
る。反応終了時のpH1.5以下にすると、少なくとも
Fe 2 3 分99.8%以上にすることができる。すな
わち、不純物(Ca,Cr,Ni,Cu,Zn,Al
等)はpH1.5以下にすることによって、酸化鉄中よ
り排出(溶解)される。このようにしてFe2 3 分の
純度を99.8%以上の高純度とすることにより、磁気
特性の優れた製品を得ることができた。
FIG. 6 shows FeClThreeAfter adding NaOH to
PH and Fe at the end of the reactionTwoOThreeFIG.
You. When the pH at the end of the reaction is 1.5 or less, at least
Fe TwoOThreeCan be 99.8% or more. sand
That is, impurities (Ca, Cr, Ni, Cu, Zn, Al
And so on) by adjusting the pH to 1.5 or less,
Is discharged (dissolved). Thus, FeTwoOThreeMinute
By making the purity as high as 99.8% or more,
A product with excellent characteristics was obtained.

【0013】図7は、各粒径での焼成温度と熱収縮率と
の関係を示す図である。この図に示すように、粒径0.
50μm、0.30μm、0.15μmおよび0.06
μmの各粒径での焼成温度が、例えば800℃での熱収
縮率については、0.50μmの場合に比べて、0.3
0μm以下の場合には熱収縮率が極めて増大しているこ
とが判る。すなわち、粒径0.30μm以下の場合には
急激に熱収縮率が増大し、低温焼結性の良いことを示し
ている。従って、本発明においては高純度酸化鉄粉の粒
度を0.30μm以下とした。
FIG. 7 is a diagram showing the relationship between the sintering temperature and the heat shrinkage at each particle size. As shown in FIG.
50 μm, 0.30 μm, 0.15 μm and 0.06
When the firing temperature at each particle size of μm is, for example, 800 ° C., the heat shrinkage rate is 0.3 compared to 0.50 μm.
It can be seen that the heat shrinkage is extremely increased when the thickness is 0 μm or less. That is, when the particle size is 0.30 μm or less, the heat shrinkage rate sharply increases, indicating that the low-temperature sinterability is good. Therefore, in the present invention, the particle size of the high-purity iron oxide powder is set to 0.30 μm or less.

【0014】次に、SiO2 であるが、このSiO2
代表する不純物であり、SiO2 含有量が多い焼結体で
は結晶粒径が大きく、また、パワーロスもかなり大き
い。これに対して、SiO2 含有量が少ない焼結体では
結晶粒径が小さくて均一となり、パワーロスも小さいこ
とから、本発明においては、SiO2 含有量を0.00
6%以下とした。
Next, regarding SiO 2 , SiO 2 is a representative impurity, and a sintered body containing a large amount of SiO 2 has a large crystal grain size and a considerable power loss. In contrast, it becomes uniform small grain size of SiO 2 content is less sintered body, since the power loss is also small, in the present invention, the SiO 2 content 0.00
6% or less.

【0015】次に、本発明に係る製造方法について説明
する。本発明においては、SO4 2-:0.01%以下、
SiO2 :0.006%以下とするための原料として、
特に鉄鋼酸洗廃液等が望ましい。この鉄鋼酸洗廃液を通
常の精製方法に従って塩化鉄溶液を焙焼して酸化第2鉄
を得る。この酸化第2鉄をスチーム加熱によって、以下
の式(1)のようにして塩化第2鉄水溶液を得る。 Fe2 3 +6HCl → 2FeCl3 +3H2 … (1) 得られた塩化第2鉄水溶液にNaOHでpH2.5〜
6.0の範囲に調整した後65〜99℃の温度範囲で1
2時間以上保持することにより、保持最終時のpHを
1.5以下とする。その反応は以下の式(2)、
(3)、(4)となる。
Next, a manufacturing method according to the present invention will be described. In the present invention, SO 4 2- : 0.01% or less,
SiO 2 : As a raw material for reducing the content to 0.006% or less,
In particular, steel pickling waste liquid is desirable. This iron and steel pickling waste liquid is roasted with an iron chloride solution according to a usual purification method to obtain ferric oxide. The ferric oxide is subjected to steam heating to obtain an aqueous ferric chloride solution according to the following formula (1). Fe 2 O 3 + 6HCl → 2FeCl 3 + 3H 2 (1) The obtained ferric chloride aqueous solution was adjusted to pH 2.5 to NaOH with NaOH.
After adjusting to the range of 6.0, 1
By holding for 2 hours or more, the pH at the end of holding is adjusted to 1.5 or less. The reaction is represented by the following equation (2):
(3) and (4).

【0016】 2FeCl3 +3NaOH→Fe(OH)3 +3NaCl+FeCl3 …(2) このときにポリマー生成し、pHが酸性側へ、 Fe(OH)3 +FeCl3 →Fe2 (OH)2 OCl2 +HCl …(3) 次いで、β−FeOOHを生成し、脱水し、Fe2 3
を生成する。 3/2Fe2 (OH)2 OCl2 +HCl→2βFeOOH+FeCl3 +1/ 2H2 O+HCl→Fe2 3 +FeCl3 +3/2H2 O+HCl …(4)
2FeCl 3 + 3NaOH → Fe (OH) 3 + 3NaCl + FeCl 3 (2) At this time, a polymer is formed and the pH is shifted to the acidic side, and Fe (OH) 3 + FeCl 3 → Fe 2 (OH) 2 OCl 2 + HCl ( 3) Next, β-FeOOH is generated and dehydrated, and Fe 2 O 3
Generate 3 / 2Fe 2 (OH) 2 OCl 2 + HCl → 2βFeOOH + FeCl 3 + 1 / 2H 2 O + HCl → Fe 2 O 3 + FeCl 3 + 3 / 2H 2 O + HCl (4)

【0017】その後洗浄により、Fe2 3 からFeC
3 、HCl、NaClと排出金属分の除去、Si
2 :0.006重量%以下、電導度30μs/cm以
下となる。次いで、120〜130℃で乾燥して製品と
するものである。このような製造工程において、中和時
のFe3+濃度と反応pHによって粒径を抑制して粒径
0.3μm以下とする。
Thereafter, by washing, Fe 2 O 3 is converted to FeC.
l 3 , HCl, NaCl and removal of discharged metal, Si
O 2 : 0.006% by weight or less, conductivity 30 μs / cm or less. Next, it is dried at 120 to 130 ° C. to obtain a product. In such a manufacturing process, the particle size is suppressed to 0.3 μm or less by the Fe 3+ concentration during neutralization and the reaction pH.

【0018】図8は、Fe3+ 濃度1.8molと0.
5mol/lの場合での反応pHと粒径との関係を示す
図である。この図で示すように粒径を一定の値以下にす
るためには反応pHにより制御することが出来ることを
意味している。すなわち、粒径0.3μm以下にするた
めには反応pHを3.0〜6.0とする必要があること
を示している。
FIG. 8 shows that the Fe 3+ concentration is 1.8 mol and 0.1 mol.
It is a figure which shows the relationship between reaction pH and particle size in the case of 5 mol / l. As shown in this figure, it means that the particle size can be controlled by the reaction pH in order to reduce the particle size to a certain value or less. In other words, it indicates that the reaction pH needs to be 3.0 to 6.0 in order to make the particle diameter 0.3 μm or less.

【0019】図9は、Fe3+ 濃度と終点pHとの関係
を示す図である。この図に示すように、Fe3+ 濃度が
低くなると終点pHが高くなり、他金属の残留が多くな
る。この場合においては終点時にHClを入れてpH
1.5以下にすることによって、前述したように、Fe
2 3 の純度99.8%以上を達成することができる。
FIG. 9 is a diagram showing the relationship between the Fe 3+ concentration and the end point pH. As shown in this figure, the lower the Fe 3+ concentration, the higher the end point pH and the more residual other metals. In this case, add HCl at the end point to pH
By setting it to 1.5 or less, as described above,
A purity of 99.8% or more of 2 O 3 can be achieved.

【0020】[0020]

【実施例】以下、本発明について実施例によって具体的
に説明する。表1に示すように、No1〜13は本発明
例であり、No14〜23は比較例である。No1〜1
1とNo14〜19の出発原料は鉄鋼酸洗廃液等を精製
した塩化第2鉄溶液、No12は蓚酸を用いて蓚酸第二
鉄として回収・精製した塩化第2鉄溶液、No13は精
製硝酸第2鉄溶液であり、いずれも精製によりP、Si
2 等の不純物を少なくした原料を用いた。これに対し
て、比較例であるNo23はFe2 (SO4 3 、No
20から22は市販のFeCl3 を用いてNaOHでp
H調整した。これらを加熱してpHの下降が一定になる
まで保持した。反応終了後の沈澱物を純水とNH4 OH
水を添加して洗浄し、濾過、乾燥した。乾燥物の組成は
Fe2 3 の酸化鉄を得た。その最終製品の純度のFe
2 3 および不純物含有量を示す。また、粒度は電子顕
微鏡写真より得た。図10は本発明粒子の電子顕微鏡写
真の一例を示すが、粒径分布が極めてシャープで、凝集
のない粒子であり、電子顕微鏡写真から精度良く測定可
能である。
The present invention will be specifically described below with reference to examples. As shown in Table 1, Nos. 1 to 13 are examples of the present invention, and Nos. 14 to 23 are comparative examples. No1 ~ 1
The starting materials No. 1 and Nos. 14 to 19 were a ferric chloride solution obtained by purifying a steel pickling waste liquid and the like, No. 12 was a ferric chloride solution recovered and purified as ferric oxalate using oxalic acid, and No. 13 was purified nitric acid nitrate. It is an iron solution, and P and Si
A raw material in which impurities such as O 2 were reduced was used. On the other hand, No. 23 which is a comparative example has Fe 2 (SO 4 ) 3 and No.
Nos. 20 to 22 are p-type with NaOH using commercially available FeCl 3.
H was adjusted. These were heated and held until the drop in pH was constant. After completion of the reaction, the precipitate is purified water and NH 4 OH.
The mixture was washed by adding water, filtered and dried. The composition of the dried product was Fe 2 O 3 iron oxide. Fe of the purity of the final product
Shows 2 O 3 and impurity content. The particle size was obtained from an electron micrograph. FIG. 10 shows an example of an electron micrograph of the particles of the present invention. The particles have an extremely sharp particle size distribution and are free from agglomeration, and can be accurately measured from the electron micrograph.

【0021】表1に示すように、本発明に係るNo1〜
13はいずれもFe2 3 粉末の製品純度が高く、これ
に対して比較例であるNo14〜21はいずれもFe2
3純度は99.75以下と低く、特に不純物であるM
nO、CaO,SO4 2-、Cr、Zn、Ni等の高いこ
とが判る。
As shown in Table 1, according to the present invention, Nos.
13 are both Fe 2 O 3 powder product purity is high, a comparative example with respect to this No14~21 Both Fe 2
O 3 purity is as low as 99.75 or less, and particularly, M which is an impurity
It can be seen that nO, CaO, SO 4 2− , Cr, Zn, Ni and the like are high.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】以上述べたように、本発明により通信機
器、パソコン、ビデオカメラ等の電子部品、特にチップ
部品である積層チップインダクター等に必要な特性であ
る低温焼結が可能で、電磁気特性の良い高純度、微粒子
が得られ、極めて工業的に有利な材料を提供することが
出来る優れた効果を奏すものである。
As described above, according to the present invention, low-temperature sintering, which is a characteristic required for electronic components such as communication equipment, personal computers, and video cameras, and particularly for chip components such as multilayer chip inductors, is possible. High purity and fine particles having good characteristics can be obtained, and an excellent effect of providing a material which is extremely industrially advantageous can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】P含有量と焼結密度との関係を示す図である。FIG. 1 is a diagram showing a relationship between a P content and a sintered density.

【図2】焼成温度と焼結密度との関係を示す図である。FIG. 2 is a diagram showing a relationship between a sintering temperature and a sintering density.

【図3】粒径0.1μmでのSO4 2-含有量による焼成
温度と酸化鉄の熱収縮率との関係を示す図である。
FIG. 3 is a graph showing the relationship between the sintering temperature and the heat shrinkage of iron oxide depending on the SO 4 2- content at a particle size of 0.1 μm.

【図4】図3に示す熱収縮曲線から、800℃での収縮
率の1200℃に対する割合を算出し、SO4 2-含有量
に対してプロットした図である。
4 is a diagram in which a ratio of a shrinkage ratio at 800 ° C. to 1200 ° C. is calculated from the heat shrinkage curve shown in FIG. 3 and plotted against SO 4 2− content.

【図5】FeCl3 にNaOH添加時のpHとMnOと
の関係を示す図である。
FIG. 5 is a diagram showing the relationship between pH and MnO when NaOH is added to FeCl 3 .

【図6】FeCl3 にNaOH添加後の反応終了時のp
HとFe2 3 の純度との関係を示す図である。
FIG. 6 shows p at the end of the reaction after adding NaOH to FeCl 3 .
It is a diagram showing the relationship between the purity of H and Fe 2 O 3.

【図7】各粒径での焼成温度と熱収縮率との関係を示す
図である。
FIG. 7 is a diagram showing a relationship between a sintering temperature and a heat shrinkage rate at each particle size.

【図8】Fe3+ 濃度0.5、1.8mol/lの場合
での反応pHと粒径との関係を示す図である。
FIG. 8 is a graph showing the relationship between the reaction pH and the particle size when the Fe 3+ concentration is 0.5 and 1.8 mol / l.

【図9】Fe3+ 濃度と終点pHとの関係を示す図であ
る。
FIG. 9 is a graph showing the relationship between Fe 3+ concentration and end point pH.

【図10】本発明に係る粒子の透過型電子顕微鏡写真で
ある。
FIG. 10 is a transmission electron micrograph of particles according to the present invention.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年4月27日(1999.4.2
7)
[Submission date] April 27, 1999 (1999.4.2
7)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】(5)鉄鋼酸洗廃液等を精製してなる塩化
鉄溶液を焙焼して得る酸化第二鉄、または蓚酸塩を用い
て得られる蓚酸第二鉄をHClに溶解して得られた塩化
第二鉄、あるいは精製された硝酸第二鉄、あるいは精製
された第一鉄塩をO2 、Cl2、HNO3 等の酸化剤を
用いて、第二鉄化合物としたものを出発原料とし、該第
二鉄塩をアルカリ性水溶液を用いてpH2.5〜6.
0の範囲に調整した後、65〜99℃の温度範囲で、1
2時間以上保持することにより、保持最終時のpHを
1.5以下とし、該保持後に生成した沈澱物中の不純物
を洗浄、除去し、該沈澱物を脱水し、乾燥することを特
徴とするフェライト用高純度酸化鉄粉の製造方法にあ
る。
(5) Ferric oxide obtained by roasting an iron chloride solution obtained by purifying a steel pickling waste liquid or the like, or ferric oxalate obtained by using oxalate dissolved in HCl. Ferric chloride, or purified ferric nitrate, or purified ferrous salt as a ferric compound using an oxidizing agent such as O 2 , Cl 2 , or HNO 3 as a starting material The ferric salt was prepared by using an alkaline aqueous solution to have a pH of 2.5 to 6.
After being adjusted to a range of 0, a temperature range of 65 to 99 ° C.
By maintaining for 2 hours or more, the pH at the end of holding is reduced to 1.5 or less, impurities in the precipitate formed after the holding are washed and removed, and the precipitate is dehydrated and dried. A method for producing high-purity iron oxide powder for ferrite.

フロントページの続き (72)発明者 大森 惇二 東京都中央区銀座7丁目12番14号 ケミラ イト工業株式会社内 (72)発明者 北澤 良雄 東京都中央区銀座7丁目12番14号 ケミラ イト工業株式会社内 (72)発明者 村瀬 徹 東京都中央区銀座7丁目12番14号 ケミラ イト工業株式会社内 Fターム(参考) 4G002 AA03 AB04 AC02 AD03 AE02 5E041 AB16 AB19 CA01 HB15 NN02 NN06 NN17 NN18 Continued on the front page (72) Inventor Junji Omori 7-12-14 Ginza, Chuo-ku, Tokyo Chemilite Industry Co., Ltd. (72) Inventor Yoshio Kitazawa 7-12-14 Ginza, Chuo-ku, Tokyo Chemilight Industry (72) Inventor Toru Murase 7-12-14 Ginza, Chuo-ku, Tokyo F-term (reference) 4K002 AA03 AB04 AC02 AD03 AE02 5E041 AB16 AB19 CA01 HB15 NN02 NN06 NN17 NN18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 P≦10ppm、SO4 2-≦0.01重
量%である酸化鉄粉で、さらに、粒径≦0.3μmとし
たことを特徴とするフェライト用高純度酸化鉄粉。
1. A high-purity iron oxide powder for ferrite, wherein P ≦ 10 ppm and SO 4 2− ≦ 0.01% by weight, and further, the particle size is ≦ 0.3 μm.
【請求項2】 第二鉄塩を出発原料として、湿式法によ
り得られる酸化鉄粉で、P≦10ppm、SO4 2-
0.01重量%であることを特徴とするフェライト用高
純度酸化鉄粉。
2. An iron oxide powder obtained by a wet method using a ferric salt as a starting material, wherein P ≦ 10 ppm, SO 4 2−
High-purity iron oxide powder for ferrite, which is 0.01% by weight.
【請求項3】 請求項1または2記載の酸化鉄粉に、さ
らに、MnO≦0.06重量%であって、Fe2 3
99.8%の酸化鉄粉からなることを特徴とするフェラ
イト用高純度酸化鉄粉。
3. The iron oxide powder according to claim 1, further comprising: MnO ≦ 0.06% by weight and Fe 2 O 3
A high-purity iron oxide powder for ferrite, comprising 99.8% iron oxide powder.
【請求項4】 請求項1から3記載の酸化鉄粉に、さら
に、SiO2 ≦0.006重量%としたことを特徴とす
るフェライト用高純度酸化鉄粉。
4. A high-purity iron oxide powder for ferrite, wherein the iron oxide powder according to claim 1 is further provided with SiO 2 ≦ 0.006% by weight.
【請求項5】 鉄鋼酸洗廃液等を精製してなる塩化鉄溶
液を焙焼して得る酸化第二鉄、または蓚酸塩を用いて得
られる蓚酸第二鉄をHClに溶解して得られた塩化第二
鉄、あるいは精製された硝酸第二鉄を出発原料とし、該
第二鉄塩をアルカリ性水溶液を用いて、pH2.5〜
6.0の範囲に調整した後、65〜99℃の温度範囲
で、12時間以上保持することにより、保持最終時のp
Hを1.5以下とし、該保持後に生成した沈澱物中の不
純物を洗浄、除去し、該沈澱物を脱水し、乾燥すること
を特徴とするフェライト用高純度酸化鉄粉の製造方法。
5. A ferric oxide obtained by roasting an iron chloride solution obtained by purifying a steel pickling waste liquid or the like, or a ferric oxalate obtained by using an oxalate dissolved in HCl. Using ferric chloride or purified ferric nitrate as a starting material, the ferric salt is adjusted to pH 2.5 to
After adjusting to the range of 6.0, by holding for 12 hours or more in the temperature range of 65 to 99 ° C., p at the end of holding is maintained.
A method for producing high-purity iron oxide powder for ferrite, wherein H is set to 1.5 or less, impurities in a precipitate formed after the holding are washed and removed, and the precipitate is dehydrated and dried.
JP11490599A 1999-04-22 1999-04-22 High purity iron oxide powder for ferrite and method for producing the same Expired - Fee Related JP3466504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11490599A JP3466504B2 (en) 1999-04-22 1999-04-22 High purity iron oxide powder for ferrite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11490599A JP3466504B2 (en) 1999-04-22 1999-04-22 High purity iron oxide powder for ferrite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000302447A true JP2000302447A (en) 2000-10-31
JP3466504B2 JP3466504B2 (en) 2003-11-10

Family

ID=14649571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11490599A Expired - Fee Related JP3466504B2 (en) 1999-04-22 1999-04-22 High purity iron oxide powder for ferrite and method for producing the same

Country Status (1)

Country Link
JP (1) JP3466504B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041711A (en) * 2003-07-23 2005-02-17 Dowa Mining Co Ltd Iron oxide powder and method for producing the same
JP2017001928A (en) * 2015-06-15 2017-01-05 Jfeケミカル株式会社 IRON OXIDE FOR MnZn-BASED FERRITE RAW MATERIAL, MnZn-BASED FERRITE AND MANUFACTURING METHOD OF MnZn-BASED FERRITE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041711A (en) * 2003-07-23 2005-02-17 Dowa Mining Co Ltd Iron oxide powder and method for producing the same
JP2017001928A (en) * 2015-06-15 2017-01-05 Jfeケミカル株式会社 IRON OXIDE FOR MnZn-BASED FERRITE RAW MATERIAL, MnZn-BASED FERRITE AND MANUFACTURING METHOD OF MnZn-BASED FERRITE

Also Published As

Publication number Publication date
JP3466504B2 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
JP6480715B2 (en) Precursor of iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder using the same
JP3073732B1 (en) Nickel fine powder and method for producing the same
US4812302A (en) Process for preparing high purity Mn3 O4
JP2002029742A (en) Rare earth oxide powder and method for manufacturing the same
US5288474A (en) Process for the production of lead metal niobates
JP2000302447A (en) High-purity iron oxide powder for ferrite and its production
JP4087555B2 (en) Iron oxide and method for producing the same
KR20220012350A (en) Method for producing cobalt ferrite particles and cobalt ferrite particles prepared accordingly
US3910785A (en) Method of preparing a metal powder mainly consisting of iron
US5200159A (en) Purified solution containing iron and manganese, and method producing thereof
JP3931960B2 (en) Fe (2) O (3) and production method thereof
JP6055892B2 (en) Mn-Zn ferrite
JP2852151B2 (en) Method for producing raw material oxide for soft ferrite
JP4053230B2 (en) Iron oxide and method for producing the same
US5476605A (en) Mn-Zn ferrite
CN114031385B (en) Method for preparing permanent magnetic ferrite material from high-chlorine iron oxide red
JP3406380B2 (en) Ferrite-based magnetic powder raw material oxide and method for producing ferrite-based magnetic powder
JP3406381B2 (en) Ferrite-based magnetic powder raw material oxide and method for producing ferrite-based magnetic powder
JPH04219321A (en) Zinc raw material for soft ferrite and production of oxide raw material for soft ferrite using the same
US3704226A (en) Process for the preparation of permanently magnetizable mixed oxides containing iron
JP3406382B2 (en) Method for producing ferrite magnetic powder
KR20170073146A (en) Magnetic material and method thereof
JP2669010B2 (en) Desiliconization method in metal salt solution
JPH082922A (en) Ferrite magnetic powder, oxide raw material for ferrite magnetic powder and its production
JP2939213B2 (en) Mn-Zn ferrite

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030819

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees