JP4087555B2 - Iron oxide and method for producing the same - Google Patents
Iron oxide and method for producing the same Download PDFInfo
- Publication number
- JP4087555B2 JP4087555B2 JP2000340192A JP2000340192A JP4087555B2 JP 4087555 B2 JP4087555 B2 JP 4087555B2 JP 2000340192 A JP2000340192 A JP 2000340192A JP 2000340192 A JP2000340192 A JP 2000340192A JP 4087555 B2 JP4087555 B2 JP 4087555B2
- Authority
- JP
- Japan
- Prior art keywords
- solution
- ferrite
- aqueous solution
- aqueous
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compounds Of Iron (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はFe3 O4 、α−Fe2 O3 およびそれらの製造方法に関し、特に仮焼温度を低下することができるα−Fe2 O3 とその原料のFe3 O4 およびそれらの製造方法に関する。
【0002】
【従来の技術】
近年、電子機器の小型化、軽量化に伴い、磁気素子の分野でもノイズフィルタとしての積層チップインダクタやパワー系の平面インダクタが提案され、一部で実用に供されている。積層チップインダクタはフェライトペーストを印刷法やドクターブレード法で成形した磁性体部分(コア層)と、印刷法で成形された導体部分(内部電極)を積層、焼成して製造される(特開平4−180610号公報)。積層チップインダクタは小型化に有利であり、外鉄構造であるため、漏洩磁束が小さく高密度実装にも適している。
【0003】
一方、平面インダクタは、シリコン基板上にフェライトペーストを印刷し、焼成して磁性体部分を形成し、その上に平面コイルをフォトリソ技術とめっき技術により形成して製造される(特開平11−26239号公報)。平面インダクタも薄型化と高密度実装化に優れている。
【0004】
これら素子の磁性体材料には、NiZn系、NiZnCu系などのフェライトが用いられている。これらフェライトの原材料としては、通常、α−Fe2 O3 と酸化ニッケル、酸化亜鉛、酸化銅などの金属酸化物とを混合、仮焼後、粉砕して得られるフェライト粉末を溶媒と混合し、ペースト化したもの(フェライトペースト)が用いられており、前述したように該フェライトペーストを焼成して磁性体部分が形成される。
【0005】
積層チップインダクタや平面インダクタなどの小型磁気素子の焼成温度が1000℃前後の高温であると、導体材料の銀合金とフェライトが反応してフェライト特性が劣化したり、電極が短絡する等の問題が生じるので、銀合金の融点以下の低温で焼成する必要がある。しかし、900℃以下の低温焼成の場合は、フェライトの焼結密度が十分に高くならず、透磁率等の磁気特性は不十分になってしまう。そこで、小型磁気素子のさらなる性能の向上のためには、900℃以下の低温で焼成しても高い焼結密度が得られ、初透磁率などの磁気特性に優れるフェライトが求められている。
【0006】
焼成温度を低下させる方法として、通常よりも低い温度で仮焼、微粉砕したフェライト粉末を用いる方法が知られている。しかし、仮焼温度を単に下げたのみでは、仮焼時のスピネル化が不十分であり、900℃以下で焼成しても焼結密度が高くならない。
【0007】
そこで、低温仮焼してもスピネル化を高める方法として、酸化鉄と酸化ニッケル、酸化亜鉛、酸化銅などの金属酸化物との混合粉中に塩素化合物および/または硫酸化合物を添加し、仮焼する方法が提案されている(特開平11−144934号公報)。また、粉体粉末冶金協会の平成12年度春季大会概要の第246頁にも、フェライト原料粉末に塩素イオンを添加することにより仮焼温度が低下し、低温で焼成しても高い焼結密度が得られることが報告されている。
【0008】
これらの方法はいずれも、α−Fe2 O3 と酸化ニッケル、酸化亜鉛、酸化銅などの金属酸化物との混合粉中に塩素化合物を添加する方法である。しかし、あらかじめα−Fe2 O3 などの鉄源中に仮焼温度を低下できる成分が含まれていれば、塩素化合物や硫酸化合物などを添加する工程が不要であり、工業的には有利になる。
【0009】
フェライト粉末の主原材料であるα−Fe2 O3 の製造方法は数多く、例えば、▲1▼ 鋼材の酸洗工程で得られる塩化鉄水溶液を噴霧焙焼して製造する方法(乾式法)、▲2▼ 塩化鉄水溶液や硫酸鉄水溶液をアルカリで中和して、水酸化鉄を得、これを酸化して一旦Fe3 O4 を得(湿式法)、さらに酸化する方法などがある。
【0010】
乾式法で得られたα−Fe2 O3 は残存塩素分により仮焼温度を低減できる可能性はあるが、焙焼炉の制約などから、比表面積が10m2/g以下の小さな粒子を得ることが難しく、かつ凝集した粒子が多い。このためフェライト粉末を得る際には、均一な混合物を得るために、他の金属酸化物と混合する前に、予め粉砕する必要がある。しかし、粉砕時に鉄などのコンタミが混入するので、特性劣化を招きやすいなどの問題があり、小型磁気素子用には不向きである。
【0011】
一方、湿式法で得たFe3 O4 は比表面積が10m2/g以上の微粒子であり、粒度分布もシャープであり、分散性にも優れている。このFe3 O4 をさらに酸化して得られるα−Fe2 O3 の寸法や形状はFe3 O4 とほぼ同じであり、小型磁気素子用フェライト粉末原料に適している。しかし、Fe3 O4 中には中和時に添加したアルカリなどが残存し、磁気特性に影響を与える場合もあるため、十分に洗浄除去しなければならない。
【0012】
湿式法では中和時に塩化ナトリウムなどの塩素含有物質が生成するので、仮焼温度を低下できる可能性があるが、塩化ナトリウムは上記した洗浄工程で殆ど除去されてしまうので、仮焼温度の低減効果は余り期待できない。しかし、湿式法で製造したFe3 O4 やこれを酸化して得たα−Fe2 O3 の粉体特性は小型磁気素子用フェライト粉末原材料に最適であるため、該Fe3 O4 やα−Fe2 O3 を使用することができれば、小型磁気素子用フェライト粉末の原材料として非常に有効である。
【0013】
【発明が解決しようとする課題】
そこで、湿式法において、洗浄しても簡単には除去できないような形態でα−Fe2 O3 やFe3 O4 中に塩素分を含有させることを検討した。この結果、湿式法の原料として用いる塩化鉄水溶液中の第一鉄イオン(Fe2+)と第二鉄(Fe3+)が特定の比率となり、かつ、中和時に混合する際の「塩化鉄水溶液の濃度」と「アルカリ溶液の濃度」の比が特定の値となれば、洗浄しても簡単には除去できない塩素分を任意に制御できることを見出し、本発明の完成に至ったものである。
本発明の目的は、Fe3 O4 、α−Fe2 O3 中の塩素含有量を任意に制御し、低温仮焼が可能なフェライト粉末用原材料となるα−Fe2 O3 、該α−Fe2 O3 の原料として最適なFe3 O4 およびこれらの製造方法を提供するものである。
【0014】
【課題を解決するための手段】
第一の発明は、湿式法で製造してなるFe3 O4 であって、比表面積が10.6〜40m2/g、塩素含有量が100ppm 以上3000ppm 以下であることを特徴とするFe3 O4 である。
【0015】
第二の発明は、塩化鉄水溶液とアルカリ水溶液を混合して中和し、得られる中和液を酸化してFe3 O4 を製造する方法において、前記塩化鉄水溶液中の第二鉄イオン濃度(mol /l) を、第一鉄イオンと第二鉄イオンの合計鉄イオン濃度(mol /l)に対し2〜30%に調整し、かつ前記塩化鉄水溶液と前記アルカリ水溶液の濃度を、
0.8 ≦ 合計鉄イオン濃度(mol /l) /A ≦ 12
ただし、A=(Fe2+とFe3+の中和に必要な水酸基換算量(mol) )×R/(アルカリ水溶液の量(l) )
(ここで、Rは前記塩化鉄水溶液と前記アルカリ水溶液の当量比を示し、0.90≦R≦1.5である)
に調整して中和することを特徴とするFe3 O4 の製造方法である。
【0016】
第三の発明は、前記の第一の発明のFe3 O4 を酸化してなる比表面積が10〜40m2/g、塩素含有量が100ppm 以上3000ppm 以下であることを特徴とするα−Fe2 O3 である。
【0017】
第四の発明は、前記の第二の発明の製造方法で製造したFe3 O4 を加熱し、酸化することを特徴とするα−Fe2 O3 の製造方法である。
【0018】
【発明の実施の形態】
本発明のFe3 O4 は、塩化第一鉄と塩化第二鉄を含有する塩化鉄水溶液をアルカリ水溶液で中和し、得られた水溶液を加熱、酸化する方法(湿式法)で製造された比表面積が10.6〜40m2/g、塩素含有量が100ppm 以上3000ppm 以下の酸化鉄である。
【0019】
湿式法によるFe3 O4 は、粒径が小さく、粒度分布がシャープであるため、分散性に優れ、α−Fe2O3 にするための加熱酸化時に粒成長が抑制され、フェライト粉末としての粉砕性が優れる。比表面積が10.6m2/g未満であると粒径が大きく、低温短時間で仮焼することが困難となる。一方、比表面積が40m2/gを超えると、粒子が凝集しやすく、分散性に劣り、加熱酸化時に粒成長しやすい。好ましい比表面積は15〜30m2/gである。なお、比表面積は例えば、塩化鉄水溶液の第二鉄イオン量などにより制御できる。
【0020】
本発明のFe3 O4 の塩素含有量は100ppm 以上3000ppm 以下である。塩素含有量が比較的多量のため、フェライト化の仮焼温度の低減効果が大きく、低温焼結してもフェライトの焼結密度が高い。塩素含有量が100ppm 未満であると、フェライト化の仮焼温度の低減効果が認められない。一方、3000ppm を超えると、仮焼温度が下がるものの、焼成時に焼結密度が上がらず、所望の電磁気特性を得ることができない。塩素含有量は例えば後述するように、中和時の塩化鉄水溶液とアルカリ水溶液の濃度比により制御することができる。好ましい塩素含有量は300ppm 以上1600ppm 以下であり、より好ましくは500〜1200ppm である。
【0021】
本発明のFe3 O4 はそのままでもフェライト原料として使用して構わないが、Fe3 O4 はFe2+とFe3+の比率、すなわち、鉄と酸素の比率が必ずしも一定しないため、フェライト原料として実用化が難しい面があるので、通常は、さらにこれを加熱し、酸化して得られたα−Fe2 O3 がフェライト原料として使用される。本発明はFe3 O4 とα−Fe2 O3 の2種の酸化鉄に係わる。
【0022】
つぎに、Fe3 O4 の製造方法について説明する。
第二の発明のFe3 O4 は、塩化第一鉄と塩化第二鉄を含有する塩化鉄水溶液をアルカリ水溶液で中和して得られた水酸化鉄水溶液を加熱、酸化する方法で製造される。従来から、トナー用Fe3 O4 は、塩化第一鉄水溶液をアルカリ水溶液で中和して得られた水酸化鉄水溶液を加熱、酸化する方法で製造されているが、該Fe3 O4 は粒度分布がシャープなものの、比表面積が10m2/g未満と小さいため、噴霧焙焼法により製造されたFe3 O4 よりもやや粒径が小さい程度であり、前記の問題点を解決するような粒径ではない。また水洗などの洗浄工程で塩素分は除去されやすいため、塩素含有量が100ppm 未満と少なく、フェライト化の仮焼温度を下げる効果が十分でない。そのため、小型磁気素子用には適さない。
【0023】
本発明のFe3 O4 の製造において、鉄源として塩化第一鉄および塩化第二鉄を共有する水溶液を用いる。塩化鉄はそれを構成する塩素をFe3O4 に取り込むために使用する。塩化第一鉄と塩化第二鉄を含有する塩化鉄水溶液は、第二鉄イオン(Fe3+)濃度(mol /l)が第一鉄イオン(Fe2+)と第二鉄イオン(Fe3+)の合計鉄イオン濃度(全Fe量)(mol /l)に対して2〜30%となるように調整して用いることが重要である。塩化第二鉄を加え、その含有量を上記範囲に規制することにより、生成するFe3O4 の粒径を小さく制御することができ、比表面積が10.6〜40m2/gで、粒度分布がシャープで、しかも分散性に優れたFe3O4 を得ることができる。しかも塩素分の含有量も適量となる。
【0024】
第二鉄イオンの添加量が前記濃度比で2%未満の場合は、目標とする小粒径のFe3 O4 が得られず、比表面積10.6m2/g未満の粒子が得られる。また、塩素分の含有量が少なく、フェライト粉末の仮焼温度の低減に寄与しない。逆に添加量が前記濃度比で30%を超えると、比表面積が40m2/gを超えるFe3O4 が得られ、磁気的な凝集力により分散性が悪くなるため、フェライト仮焼時に焼結が進みやすくなり、仮焼品の粉砕性も悪化する。好ましい第二鉄イオンの含有量は前記濃度比で5〜20%である。
【0025】
本発明のFe3 O4 を得るためには、塩化鉄水溶液とアルカリ水溶液の濃度を下記の関係に調整して中和することも重要である。
0.8 ≦ 合計鉄イオン濃度(mol /l) /A ≦ 12 [1]
ただし、A=(Fe2+とFe3+の中和に必要な水酸基換算量(mol) )× R/(アルカリ水溶液の量(l) )
(ここで、Rは塩化鉄水溶液とアルカリ水溶液の当量比を示し、0.90≦R≦1.5である。)
【0026】
式[1]は、中和に際し、混合する時のアルカリ水溶液の濃度に対する、塩化鉄水溶液の濃度の比を示す。例えば塩化鉄水溶液1l(濃度10mol / l)と水酸化ナトリウム水溶液9l(濃度2.2mol / l)を混合、中和する場合のように、少量の高濃度塩化鉄水溶液と多量の低濃度アルカリ水溶液を混合する場合、式[1]の値が大きくなる。
【0027】
本発明者は、この場合、塩化鉄水溶液の濃度とアルカリ水溶液の濃度条件次第で、Fe3 O4 に含有される塩素分の量が変化することを見出し、該濃度条件を式[1]で示される範囲に調整すれば、含有する塩素分がα−Fe2 O3 の仮焼温度の低下に寄与することを確認した。
【0028】
式[1]の前記濃度比は0.8以上12以下である。この範囲であると、仮焼温度の低下に効果があるFe3 O4 に含有される塩素分の量が適量となる。前記濃度比が0.8未満の場合は、アルカリ水溶液の濃度に比べ塩化鉄水溶液の濃度が低くなりすぎ、仮焼温度の低下に必要な量の塩素分がFe3 O4 に含有されず、仮焼温度を下げることができない。逆に前記濃度比が12を超える場合は、塩化鉄水溶液の濃度が塩化第一鉄の溶解度を超えることがあり得るので現実的でない。中和後の塩化鉄濃度が非常に低い場合には、12を超えても可能性があるが、必要以上の塩素分がFe3 O4 に取り込まれてしまい、逆に焼結を阻害することになる。式[1]の前記濃度比が1.0〜12であれば、該取り込み量が適量であり、1.5〜10であればさらに好ましい。
【0029】
Fe2+とFe3+の中和に必要なアルカリの量は水酸基(OH- )に換算した濃度でなければならない。例えば、1mol/lの炭酸ナトリウム水溶液の場合は、炭酸イオン(CO3 2- )となるので、水酸基濃度に換算すると2mol/lとなる。また、Rは塩化鉄塩水溶液とアルカリ水溶液の当量比を示す。塩化鉄水溶液過剰の場合はR<1、アルカリ水溶液過剰の場合はR>1となる。0.90≦R≦1.5であると、フェライト原料として好適な粒径のFe3 O4 が得られる。
【0030】
当量比Rが0.90未満の場合は、水酸基の量が不足し、pHが低くなるので、生成する核の数が減り、さらに余剰のFe3+がグリーンリラストと称される中間生成物の生成に消費されるので、得られる粒径が大きくなり、好適粒径が得られ難い。当量比Rが1.5を超える場合は、未反応のアルカリが多く、また反応速度が遅いためコスト的に好ましくない。また粒成長しやすいため粒径が大きくなりすぎる場合がある。
【0031】
本発明のアルカリ原料としては、水酸化ナトリウムや水酸化カリウムのような水酸化アルカリ、炭酸ナトリウムなどの炭酸アルカリ、アンモニア等が使用できる。
【0032】
塩化鉄水溶液中の一部の第一鉄イオンは下記式[2]の反応に従い、塩化第二鉄と反応し、Fe3 O4 が生成する。残部の第一鉄イオンは中和されて水酸化第一鉄になる。得られた水溶液を50〜100℃に維持しながら酸素含有ガスを通気すると、生成したFe3 O4 を核として粒成長する。酸素含有ガスは通常空気である。酸化温度が50℃より低いと、針状の含水酸化物が生成するため好ましくない。また100℃を超える場合は設備が大掛かりになり、工業化には適さない。
Fe2++Fe3++8OH- → Fe3 O4 +4H2 O [2]
【0033】
第三の発明のα−Fe2 O3 は、第一の発明のFe3O4 を加熱酸化して製造され、比表面積が10〜40m2/gで、塩素の含有量が100ppm 以上3000ppm以下である。好ましい比表面積は15〜30m2/g、好ましい塩素含有量は300〜1600ppm であり、より好ましくは500〜1200ppm である。
【0034】
第四の発明のα−Fe2 O3 の製造方法は、前記第二の製造方法で製造したFe3 O4 を加熱酸化することにより容易に実施できる。加熱温度は純度にもよるが、300℃以上が好ましい。加熱温度が300℃未満であるとγ−Fe2 O3 が生成する。γ−Fe2 O3 もフェライト原料になり得るが、磁気的に凝集しやすく、分散性の点から好ましくない。Fe3 O4 の加熱温度が高すぎると酸化鉄の粒子同士が溶融して粒成長するため、目的とする粒径の小さなα−Fe2 O3 が得られにくく、α−Fe2 O3 中の塩素含有量が低下しやすい。好ましい加熱温度は450〜600℃である。
【0035】
本発明のα−Fe2 O3 は湿式法で製造したFe3 O4 を加熱酸化して得るため、塩素含有量が100〜3000ppm 、比表面積が10〜40m2/gであり、小粒径で粒度分布がシャープで、分散性に優れている。したがって、これを用いてフェライトを製造する場合、低温での仮焼が可能であり、結果的には、得られたフェライト粉末を900℃の低温で焼成しても高い焼結密度を得ることが可能である。
【0036】
このようにして得られたα−Fe2 O3 は酸化ニッケル、酸化亜鉛、酸化第二銅、酸化マンガンなどと混合、仮焼してフェライト粉末とする。フェライト粉末は、例えば、バインダーを混合してペーストとした後、印刷法やドクターブレード法などで磁性材層を形成され、焼成後、積層チップインダクタや平面インダクタとすることができる。また、フェライト粉末とポリビニルアルコール(PVA)などの結合剤や微量の添加元素を添加して、造粒、成形した後、焼成してフェライトコアとすることもできる。
【0037】
【実施例】
(実施例1)
ステンレス製円筒容器(容量15l)に、濃度1.37mol/lの水酸化ナトリウム水溶液7lを投入し、窒素ガスを通気して窒素雰囲気とした。塩化第一鉄水溶液と塩化第二鉄水溶液をFe3+/(Fe2++Fe3+)=9%になるように混合し、塩化鉄の濃度が1.5mol/lの水溶液3lを調製した。該鉄塩水溶液を、該円筒容器の水酸化ナトリウム水溶液に攪拌しながら添加した。混合液10lの当量比Rは1.02であり、(合計鉄イオン濃度(mol/ l) )/Aの値は1.095であった。
【0038】
該溶液を窒素雰囲気のまま85℃まで昇温し、温度が安定した後、空気を3l/min通気して酸化を行い、Fe3 O4 粒子を製造した。酸化完了後、イオン交換水を用いて、沈降脱塩を十分繰り返し、吸引ろ過して、大気中70℃で乾燥させ、解砕してFe3 O4 粉末を得た。これを480℃で1時間加熱酸化して、α−Fe2 O3 を得た。Fe3 O4 粉末とα−Fe2 O3 粉末の比表面積をBET法で測定した。塩素含有量、ナトリウム含有量はICPにより求めた。
【0039】
α−Fe2 O3 と酸化ニッケル、酸化亜鉛、酸化第二銅をボールミルを用い、α−Fe2 O3 :NiO:ZnO:CuO=49:11:30:10(モル比)で混合し、乾燥した。混合粉末を600℃以上の温度で2時間仮焼し、NiZnCu系フェライトを得た。得られたフェライト粉末のスピネル化率をXRD(X線回折)により求め、スピネル化率が90%以上となる最低温度725℃を仮焼可能温度とした。
【0040】
仮焼したフェライト粉末をさらにボールミルにより湿式粉砕し、比表面積が12±1m2/gになるまで粉砕した。得られた粉末を乾燥し、PVA溶液を混合して造粒した後、トロイダル形状にプレス成形した。成形体を850〜900℃で焼成して焼結体(フェライト)とした。焼結密度は焼結体の重量と寸法から算出した。初透磁率はLCRメータを用いて、900℃で焼成したコアについて測定した。製造条件と評価結果を表1に示した。
【0041】
(比較例1)
実施例1の塩化第一鉄から噴霧焙焼法により製造された高純度α−Fe2 O3 を用いて、実施例1におけるフェライト粉末製造およびフェライト製造条件を、表1に示す条件に変更し、実施例1と同様にサンプルを製造した。製造条件と評価結果を表1に示した。
【0042】
(比較例2、3)
実施例1において、塩化第一鉄と塩化第二鉄を含有する塩化鉄水溶液の代わりに、工業用試薬の硫酸第一鉄および硫酸第二鉄から調製した硫酸鉄水溶液を用いる以外は、実施例1と同様にFe3 O4 を製造し、α−Fe2 O3 を製造し、さらにフェライト粉末およびフェライトを製造した。製造条件と評価結果を表1に示した。
【0043】
実施例1と比較例1〜3の対比から、本発明のα−Fe2 O3 からのフェライト粉末は、噴霧焙焼法によるα−Fe2 O3 からのフェライト粉末に比べ、仮焼温度を低くすることができ、また、900℃以下の低温で焼成しても、高い焼結密度と高い初透磁率を示すフェライトの製造が可能であることが分かる。
【0044】
(実施例2〜6、比較例4〜6)
実施例1におけるFe3 O4 、α−Fe2 O3 、フェライト粉末およびフェライト製造の各条件を、表2に示す各条件に変更し、実施例1と同様にサンプルを製造した。製造条件と評価結果を表2に示した。
【0045】
実施例2〜6と比較例4〜6の対比から、本発明のα−Fe2 O3 からのフェライト粉末は900℃以下の低温で焼成しても、高い焼結密度と高い初透磁率を示すフェライトの製造が可能であることが分かる。なお、比較例5の場合は、鉄塩水溶液の濃度が塩化第一鉄の溶解度を超えてしまうため、水溶液を調製することが不可能であった。
【0046】
(実施例7〜11、比較例7〜8)
実施例1において、塩化第一鉄水溶液と塩化第二鉄水溶液の混合割合を変える以外は、実施例1と同様にFe3 O4 を製造した。Fe3 O4 の加熱温度を600℃に、加熱時間1時間を30分に変える以外は、実施例1と同様にα−Fe2 O3 を製造し、実施例1と同様にフェライト粉末とフェライトを製造した。製造条件と評価結果を表3に示した。
【0047】
実施例7〜11と比較例7〜8の対比から、本発明のFe3+/(Fe2++Fe3+)=2〜30%を満足するFe3 O4 からのフェライト粉末は、900℃以下の低温で焼成しても、高い焼結密度と高い初透磁率を示すフェライトの製造が可能であることが分かる。
【0048】
(実施例12〜17、比較例9〜10)
実施例1において、中和時の当量比Rを変える以外は、実施例1と同様にFe3 O4 を製造した。Fe3 O4 の加熱温度を550℃に変える以外は、実施例1と同様にα−Fe2 O3 を製造し、実施例1と同様にフェライト粉末とフェライトを製造した。製造条件と評価結果を表4に示した。
【0049】
実施例12〜17と比較例9〜10の対比から、中和時の当量比Rが0.9〜1.5とした時の本発明のFe3 O4 からのフェライト粉末は、900℃以下の低温で焼成しても、高い焼結密度と高い初透磁率を示すフェライトの製造が可能であることが分かる。Rが0.9未満の場合は、粒径が大きく、塩素含有量も少ないため、仮焼温度の低下効果が認められない。逆にRが1.5を超えると、Fe3O4 生成時の酸化反応が遅くなり、粒子が成長し、粒径が大きくなるので、好ましくない。
【0050】
【発明の効果】
本発明のα−Fe2 O3 は、湿式法で製造したFe3 O4 を加熱酸化して得られるため、小粒径で、粒度分布がシャープで、しかも分散性に優れている。このα−Fe2 O3 よりフェライト粉末を製造する場合、仮焼温度を低くすることができ、該フェライト粉末を900℃以下の低温で焼成しても焼結密度が高く、初透磁率に優れた小型磁気素子用磁性材料として好適なフェライトを得ることができる。
【表1】
【表2】
【表3】
【表4】
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to Fe 3 O 4 , α-Fe 2 O 3 and methods for producing them, and in particular, α-Fe 2 O 3 capable of lowering the calcining temperature, Fe 3 O 4 as a raw material, and methods for producing them. About.
[0002]
[Prior art]
In recent years, with the miniaturization and weight reduction of electronic devices, multilayer chip inductors as noise filters and power planar inductors have been proposed in the field of magnetic elements, and some of them are put into practical use. Multilayer chip inductors are manufactured by laminating and firing a magnetic material portion (core layer) formed by ferrite paste by a printing method or a doctor blade method and a conductor portion (internal electrode) formed by a printing method (Japanese Patent Laid-Open No. 4). -180610). Multilayer chip inductors are advantageous for miniaturization and have an outer iron structure, so that the leakage flux is small and suitable for high-density mounting.
[0003]
On the other hand, a planar inductor is manufactured by printing a ferrite paste on a silicon substrate, firing it to form a magnetic part, and forming a planar coil thereon by a photolithographic technique and a plating technique (JP-A-11-26239). Issue gazette). Planar inductors are also excellent in thinning and high-density mounting.
[0004]
NiZn-based, NiZnCu-based, and other ferrites are used as magnetic materials for these elements. As a raw material of these ferrites, usually, α-Fe 2 O 3 and a metal oxide such as nickel oxide, zinc oxide, copper oxide are mixed, calcined and then pulverized to obtain a ferrite powder mixed with a solvent, A paste (ferrite paste) is used, and as described above, the ferrite paste is fired to form a magnetic part.
[0005]
If the firing temperature of small magnetic elements such as multilayer chip inductors and planar inductors is around 1000 ° C, the silver alloy of the conductor material and ferrite react to deteriorate the ferrite characteristics, or the electrodes may be short-circuited. Therefore, it is necessary to fire at a low temperature below the melting point of the silver alloy. However, in the case of low-temperature firing at 900 ° C. or lower, the sintered density of ferrite is not sufficiently high, and magnetic properties such as magnetic permeability are insufficient. Therefore, in order to further improve the performance of the small magnetic element, there is a demand for a ferrite that can obtain a high sintered density even when fired at a low temperature of 900 ° C. or less and is excellent in magnetic properties such as initial permeability.
[0006]
As a method for lowering the firing temperature, a method using a ferrite powder calcined and pulverized at a temperature lower than usual is known. However, if the calcining temperature is simply lowered, spinelization at the time of calcining is insufficient, and the sintered density does not increase even when calcined at 900 ° C. or lower.
[0007]
Therefore, as a method for improving spinelization even when calcined at a low temperature, a chlorine compound and / or a sulfuric acid compound is added to a mixed powder of iron oxide and a metal oxide such as nickel oxide, zinc oxide or copper oxide, and calcined. A method has been proposed (Japanese Patent Laid-Open No. 11-144934). In addition, on page 246 of the summary of the 2000 Spring Meeting of the Powder and Powder Metallurgy Association, the calcining temperature is lowered by adding chlorine ions to the ferrite raw material powder, and a high sintering density is obtained even when firing at a low temperature. It has been reported that it can be obtained.
[0008]
All of these methods are methods in which a chlorine compound is added to a mixed powder of α-Fe 2 O 3 and a metal oxide such as nickel oxide, zinc oxide, or copper oxide. However, if a component capable of lowering the calcining temperature is previously contained in an iron source such as α-Fe 2 O 3, a step of adding a chlorine compound or a sulfuric acid compound is unnecessary, which is industrially advantageous. Become.
[0009]
There are many methods for producing α-Fe 2 O 3 which is the main raw material of ferrite powder. For example, (1) a method of producing by spray roasting an aqueous iron chloride solution obtained in the pickling process of steel (dry method), 2) There is a method in which an iron chloride aqueous solution or an iron sulfate aqueous solution is neutralized with an alkali to obtain iron hydroxide, which is oxidized to obtain Fe 3 O 4 once (wet method), and further oxidized.
[0010]
Although α-Fe 2 O 3 obtained by the dry method may reduce the calcining temperature due to the residual chlorine content, small particles having a specific surface area of 10 m 2 / g or less are obtained due to restrictions of the roasting furnace. It is difficult and there are many aggregated particles. For this reason, when obtaining ferrite powder, in order to obtain a uniform mixture, it is necessary to grind | pulverize beforehand, before mixing with another metal oxide. However, since contamination such as iron is mixed at the time of pulverization, there is a problem that characteristic deterioration is likely to occur, which is not suitable for a small magnetic element.
[0011]
On the other hand, Fe 3 O 4 obtained by a wet method is a fine particle having a specific surface area of 10 m 2 / g or more, a sharp particle size distribution, and excellent dispersibility. The size and shape of α-Fe 2 O 3 obtained by further oxidizing this Fe 3 O 4 is almost the same as that of Fe 3 O 4 and is suitable as a ferrite powder material for small magnetic elements. However, since the alkali added at the time of neutralization remains in Fe 3 O 4 and may affect the magnetic properties, it must be sufficiently washed away.
[0012]
In the wet method, chlorine-containing substances such as sodium chloride are generated during neutralization, so the calcination temperature may be lowered. However, since sodium chloride is almost removed by the above-described washing process, the calcination temperature is reduced. The effect is not expected much. However, since the powder characteristics of Fe 3 O 4 produced by a wet method and α-Fe 2 O 3 obtained by oxidizing this are optimal for ferrite powder raw materials for small magnetic elements, the Fe 3 O 4 and α If —Fe 2 O 3 can be used, it is very effective as a raw material for ferrite powders for small magnetic elements.
[0013]
[Problems to be solved by the invention]
In view of this, in the wet method, investigations were made to contain chlorine in α-Fe 2 O 3 or Fe 3 O 4 in a form that cannot be easily removed by washing. As a result, the ferrous ion (Fe 2+ ) and ferric iron (Fe 3+ ) in the aqueous iron chloride solution used as the raw material for the wet process have a specific ratio, and the “iron chloride” is mixed when neutralized. When the ratio between the concentration of the aqueous solution and the concentration of the alkaline solution is a specific value, it has been found that the chlorine content that cannot be easily removed by washing can be arbitrarily controlled, and the present invention has been completed. .
An object of the present invention, Fe 3 O 4, α- Fe 2 O chlorine content of 3 to arbitrarily controlled, low-temperature calcination is ferrite powder for raw materials that can be alpha-Fe 2 O 3, the α- The present invention provides an optimum Fe 3 O 4 as a raw material for Fe 2 O 3 and a production method thereof.
[0014]
[Means for Solving the Problems]
Fe 3 first invention is an Fe 3 O 4 formed by producing a wet method, the specific surface area is equal to or 10.6 ~40m 2 / g, the chlorine content is 100ppm or more 3000ppm or less O 4 .
[0015]
The second invention is a method for producing an Fe 3 O 4 by mixing and neutralizing an aqueous iron chloride solution and an aqueous alkaline solution, and oxidizing the resulting neutralized solution, wherein the ferric ion concentration in the aqueous iron chloride solution is ( mol / l ) is adjusted to 2 to 30% of the total iron ion concentration ( mol / l ) of ferrous ions and ferric ions, and the concentrations of the aqueous iron chloride solution and the alkaline aqueous solution are
0.8 ≦ total iron ion concentration (mol / l) / A ≦ 12
However, A = (hydroxyl equivalent amount (mol) necessary for neutralization of Fe 2+ and Fe 3+ ) × R / (amount of alkaline aqueous solution (l))
(Where R represents the equivalent ratio of the aqueous iron chloride solution to the alkaline aqueous solution, and 0.90 ≦ R ≦ 1.5)
It is a manufacturing method of the Fe 3 O 4, characterized in that adjustment to neutralize the.
[0016]
The third invention is characterized in that the specific surface area obtained by oxidizing Fe 3 O 4 of the first invention is 10 to 40 m 2 / g, and the chlorine content is 100 ppm to 3000 ppm. 2 O 3 .
[0017]
A fourth invention is a method for producing α-Fe 2 O 3 characterized in that Fe 3 O 4 produced by the production method of the second invention is heated and oxidized.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The Fe 3 O 4 of the present invention was produced by a method (wet method) in which an aqueous iron chloride solution containing ferrous chloride and ferric chloride was neutralized with an alkaline aqueous solution, and the resulting aqueous solution was heated and oxidized. The iron oxide has a specific surface area of 10.6 to 40 m 2 / g and a chlorine content of 100 ppm to 3000 ppm.
[0019]
Fe 3 O 4 by a wet method has a small particle size and a sharp particle size distribution, so it has excellent dispersibility, grain growth is suppressed during heating oxidation to make α-Fe 2 O 3 , and ferrite powder Excellent grindability. When the specific surface area is less than 10.6 m 2 / g, the particle size is large, and it is difficult to calcine at a low temperature in a short time. On the other hand, if the specific surface area exceeds 40 m 2 / g, the particles are likely to aggregate, have poor dispersibility, and are likely to grow during heating oxidation. A preferred specific surface area is 15 to 30 m 2 / g. The specific surface area can be controlled by, for example, the amount of ferric ion in the aqueous iron chloride solution.
[0020]
The chlorine content of the Fe 3 O 4 of the present invention is 100 ppm or more and 3000 ppm or less. Since the chlorine content is relatively large, the effect of reducing the calcination temperature of ferritization is large, and the sintered density of ferrite is high even at low temperature sintering. If the chlorine content is less than 100 ppm, the effect of reducing the calcination temperature for ferritization is not observed. On the other hand, if it exceeds 3000 ppm, the calcining temperature is lowered, but the sintered density is not increased during firing, and desired electromagnetic characteristics cannot be obtained. As described later, for example, the chlorine content can be controlled by the concentration ratio of the aqueous iron chloride solution and the alkaline aqueous solution during neutralization. A preferable chlorine content is 300 ppm or more and 1600 ppm or less, and more preferably 500 to 1200 ppm.
[0021]
Although the Fe 3 O 4 of the present invention may be used as it is as a ferrite raw material, since the ratio of Fe 2+ and Fe 3+ , that is, the ratio of iron and oxygen is not necessarily constant, Fe 3 O 4 Therefore, α-Fe 2 O 3 obtained by further heating and oxidizing this is usually used as a ferrite raw material. The present invention relates to two types of iron oxides, Fe 3 O 4 and α-Fe 2 O 3 .
[0022]
Next, a method for producing Fe 3 O 4 will be described.
The Fe 3 O 4 of the second invention is produced by heating and oxidizing an aqueous iron hydroxide solution obtained by neutralizing an aqueous iron chloride solution containing ferrous chloride and ferric chloride with an alkaline aqueous solution. The Conventionally, toners for Fe 3 O 4, the heating iron hydroxide aqueous solution obtained by neutralizing an aqueous solution of ferrous chloride with an aqueous alkaline solution, has been produced by a method of oxidizing, the Fe 3 O 4 is Although the particle size distribution is sharp, the specific surface area is as small as less than 10 m 2 / g, so the particle size is slightly smaller than Fe 3 O 4 produced by spray roasting, so as to solve the above problems It is not a proper particle size. Further, since the chlorine content is easily removed in a washing process such as water washing, the chlorine content is less than 100 ppm, and the effect of lowering the calcination temperature for ferritization is not sufficient. Therefore, it is not suitable for small magnetic elements.
[0023]
In the production of Fe 3 O 4 of the present invention, an aqueous solution sharing ferrous chloride and ferric chloride is used as an iron source. Iron chloride is used to incorporate the constituent chlorine into Fe 3 O 4 . The aqueous ferric chloride solution containing ferrous chloride and ferric chloride has ferric ion (Fe 3+ ) concentration (mol / l) of ferrous ion (Fe 2+ ) and ferric ion (Fe 3). +) total iron concentration (total Fe content) (mol / l) be used was adjusted to 2 to 30% with respect to an important. By adding ferric chloride and regulating its content to the above range, the particle size of Fe 3 O 4 can be controlled to be small, the specific surface area is 10.6 to 40 m 2 / g, Fe 3 O 4 having a sharp distribution and excellent dispersibility can be obtained. Moreover, the chlorine content is also appropriate.
[0024]
When the addition amount of ferric ion is less than 2% in the concentration ratio, the target small particle size Fe 3 O 4 cannot be obtained, and particles having a specific surface area of less than 10.6 m 2 / g are obtained. . In addition, the content of chlorine is small and does not contribute to the reduction of the calcining temperature of the ferrite powder. On the other hand, if the addition amount exceeds 30% in the concentration ratio, Fe 3 O 4 having a specific surface area exceeding 40 m 2 / g is obtained, and the dispersibility deteriorates due to the magnetic cohesive force. The kneading progresses easily, and the pulverizability of the calcined product also deteriorates. The content of ferric ions is preferably 5 to 20% in the concentration ratio.
[0025]
In order to obtain the Fe 3 O 4 of the present invention, it is also important to neutralize the iron chloride aqueous solution and the alkali aqueous solution by adjusting the concentration to the following relationship.
0.8 ≦ total iron ion concentration (mol / l) / A ≦ 12 [1]
However, A = (hydroxyl conversion amount (mol) necessary for neutralization of Fe 2+ and Fe 3+ ) × R / (amount of alkaline aqueous solution (l))
(Here, R represents the equivalent ratio of the aqueous iron chloride solution and the alkaline aqueous solution, and 0.90 ≦ R ≦ 1.5.)
[0026]
Formula [1] shows the ratio of the concentration of the aqueous iron chloride solution to the concentration of the aqueous alkaline solution at the time of mixing during neutralization. For example, when mixing and neutralizing 1 l of iron chloride aqueous solution (concentration 10 mol / l) and 9 l of sodium hydroxide aqueous solution (concentration 2.2 mol / l), a small amount of high concentration iron chloride aqueous solution and a large amount of low concentration alkaline aqueous solution Is mixed, the value of the formula [1] increases.
[0027]
In this case, the present inventors have found that the amount of chlorine contained in Fe 3 O 4 varies depending on the concentration of the aqueous iron chloride solution and the concentration of the alkaline aqueous solution. by adjusting the range indicated, chlorine containing it was confirmed to contribute to the reduction of calcination temperature of the α-Fe 2 O 3.
[0028]
The concentration ratio of the formula [1] is 0.8 or more and 12 or less. Within this range, the amount of chlorine contained in Fe 3 O 4 that is effective in reducing the calcining temperature is an appropriate amount. When the concentration ratio is less than 0.8, the concentration of the aqueous iron chloride solution is too low compared to the concentration of the alkaline aqueous solution, and the amount of chlorine necessary for lowering the calcining temperature is not contained in Fe 3 O 4 . The calcining temperature cannot be lowered. Conversely, when the concentration ratio exceeds 12, the concentration of the aqueous iron chloride solution may exceed the solubility of ferrous chloride, which is not realistic. If the iron chloride concentration after neutralization is very low, it may exceed 12, but more chlorine than necessary is incorporated into Fe 3 O 4 , which inhibits sintering. become. If the concentration ratio of the formula [1] is 1.0 to 12, the uptake amount is an appropriate amount, and more preferably 1.5 to 10.
[0029]
The amount of alkali necessary for neutralization of Fe 2+ and Fe 3+ must be a concentration converted to a hydroxyl group (OH − ). For example, in the case of a 1 mol / l sodium carbonate aqueous solution, it becomes carbonate ions (CO 3 2− ), so that it is 2 mol / l in terms of hydroxyl group concentration. R represents the equivalent ratio of the aqueous iron chloride salt solution to the alkaline aqueous solution. R <1 when the aqueous iron chloride solution is excessive, and R> 1 when the aqueous alkaline solution is excessive. When 0.90 ≦ R ≦ 1.5, Fe 3 O 4 having a particle size suitable as a ferrite raw material is obtained.
[0030]
When the equivalent ratio R is less than 0.90, the amount of hydroxyl groups is insufficient and the pH is lowered, so that the number of nuclei to be generated is reduced, and the surplus Fe 3+ is an intermediate product called green relax. Therefore, it is difficult to obtain a suitable particle size. When the equivalent ratio R exceeds 1.5, the amount of unreacted alkali is large and the reaction rate is slow, which is not preferable in terms of cost. Moreover, since the grain growth is easy, the particle diameter may be too large.
[0031]
As the alkali raw material of the present invention, alkali hydroxide such as sodium hydroxide or potassium hydroxide, alkali carbonate such as sodium carbonate, ammonia or the like can be used.
[0032]
Some ferrous ions in the aqueous iron chloride solution react with ferric chloride according to the reaction of the following formula [2] to produce Fe 3 O 4 . The remaining ferrous ions are neutralized to ferrous hydroxide. When an oxygen-containing gas is passed while maintaining the obtained aqueous solution at 50 to 100 ° C., grains grow using the produced Fe 3 O 4 as a nucleus. The oxygen-containing gas is usually air. When the oxidation temperature is lower than 50 ° C., a needle-like hydrated oxide is generated, which is not preferable. Moreover, when it exceeds 100 degreeC, an installation becomes large and is not suitable for industrialization.
Fe 2+ + Fe 3+ + 8OH − → Fe 3 O 4 + 4H 2 O [2]
[0033]
The α-Fe 2 O 3 of the third invention is produced by heating and oxidizing the Fe 3 O 4 of the first invention , the specific surface area is 10 to 40 m 2 / g, and the chlorine content is 100 ppm or more and 3000 ppm or less. It is. The preferred specific surface area is 15 to 30 m 2 / g, and the preferred chlorine content is 300 to 1600 ppm, more preferably 500 to 1200 ppm.
[0034]
Method for producing α-Fe 2 O 3 of the fourth invention can be easily carried out by heating oxidation of Fe 3 O 4 prepared in the second process. The heating temperature depends on the purity, but is preferably 300 ° C. or higher. If the heating temperature is less than 300 ° C., γ-Fe 2 O 3 is produced. γ-Fe 2 O 3 can also be a ferrite raw material, but it is not preferable from the viewpoint of dispersibility because it tends to aggregate magnetically. If the heating temperature of Fe 3 O 4 is too high, the iron oxide particles melt and grow, so that it is difficult to obtain α-Fe 2 O 3 having a small target particle size, and in α-Fe 2 O 3 Chlorine content is likely to decrease. A preferable heating temperature is 450 to 600 ° C.
[0035]
Since α-Fe 2 O 3 of the present invention is obtained by heating and oxidizing Fe 3 O 4 produced by a wet method, the chlorine content is 100 to 3000 ppm, the specific surface area is 10 to 40 m 2 / g, and the small particle size With a sharp particle size distribution and excellent dispersibility. Therefore, when ferrite is produced using this, calcining at a low temperature is possible, and as a result, even if the obtained ferrite powder is fired at a low temperature of 900 ° C., a high sintered density can be obtained. Is possible.
[0036]
The α-Fe 2 O 3 obtained in this way is mixed with nickel oxide, zinc oxide, cupric oxide, manganese oxide, etc. and calcined to obtain a ferrite powder. For example, after the ferrite powder is mixed with a binder to form a paste, a magnetic material layer is formed by a printing method, a doctor blade method, or the like, and after firing, a multilayer chip inductor or a planar inductor can be obtained. Alternatively, a ferrite powder and a binder such as polyvinyl alcohol (PVA) and a small amount of additive elements may be added, granulated and molded, and then fired to obtain a ferrite core.
[0037]
【Example】
Example 1
A stainless steel cylindrical container (capacity: 15 l) was charged with 7 l of a sodium hydroxide aqueous solution having a concentration of 1.37 mol / l, and nitrogen gas was passed through to create a nitrogen atmosphere. Ferrous chloride aqueous solution and ferric chloride aqueous solution were mixed so that Fe 3+ / (Fe 2+ + Fe 3+ ) = 9% to prepare 3 l of aqueous solution having an iron chloride concentration of 1.5 mol / l. . The aqueous iron salt solution was added to the aqueous sodium hydroxide solution in the cylindrical container with stirring. The equivalent ratio R of the mixed solution 10 l was 1.02, and the value of (total iron ion concentration (mol / l)) / A was 1.095.
[0038]
The solution was heated to 85 ° C. in a nitrogen atmosphere, and the temperature was stabilized. Then, air was passed through 3 l / min to oxidize to produce Fe 3 O 4 particles. After completion of oxidation, precipitation desalting was sufficiently repeated using ion-exchanged water, suction filtered, dried at 70 ° C. in the atmosphere, and crushed to obtain Fe 3 O 4 powder. This was heated and oxidized at 480 ° C. for 1 hour to obtain α-Fe 2 O 3 . The specific surface areas of the Fe 3 O 4 powder and the α-Fe 2 O 3 powder were measured by the BET method. Chlorine content and sodium content were determined by ICP.
[0039]
α-Fe 2 O 3 and nickel oxide, zinc oxide, cupric oxide were mixed in a ball mill using α-Fe 2 O 3 : NiO: ZnO: CuO = 49: 11: 30: 10 (molar ratio), Dried. The mixed powder was calcined at a temperature of 600 ° C. or higher for 2 hours to obtain NiZnCu ferrite. The spinelization rate of the obtained ferrite powder was determined by XRD (X-ray diffraction), and the minimum temperature of 725 ° C. at which the spinelization rate was 90% or more was determined as the calcinable temperature.
[0040]
The calcined ferrite powder was further wet pulverized by a ball mill until the specific surface area became 12 ± 1 m 2 / g. The obtained powder was dried, mixed with the PVA solution and granulated, and then pressed into a toroidal shape. The formed body was fired at 850 to 900 ° C. to obtain a sintered body (ferrite). The sintered density was calculated from the weight and dimensions of the sintered body. The initial permeability was measured for a core fired at 900 ° C. using an LCR meter. Production conditions and evaluation results are shown in Table 1.
[0041]
(Comparative Example 1)
Using the high-purity α-Fe 2 O 3 produced from the ferrous chloride of Example 1 by spray roasting, the ferrite powder production and ferrite production conditions in Example 1 were changed to the conditions shown in Table 1. A sample was manufactured in the same manner as in Example 1. Production conditions and evaluation results are shown in Table 1.
[0042]
(Comparative Examples 2 and 3)
In Example 1, instead of using an aqueous iron chloride solution containing ferrous chloride and ferric chloride, an aqueous iron sulfate solution prepared from industrial ferrous sulfate and ferric sulfate was used. In the same manner as in Example 1, Fe 3 O 4 was produced, α-Fe 2 O 3 was produced, and ferrite powder and ferrite were produced. Production conditions and evaluation results are shown in Table 1.
[0043]
From the comparison between Example 1 and Comparative Examples 1 to 3 , the ferrite powder from α-Fe 2 O 3 of the present invention has a calcining temperature higher than that of ferrite powder from α-Fe 2 O 3 by spray roasting. It can be seen that, even when fired at a low temperature of 900 ° C. or lower, it is possible to produce a ferrite having a high sintered density and a high initial permeability.
[0044]
(Examples 2-6, Comparative Examples 4-6)
Each condition of Fe 3 O 4 , α-Fe 2 O 3 , ferrite powder and ferrite production in Example 1 was changed to each condition shown in Table 2, and a sample was produced in the same manner as in Example 1. Production conditions and evaluation results are shown in Table 2.
[0045]
From the comparison of Examples 2 to 6 and Comparative Examples 4 to 6, the ferrite powder from α-Fe 2 O 3 of the present invention has a high sintered density and high initial permeability even when fired at a low temperature of 900 ° C. or less. It can be seen that the ferrite shown can be produced. In Comparative Example 5, it was impossible to prepare an aqueous solution because the concentration of the aqueous iron salt solution exceeded the solubility of ferrous chloride.
[0046]
(Examples 7-11, Comparative Examples 7-8)
In Example 1, Fe 3 O 4 was produced in the same manner as in Example 1 except that the mixing ratio of the ferrous chloride aqueous solution and the ferric chloride aqueous solution was changed. Α-Fe 2 O 3 was produced in the same manner as in Example 1 except that the heating temperature of Fe 3 O 4 was changed to 600 ° C. and the heating time of 1 hour was changed to 30 minutes. Manufactured. Production conditions and evaluation results are shown in Table 3.
[0047]
From the comparison between Examples 7 to 11 and Comparative Examples 7 to 8, the ferrite powder from Fe 3 O 4 satisfying Fe 3+ / (Fe 2+ + Fe 3+ ) = 2 to 30% of the present invention is 900 ° C. It can be seen that it is possible to produce a ferrite exhibiting a high sintered density and a high initial permeability even when fired at the following low temperature.
[0048]
(Examples 12 to 17, Comparative Examples 9 to 10)
In Example 1, Fe 3 O 4 was produced in the same manner as in Example 1 except that the equivalent ratio R during neutralization was changed. Except for changing the heating temperature of the Fe 3 O 4 to 550 ° C. is prepared analogously to α-Fe 2 O 3 as in Example 1 to produce the ferrite powder and the ferrite in the same manner as in Example 1. Production conditions and evaluation results are shown in Table 4.
[0049]
From the comparison of Examples 12 to 17 and Comparative Examples 9 to 10 , the ferrite powder from Fe 3 O 4 of the present invention when the equivalent ratio R during neutralization is 0.9 to 1.5 is 900 ° C. or less. It can be seen that it is possible to produce a ferrite exhibiting a high sintered density and a high initial permeability even when fired at a low temperature. When R is less than 0.9, the particle size is large and the chlorine content is small, so the effect of lowering the calcination temperature is not recognized. On the other hand, if R exceeds 1.5, the oxidation reaction during the production of Fe 3 O 4 becomes slow, the particles grow, and the particle size increases, which is not preferable.
[0050]
【The invention's effect】
Since α-Fe 2 O 3 of the present invention is obtained by heat-oxidizing Fe 3 O 4 produced by a wet method, it has a small particle size, a sharp particle size distribution, and excellent dispersibility. When producing ferrite powder from this α-Fe 2 O 3 , the calcining temperature can be lowered, and even if the ferrite powder is fired at a low temperature of 900 ° C. or less, the sintered density is high and the initial permeability is excellent. In addition, a ferrite suitable as a magnetic material for a small magnetic element can be obtained.
[Table 1]
[Table 2]
[Table 3]
[Table 4]
Claims (4)
0.8 ≦ 合計鉄イオン濃度(mol /l) /A ≦ 12
ただし、A=(Fe2+とFe3+の中和に必要な水酸基換算量(mol) )×R/(アルカリ水溶液の量(l) )
(ここで、Rは前記塩化鉄水溶液と前記アルカリ水溶液の当量比を示し、0.90≦R≦1.5である)
に調整して中和することを特徴とするFe3 O4 の製造方法。In the method of producing an Fe 3 O 4 by mixing and neutralizing an aqueous iron chloride solution and an alkaline aqueous solution and oxidizing the resulting neutralized solution, the ferric ion concentration (mol / l) in the aqueous iron chloride solution is , Adjusted to 2 to 30% with respect to the total iron ion concentration of ferrous ions and ferric ions (mol / l), and the concentrations of the aqueous iron chloride solution and the alkaline aqueous solution are
0.8 ≦ total iron ion concentration (mol / l) / A ≦ 12
However, A = (hydroxyl equivalent amount (mol) necessary for neutralization of Fe 2+ and Fe 3+ ) × R / (amount of alkaline aqueous solution (l))
(Here, R represents the equivalent ratio of the aqueous iron chloride solution to the alkaline aqueous solution, and 0.90 ≦ R ≦ 1.5)
A process for producing Fe 3 O 4 , characterized in that it is adjusted to neutralize.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000340192A JP4087555B2 (en) | 2000-11-08 | 2000-11-08 | Iron oxide and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000340192A JP4087555B2 (en) | 2000-11-08 | 2000-11-08 | Iron oxide and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002145620A JP2002145620A (en) | 2002-05-22 |
JP4087555B2 true JP4087555B2 (en) | 2008-05-21 |
Family
ID=18815147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000340192A Expired - Fee Related JP4087555B2 (en) | 2000-11-08 | 2000-11-08 | Iron oxide and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4087555B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004210633A (en) * | 2002-12-20 | 2004-07-29 | Jfe Chemical Corp | Iron oxide and its manufacturing method |
JP2005145803A (en) * | 2003-11-20 | 2005-06-09 | Jfe Chemical Corp | Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME |
JP2005145802A (en) * | 2003-11-20 | 2005-06-09 | Jfe Chemical Corp | Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME |
JP5690474B2 (en) * | 2009-02-12 | 2015-03-25 | Dowaエレクトロニクス株式会社 | Magnetic powder |
CN102659189A (en) * | 2012-02-28 | 2012-09-12 | 天津工业大学 | Method for preparing magnetic Fe3O4 nano-powder using pickling waste liquor |
CN102757099B (en) * | 2012-08-09 | 2014-05-28 | 青岛新中基环保科技有限公司 | Process for producing high magnetic ferroferric oxide by galvanized pickle liquor |
KR101697848B1 (en) * | 2015-01-05 | 2017-01-19 | 한양대학교 산학협력단 | Method for manufacturing magnetic iron oxide and apparatus for removal and recovery of phosphate using the same |
TWI636016B (en) * | 2017-10-13 | 2018-09-21 | 中國鋼鐵股份有限公司 | Methods of fabricating modified iron oxide powder and fabricating ferrite magnet |
CN116477934B (en) * | 2023-05-16 | 2024-07-09 | 苏美尔磁性电子(惠州)有限公司 | Preparation process of nickel-zinc ferrite core |
-
2000
- 2000-11-08 JP JP2000340192A patent/JP4087555B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002145620A (en) | 2002-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6480715B2 (en) | Precursor of iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder using the same | |
JP4087555B2 (en) | Iron oxide and method for producing the same | |
CN100532321C (en) | Ferrite sintered compact and method for producing the same, and electronic parts using the same | |
CN103159469A (en) | Preparation method of Mn-Zn ferrite powder with high permeability | |
JP3440452B2 (en) | Method of manufacturing low-temperature sintered multilayer chip inductor material with excellent high-frequency characteristics | |
KR101931635B1 (en) | Method for producing Ferrite core and the Ferrite core | |
JP4053230B2 (en) | Iron oxide and method for producing the same | |
TWI768299B (en) | SUBSTITUTION TYPE ε IRON OXIDE MAGNETIC PARTICLE POWDER, METHOD FOR MANUFACTURING SUBSTITUTION TYPE ε IRON OXIDE MAGNETIC PARTICLE POWDER, GREEN COMPACT, METHOD FOR MANUFACTURING GREEN COMPACT AND ELECTROMAGNETIC WAVE ABSORBER | |
JP3580145B2 (en) | Method for producing Ni-Cu-Zn ferrite material | |
JP3931960B2 (en) | Fe (2) O (3) and production method thereof | |
JP3919546B2 (en) | Iron oxide powder | |
JP3406382B2 (en) | Method for producing ferrite magnetic powder | |
JP3894298B2 (en) | Fe (2) O (3) and production method thereof | |
JP2010150053A (en) | SINTERED COMPACT OF SPINEL TYPE Ni-Cu-Zn-BASED FERRITE | |
JP3406381B2 (en) | Ferrite-based magnetic powder raw material oxide and method for producing ferrite-based magnetic powder | |
JP3908045B2 (en) | Manufacturing method of iron oxide powder and ferrite powder for chip inductor | |
JP3406380B2 (en) | Ferrite-based magnetic powder raw material oxide and method for producing ferrite-based magnetic powder | |
JPH07315844A (en) | Production of ferrite powder | |
JP3580144B2 (en) | Method for producing Ni-Cu-Zn ferrite material | |
JP3466504B2 (en) | High purity iron oxide powder for ferrite and method for producing the same | |
WO2020179659A1 (en) | SUBSTITUTION-TYPE ε-IRON OXIDE MAGNETIC PARTICLE POWDER, METHOD FOR PRODUCING SUBSTITUTION-TYPE ε-IRON OXIDE MAGNETIC PARTICLE POWDER, GREEN COMPACT, METHOD FOR PRODUCING GREEN COMPACT, AND ELECTROMAGNETIC WAVE ABSORBER | |
JP2002151318A (en) | Method of manufacturing ferrite powder | |
KR20120061358A (en) | Y-type ferrite and molded article manufactured with the same | |
JP2008247618A (en) | Method for manufacturing ferrite powder and ferrite powder | |
JP3389937B2 (en) | Manufacturing method of soft ferrite particles for low temperature sintering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080221 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130228 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130228 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140228 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |