JP2002145620A - Iron oxide and its production method - Google Patents

Iron oxide and its production method

Info

Publication number
JP2002145620A
JP2002145620A JP2000340192A JP2000340192A JP2002145620A JP 2002145620 A JP2002145620 A JP 2002145620A JP 2000340192 A JP2000340192 A JP 2000340192A JP 2000340192 A JP2000340192 A JP 2000340192A JP 2002145620 A JP2002145620 A JP 2002145620A
Authority
JP
Japan
Prior art keywords
solution
aqueous solution
ferrite
aqueous
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000340192A
Other languages
Japanese (ja)
Other versions
JP4087555B2 (en
Inventor
Takahiro Kikuchi
孝宏 菊地
Yukiko Nakamura
由紀子 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000340192A priority Critical patent/JP4087555B2/en
Publication of JP2002145620A publication Critical patent/JP2002145620A/en
Application granted granted Critical
Publication of JP4087555B2 publication Critical patent/JP4087555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide α-Fe2O3 transformable into a ferrite for compact magnetic element that can obtain high sintered density even when being sintered at a low temperature and has good initial permeability and its production method, and to provide Fe3O4 that is the raw material of the α-Fe2O3 and its production method. SOLUTION: An aqueous iron chloride solution and an aqueous alkali solution are mixed at a specified Fe3+ concentration so that the concentrations of the aqueous iron chloride solution and the aqueous alkali solution are controlled within specified ranges. The mixture is neutralized. The obtained aqueous iron hydroxide solution is heated and oxidized to produce Fe3O4 having the specific surface area of 10 to 40 m2/g and the chlorine content of 100 to 3,000 ppm, and is further heated and oxidized to produce α-Fe2O3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はFe3 4 、α−F
2 3 およびそれらの製造方法に関し、特に仮焼温度
を低下することができるα−Fe2 3 とその原料のF
3 4 およびそれらの製造方法に関する。
The present invention relates to Fe 3 O 4 , α-F
The present invention relates to e 2 O 3 and a method for producing the same, particularly to α-Fe 2 O 3 which can lower the calcination temperature and the raw material F
The present invention relates to e 3 O 4 and a method for producing them.

【0002】[0002]

【従来の技術】近年、電子機器の小型化、軽量化に伴
い、磁気素子の分野でもノイズフィルタとしての積層チ
ップインダクタやパワー系の平面インダクタが提案さ
れ、一部で実用に供されている。積層チップインダクタ
はフェライトペーストを印刷法やドクターブレード法で
成形した磁性体部分(コア層)と、印刷法で成形された
導体部分(内部電極)を積層、焼成して製造される(特
開平4−180610号公報)。積層チップインダクタ
は小型化に有利であり、外鉄構造であるため、漏洩磁束
が小さく高密度実装にも適している。
2. Description of the Related Art In recent years, as electronic devices have become smaller and lighter, multilayer chip inductors and power type planar inductors have been proposed as noise filters in the field of magnetic devices, and some of them have been put to practical use. The multilayer chip inductor is manufactured by laminating and firing a magnetic part (core layer) formed by printing a ferrite paste or a doctor blade method and a conductor part (internal electrode) formed by a printing method (Japanese Patent Application Laid-Open No. Hei 4 (1994)). -180610). Multilayer chip inductors are advantageous for miniaturization and have an outer iron structure, so they have low leakage magnetic flux and are suitable for high-density mounting.

【0003】一方、平面インダクタは、シリコン基板上
にフェライトペーストを印刷し、焼成して磁性体部分を
形成し、その上に平面コイルをフォトリソ技術とめっき
技術により形成して製造される(特開平11−2623
9号公報)。平面インダクタも薄型化と高密度実装化に
優れている。
On the other hand, a planar inductor is manufactured by printing a ferrite paste on a silicon substrate, baking it to form a magnetic material portion, and then forming a planar coil thereon by photolithography and plating. 11-2623
No. 9). Planar inductors are also excellent in thinning and high-density mounting.

【0004】これら素子の磁性体材料には、NiZn
系、NiZnCu系などのフェライトが用いられてい
る。これらフェライトの原材料としては、通常、α−F
2 3と酸化ニッケル、酸化亜鉛、酸化銅などの金属
酸化物とを混合、仮焼後、粉砕して得られるフェライト
粉末を溶媒と混合し、ペースト化したもの(フェライト
ペースト)が用いられており、前述したように該フェラ
イトペーストを焼成して磁性体部分が形成される。
The magnetic material of these devices is NiZn.
, NiZnCu or other ferrite is used. Raw materials for these ferrites are usually α-F
mixing e 2 O 3 and nickel oxide, zinc oxide, and metal oxides such as copper oxide, calcined, the ferrite powder obtained by pulverizing mixed with a solvent, that a paste (ferrite paste) is used As described above, the ferrite paste is fired to form a magnetic portion.

【0005】積層チップインダクタや平面インダクタな
どの小型磁気素子の焼成温度が1000℃前後の高温で
あると、導体材料の銀合金とフェライトが反応してフェ
ライト特性が劣化したり、電極が短絡する等の問題が生
じるので、銀合金の融点以下の低温で焼成する必要があ
る。しかし、900℃以下の低温焼成の場合は、フェラ
イトの焼結密度が十分に高くならず、透磁率等の磁気特
性は不十分になってしまう。そこで、小型磁気素子のさ
らなる性能の向上のためには、900℃以下の低温で焼
成しても高い焼結密度が得られ、初透磁率などの磁気特
性に優れるフェライトが求められている。
If the firing temperature of small magnetic elements such as multilayer chip inductors and planar inductors is as high as about 1000 ° C., the silver alloy of the conductive material reacts with the ferrite to deteriorate the ferrite characteristics and short-circuit the electrodes. Therefore, it is necessary to fire at a low temperature lower than the melting point of the silver alloy. However, in the case of firing at a low temperature of 900 ° C. or less, the sintered density of ferrite does not become sufficiently high, and magnetic properties such as magnetic permeability become insufficient. Therefore, in order to further improve the performance of the small magnetic element, there is a demand for a ferrite which can obtain a high sintered density even when fired at a low temperature of 900 ° C. or lower and has excellent magnetic properties such as initial magnetic permeability.

【0006】焼成温度を低下させる方法として、通常よ
りも低い温度で仮焼、微粉砕したフェライト粉末を用い
る方法が知られている。しかし、仮焼温度を単に下げた
のみでは、仮焼時のスピネル化が不十分であり、900
℃以下で焼成しても焼結密度が高くならない。
As a method for lowering the firing temperature, a method using calcined and finely ground ferrite powder at a lower temperature than usual is known. However, simply lowering the calcining temperature is insufficient for spinel formation during calcining, and 900%.
The sintering density does not increase even if it is fired at a temperature of not more than ℃.

【0007】そこで、低温仮焼してもスピネル化を高め
る方法として、酸化鉄と酸化ニッケル、酸化亜鉛、酸化
銅などの金属酸化物との混合粉中に塩素化合物および/
または硫酸化合物を添加し、仮焼する方法が提案されて
いる(特開平11−144934号公報)。また、粉体
粉末冶金協会の平成12年度春季大会概要の第246頁
にも、フェライト原料粉末に塩素イオンを添加すること
により仮焼温度が低下し、低温で焼成しても高い焼結密
度が得られることが報告されている。
Therefore, as a method of enhancing spinel formation even when calcined at a low temperature, a chlorine compound and / or a metal oxide such as nickel oxide, zinc oxide and copper oxide are mixed in a powder mixture.
Alternatively, a method of calcining by adding a sulfuric acid compound has been proposed (JP-A-11-144934). Also, on page 246 of the outline of the 2000 Spring Meeting of the Powder and Powder Metallurgy Association, the calcination temperature was lowered by adding chlorine ions to the ferrite raw material powder, and a high sintering density was obtained even at low temperature. It is reported that it can be obtained.

【0008】これらの方法はいずれも、α−Fe2 3
と酸化ニッケル、酸化亜鉛、酸化銅などの金属酸化物と
の混合粉中に塩素化合物を添加する方法である。しか
し、あらかじめα−Fe2 3 などの鉄源中に仮焼温度
を低下できる成分が含まれていれば、塩素化合物や硫酸
化合物などを添加する工程が不要であり、工業的には有
利になる。
All of these methods are based on α-Fe 2 O 3
In this method, a chlorine compound is added to a powder mixture of a metal oxide such as nickel oxide, zinc oxide, and copper oxide. However, if a component capable of lowering the calcination temperature is previously contained in an iron source such as α-Fe 2 O 3, a step of adding a chlorine compound, a sulfuric acid compound, or the like is unnecessary, which is industrially advantageous. Become.

【0009】フェライト粉末の主原材料であるα−Fe
2 3 の製造方法は数多く、例えば、 鋼材の酸洗工
程で得られる塩化鉄水溶液を噴霧焙焼して製造する方法
(乾式法)、 塩化鉄水溶液や硫酸鉄水溶液をアルカ
リで中和して、水酸化鉄を得、これを酸化して一旦Fe
3 4 を得(湿式法)、さらに酸化する方法などがあ
る。
Α-Fe which is a main raw material of ferrite powder
There are many methods for producing 2 O 3 , for example, a method of spray roasting and producing an aqueous solution of iron chloride obtained in a pickling process of steel (dry method), and a method of neutralizing an aqueous solution of iron chloride or an aqueous solution of iron sulfate with alkali. , Iron hydroxide, which is oxidized and
There is a method of obtaining 3 O 4 (wet method) and further oxidizing.

【0010】乾式法で得られたα−Fe2 3 は残存塩
素分により仮焼温度を低減できる可能性はあるが、焙焼
炉の制約などから、比表面積が10m2/g以下の小さな粒
子を得ることが難しく、かつ凝集した粒子が多い。この
ためフェライト粉末を得る際には、均一な混合物を得る
ために、他の金属酸化物と混合する前に、予め粉砕する
必要がある。しかし、粉砕時に鉄などのコンタミが混入
するので、特性劣化を招きやすいなどの問題があり、小
型磁気素子用には不向きである。
[0010] α-Fe 2 O 3 obtained by the dry method may be capable of reducing the calcination temperature due to the residual chlorine content, but has a small specific surface area of 10 m 2 / g or less due to restrictions of the roasting furnace. It is difficult to obtain particles, and there are many aggregated particles. For this reason, when obtaining a ferrite powder, it is necessary to grind in advance before mixing with another metal oxide in order to obtain a uniform mixture. However, since contamination such as iron is mixed during pulverization, there is a problem that characteristics are likely to be degraded, which is not suitable for small magnetic elements.

【0011】一方、湿式法で得たFe3 4 は比表面積
が10m2/g以上の微粒子であり、粒度分布もシャープで
あり、分散性にも優れている。このFe3 4 をさらに
酸化して得られるα−Fe2 3 の寸法や形状はFe3
4 とほぼ同じであり、小型磁気素子用フェライト粉末
原料に適している。しかし、Fe3 4 中には中和時に
添加したアルカリなどが残存し、磁気特性に影響を与え
る場合もあるため、十分に洗浄除去しなければならな
い。
On the other hand, Fe 3 O 4 obtained by a wet method is fine particles having a specific surface area of 10 m 2 / g or more, has a sharp particle size distribution, and is excellent in dispersibility. Dimensions and shape of the Fe 3 O 4 and further oxidizing the obtained α-Fe 2 O 3 is Fe 3
It is almost the same as O 4 and is suitable as a raw material for ferrite powder for small magnetic elements. However, alkali added at the time of neutralization remains in Fe 3 O 4 , which may affect magnetic properties. Therefore, it must be sufficiently washed and removed.

【0012】湿式法では中和時に塩化ナトリウムなどの
塩素含有物質が生成するので、仮焼温度を低下できる可
能性があるが、塩化ナトリウムは上記した洗浄工程で殆
ど除去されてしまうので、仮焼温度の低減効果は余り期
待できない。しかし、湿式法で製造したFe3 4 やこ
れを酸化して得たα−Fe2 3 の粉体特性は小型磁気
素子用フェライト粉末原材料に最適であるため、該Fe
3 4 やα−Fe2 3 を使用することができれば、小
型磁気素子用フェライト粉末の原材料として非常に有効
である。
In the wet method, sodium chloride or the like is used during neutralization.
Since chlorine-containing substances are generated, the calcining temperature can be lowered.
Sodium chloride is almost completely eliminated by the above-mentioned washing process.
The effect of lowering the calcining temperature is too early
I can't wait. However, Fe produced by a wet methodThreeOFourYako
Α-Fe obtained by oxidizingTwoOThreePowder properties of small magnet
Since it is most suitable for ferrite powder raw materials for devices,
ThreeOFourAnd α-FeTwoO ThreeIf you can use
Very effective as a raw material for ferrite powder for type magnetic elements
It is.

【0013】[0013]

【発明が解決しようとする課題】そこで、湿式法におい
て、洗浄しても簡単には除去できないような形態でα−
Fe2 3 やFe3 4 中に塩素分を含有させることを
検討した。この結果、湿式法の原料として用いる塩化鉄
水溶液中の第一鉄イオン(Fe2+)と第二鉄(Fe3+
が特定の比率となり、かつ、中和時に混合する際の「塩
化鉄水溶液の濃度」と「アルカリ溶液の濃度」の比が特
定の値となれば、洗浄しても簡単には除去できない塩素
分を任意に制御できることを見出し、本発明の完成に至
ったものである。本発明の目的は、Fe3 4 、α−F
2 3 中の塩素含有量を任意に制御し、低温仮焼が可
能なフェライト粉末用原材料となるα−Fe2 3 、該
α−Fe 2 3 の原料として最適なFe3 4 およびこ
れらの製造方法を提供するものである。
SUMMARY OF THE INVENTION Therefore, in the wet method,
Α-
FeTwoOThreeAnd FeThreeOFourInclusion of chlorine in
investigated. As a result, iron chloride used as a raw material for the wet method
Ferrous ion (Fe2+) And ferric iron (Fe3+)
Is a specific ratio, and when mixing at the time of neutralization
The ratio between the concentration of the aqueous solution of iron fossil and the concentration of the alkaline solution
Chlorine that cannot be easily removed even if washed
And found that it could be controlled arbitrarily.
It is a thing. An object of the present invention is to provide FeThreeOFour, Α-F
eTwoOThreeLow temperature calcination is possible by controlling the chlorine content
Α-Fe as a raw material for efficient ferrite powderTwoOThree,
α-Fe TwoOThreeFe that is most suitable as a raw material forThreeOFourAnd this
These manufacturing methods are provided.

【0014】[0014]

【課題を解決するための手段】第一の発明は、湿式法で
製造してなるFe3 4 であって、比表面積が10〜4
0m2/g、塩素含有量が100ppm 以上3000ppm 以下
であることを特徴とするFe3 4 である。
The first invention is Fe 3 O 4 produced by a wet method, and has a specific surface area of 10-4.
0 m 2 / g, a Fe 3 O 4, wherein the chlorine content is 100ppm or 3000ppm or less.

【0015】第二の発明は、塩化鉄水溶液とアルカリ水
溶液を混合して中和し、得られる中和液を酸化してFe
3 4 を製造する方法において、前記塩化鉄水溶液中の
第二鉄イオン濃度(mol) を、第一鉄イオンと第二鉄イオ
ンの合計鉄イオン濃度(mol)に対し2〜30%に調整
し、かつ前記塩化鉄水溶液と前記アルカリ水溶液の濃度
を、 0.8 ≦ 合計鉄イオン濃度(mol /l) /A ≦ 1
2 ただし、A=(Fe2+とFe3+の中和に必要な水酸基換
算量(mol) )×R/(アルカリ水溶液の量(l) ) (ここで、Rは前記塩化鉄水溶液と前記アルカリ水溶液
の当量比を示し、0.90≦R≦1.5である)に調整
して中和することを特徴とするFe3 4 の製造方法で
ある。
In the second invention, an aqueous solution of iron chloride and an aqueous solution of an alkali are mixed and neutralized.
In the method for producing 3 O 4 , the ferric ion concentration (mol) in the aqueous iron chloride solution is adjusted to 2 to 30% with respect to the total iron ion concentration (mol) of ferrous ion and ferric ion. And the concentrations of the aqueous iron chloride solution and the aqueous alkali solution are set so that 0.8 ≦ total iron ion concentration (mol / l) / A ≦ 1
2 where A = (hydroxyl equivalent (mol) required for neutralization of Fe 2+ and Fe 3+ ) × R / (amount of alkaline aqueous solution (l)) (where R is the iron chloride aqueous solution and shows the equivalent ratio of alkaline aqueous solution, a method of producing Fe 3 O 4, characterized in that neutralization is adjusted to a 0.90 ≦ R ≦ 1.5).

【0016】第三の発明は、前記の第一の発明のFe3
4 を酸化してなる比表面積が10〜40m2/g、塩素含
有量が100ppm 以上3000ppm 以下であることを特
徴とするα−Fe2 3 である。
A third aspect of the present invention is the above-described Fe 3 of the first aspect.
Α-Fe 2 O 3 characterized by having a specific surface area obtained by oxidizing O 4 of 10 to 40 m 2 / g and a chlorine content of 100 ppm or more and 3000 ppm or less.

【0017】第四の発明は、前記の第二の発明の製造方
法で製造したFe3 4 を加熱し、酸化することを特徴
とするα−Fe2 3 の製造方法である。
A fourth invention is a method for producing α-Fe 2 O 3 , wherein the Fe 3 O 4 produced by the production method of the second invention is heated and oxidized.

【0018】[0018]

【発明の実施の形態】本発明のFe3 4 は、塩化第一
鉄と塩化第二鉄を含有する塩化鉄水溶液をアルカリ水溶
液で中和し、得られた水溶液を加熱、酸化する方法(湿
式法)で製造された比表面積が10〜40m2/g、塩素含
有量が100ppm 以上3000ppm 以下の酸化鉄であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Fe 3 O 4 of the present invention is obtained by neutralizing an aqueous solution of iron chloride containing ferrous chloride and ferric chloride with an aqueous alkali solution, and heating and oxidizing the resulting aqueous solution ( Iron oxide having a specific surface area of 10 to 40 m 2 / g and a chlorine content of 100 ppm or more and 3000 ppm or less produced by a wet method).

【0019】湿式法によるFe3 4 は、粒径が小さ
く、粒度分布がシャープであるため、分散性に優れ、α
−Fe2 3 にするための加熱酸化時に粒成長が抑制さ
れ、フェライト粉末としての粉砕性が優れる。比表面積
が10m2/g未満であると粒径が大きく、低温短時間で仮
焼することが困難となる。一方、比表面積が40m2/gを
超えると、粒子が凝集しやすく、分散性に劣り、加熱酸
化時に粒成長しやすい。好ましい比表面積は15〜30
m2/gである。なお、比表面積は例えば、塩化鉄水溶液の
第二鉄イオン量などにより制御できる。
Fe 3 O 4 produced by the wet method has a small particle size and a sharp particle size distribution, so that it has excellent dispersibility and α
-Fe 2 O 3 grain growth during heating oxidation to the is suppressed, excellent in grindability as ferrite powder. When the specific surface area is less than 10 m 2 / g, the particle size is large, and it becomes difficult to perform calcination at a low temperature for a short time. On the other hand, if the specific surface area exceeds 40 m 2 / g, the particles tend to aggregate, have poor dispersibility, and tend to grow during thermal oxidation. Preferred specific surface area is 15 to 30
m 2 / g. The specific surface area can be controlled by, for example, the amount of ferric ions in the aqueous iron chloride solution.

【0020】本発明のFe3 4 の塩素含有量は100
ppm 以上3000ppm 以下である。塩素含有量が比較的
多量のため、フェライト化の仮焼温度の低減効果が大き
く、低温焼結してもフェライトの焼結密度が高い。塩素
含有量が100ppm 未満であると、フェライト化の仮焼
温度の低減効果が認められない。一方、3000ppmを
超えると、仮焼温度が下がるものの、焼成時に焼結密度
が上がらず、所望の電磁気特性を得ることができない。
塩素含有量は例えば後述するように、中和時の塩化鉄水
溶液とアルカリ水溶液の濃度比により制御することがで
きる。好ましい塩素含有量は300ppm 以上1600pp
m 以下であり、より好ましくは500〜1200ppm で
ある。
The Fe 3 O 4 of the present invention has a chlorine content of 100.
ppm or more and 3000 ppm or less. Since the chlorine content is relatively large, the effect of reducing the calcination temperature of ferrite formation is great, and the sintered density of ferrite is high even at low temperatures. If the chlorine content is less than 100 ppm, the effect of reducing the calcination temperature for ferrite formation is not recognized. On the other hand, if it exceeds 3000 ppm, although the calcination temperature decreases, the sintered density does not increase at the time of sintering, and desired electromagnetic characteristics cannot be obtained.
The chlorine content can be controlled by, for example, the concentration ratio between the aqueous solution of iron chloride and the aqueous solution of the alkali during neutralization, as described later. Preferred chlorine content is 300 ppm or more and 1600 pp
m, more preferably 500 to 1200 ppm.

【0021】本発明のFe3 4 はそのままでもフェラ
イト原料として使用して構わないが、Fe3 4 はFe
2+とFe3+の比率、すなわち、鉄と酸素の比率が必ずし
も一定しないため、フェライト原料として実用化が難し
い面があるので、通常は、さらにこれを加熱し、酸化し
て得られたα−Fe2 3 がフェライト原料として使用
される。本発明はFe3 4 とα−Fe2 3 の2種の
酸化鉄に係わる。
[0021] Fe 3 O 4 of the present invention is not may be used as it is but ferrite raw materials, Fe 3 O 4 is Fe
Since the ratio of 2+ to Fe 3+ , that is, the ratio of iron to oxygen is not always constant, it is difficult to put it into practical use as a ferrite raw material. Therefore, usually, this is further heated and oxidized to obtain α. -fe 2 O 3 it is used as a starting ferrite. The present invention relates to two types of iron oxides, Fe 3 O 4 and α-Fe 2 O 3 .

【0022】つぎに、Fe3 4 の製造方法について説
明する。第二の発明のFe3 4 は、塩化第一鉄と塩化
第二鉄を含有する塩化鉄水溶液をアルカリ水溶液で中和
して得られた水酸化鉄水溶液を加熱、酸化する方法で製
造される。従来から、トナー用Fe3 4 は、塩化第一
鉄水溶液をアルカリ水溶液で中和して得られた水酸化鉄
水溶液を加熱、酸化する方法で製造されているが、該F
3 4 は粒度分布がシャープなものの、比表面積が1
0m2/g未満と小さいため、噴霧焙焼法により製造された
Fe3 4 よりもやや粒径が小さい程度であり、前記の
問題点を解決するような粒径ではない。また水洗などの
洗浄工程で塩素分は除去されやすいため、塩素含有量が
100ppm 未満と少なく、フェライト化の仮焼温度を下
げる効果が十分でない。そのため、小型磁気素子用には
適さない。
Next, a method for producing Fe 3 O 4 will be described. The Fe 3 O 4 of the second invention is produced by a method of heating and oxidizing an aqueous iron hydroxide solution obtained by neutralizing an aqueous iron chloride solution containing ferrous chloride and ferric chloride with an aqueous alkaline solution. You. Hitherto, Fe 3 O 4 for toner has been manufactured by heating and oxidizing an aqueous iron hydroxide solution obtained by neutralizing an aqueous ferrous chloride solution with an aqueous alkaline solution.
e 3 O 4 has a sharp particle size distribution but a specific surface area of 1
Since the particle size is as small as less than 0 m 2 / g, the particle size is slightly smaller than Fe 3 O 4 produced by the spray roasting method, and is not a particle size that solves the above-mentioned problem. Further, since the chlorine content is easily removed in a washing step such as washing with water, the chlorine content is as low as less than 100 ppm, and the effect of lowering the calcining temperature for ferrite formation is not sufficient. Therefore, it is not suitable for small magnetic elements.

【0023】本発明のFe3 4 の製造において、鉄源
として塩化第一鉄および塩化第二鉄を共有する水溶液を
用いる。塩化鉄はそれを構成する塩素をFe3 4 に取
り込むために使用する。塩化第一鉄と塩化第二鉄を含有
する塩化鉄水溶液は、第二鉄イオン(Fe3+)濃度(mol
/l)が第一鉄イオン(Fe2+)と第二鉄イオン(Fe
3+)の合計鉄イオン濃度(全Fe量)(mol /l)に対し
て2〜30%となるように調整して用いることが重要で
ある。塩化第二鉄を加え、その含有量を上記範囲に規制
することにより、生成するFe3 4 の粒径を小さく制
御することができ、比表面積が10〜40m2/gで、粒度
分布がシャープで、しかも分散性に優れたFe3 4
得ることができる。しかも塩素分の含有量も適量とな
る。
In the production of Fe 3 O 4 of the present invention, an aqueous solution sharing ferrous chloride and ferric chloride is used as an iron source. Iron chloride is used to incorporate the chlorine constituting it into Fe 3 O 4 . The aqueous ferric chloride solution containing ferrous chloride and ferric chloride has a ferric ion (Fe 3+ ) concentration (mol
/ l) are ferrous ions (Fe 2+ ) and ferric ions (Fe
It is important to adjust the total iron ion concentration (total Fe amount) (mol / l) of ( 3+ ) to 2 to 30% for use. By adding ferric chloride and regulating the content to the above range, the particle size of the generated Fe 3 O 4 can be controlled to be small, the specific surface area is 10 to 40 m 2 / g, and the particle size distribution is Fe 3 O 4 that is sharp and excellent in dispersibility can be obtained. In addition, the content of chlorine is also appropriate.

【0024】第二鉄イオンの添加量が前記濃度比で2%
未満の場合は、目標とする小粒径のFe3 4 が得られ
ず、比表面積10m2/g未満の粒子が得られる。また、塩
素分の含有量が少なく、フェライト粉末の仮焼温度の低
減に寄与しない。逆に添加量が前記濃度比で30%を超
えると、比表面積が40m2/gを超えるFe3 4 が得ら
れ、磁気的な凝集力により分散性が悪くなるため、フェ
ライト仮焼時に焼結が進みやすくなり、仮焼品の粉砕性
も悪化する。好ましい第二鉄イオンの含有量は前記濃度
比で5〜20%である。
The amount of ferric ion added is 2% in the above concentration ratio.
If it is less than 1, the target small particle size Fe 3 O 4 cannot be obtained, and particles having a specific surface area of less than 10 m 2 / g can be obtained. Further, the content of chlorine is small and does not contribute to the reduction of the calcining temperature of the ferrite powder. Conversely, if the amount of addition exceeds 30% in the above concentration ratio, Fe 3 O 4 having a specific surface area of more than 40 m 2 / g is obtained, and the dispersibility becomes poor due to magnetic cohesion. Sintering tends to proceed, and the crushability of the calcined product also deteriorates. The preferred ferric ion content is 5 to 20% in the above concentration ratio.

【0025】本発明のFe3 4 を得るためには、塩化
鉄水溶液とアルカリ水溶液の濃度を下記の関係に調整し
て中和することも重要である。 0.8 ≦ 合計鉄イオン濃度(mol /l) /A ≦ 12 [1] ただし、A=(Fe2+とFe3+の中和に必要な水酸基換
算量(mol) )×R/(アルカリ水溶液の量(l) ) (ここで、Rは塩化鉄水溶液とアルカリ水溶液の当量比
を示し、0.90≦R≦1.5である。)
In order to obtain Fe 3 O 4 of the present invention, it is also important to neutralize the aqueous solution of iron chloride by adjusting the concentrations of the aqueous solution of alkali and the aqueous solution of alkali in the following relationship. 0.8 ≦ total iron ion concentration (mol / l) / A ≦ 12 [1] where A = (amount of hydroxyl group required for neutralization of Fe 2+ and Fe 3+ (mol)) × R / (alkali Amount of aqueous solution (l)) (where R indicates an equivalent ratio of an aqueous solution of iron chloride to an aqueous solution of an alkali, and 0.90 ≦ R ≦ 1.5)

【0026】式[1]は、中和に際し、混合する時のア
ルカリ水溶液の濃度に対する、塩化鉄水溶液の濃度の比
を示す。例えば塩化鉄水溶液1l(濃度10mol / l)
と水酸化ナトリウム水溶液9l(濃度2.2mol / l)
を混合、中和する場合のように、少量の高濃度塩化鉄水
溶液と多量の低濃度アルカリ水溶液を混合する場合、式
[1]の値が大きくなる。
Equation [1] shows the ratio of the concentration of the aqueous solution of iron chloride to the concentration of the aqueous solution of the alkali when mixing during neutralization. For example, 1 liter of iron chloride aqueous solution (concentration: 10 mol / l)
And 9 l of aqueous sodium hydroxide solution (concentration 2.2 mol / l)
When a small amount of a high-concentration iron chloride aqueous solution and a large amount of a low-concentration alkaline aqueous solution are mixed, as in the case of mixing and neutralizing, the value of the formula [1] becomes large.

【0027】本発明者は、この場合、塩化鉄水溶液の濃
度とアルカリ水溶液の濃度条件次第で、Fe3 4 に含
有される塩素分の量が変化することを見出し、該濃度条
件を式[1]で示される範囲に調整すれば、含有する塩
素分がα−Fe2 3 の仮焼温度の低下に寄与すること
を確認した。
The present inventor has found that, in this case, the amount of chlorine contained in Fe 3 O 4 varies depending on the concentration conditions of the aqueous solution of iron chloride and the concentration of the aqueous alkali solution. 1], it was confirmed that the chlorine content contained contributed to a decrease in the calcination temperature of α-Fe 2 O 3 .

【0028】式[1]の前記濃度比は0.8以上12以
下である。この範囲であると、仮焼温度の低下に効果が
あるFe3 4 に含有される塩素分の量が適量となる。
前記濃度比が0.8未満の場合は、アルカリ水溶液の濃
度に比べ塩化鉄水溶液の濃度が低くなりすぎ、仮焼温度
の低下に必要な量の塩素分がFe3 4 に含有されず、
仮焼温度を下げることができない。逆に前記濃度比が1
2を超える場合は、塩化鉄水溶液の濃度が塩化第一鉄の
溶解度を超えることがあり得るので現実的でない。中和
後の塩化鉄濃度が非常に低い場合には、12を超えても
可能性があるが、必要以上の塩素分がFe3 4 に取り
込まれてしまい、逆に焼結を阻害することになる。式
[1]の前記濃度比が1.0〜12であれば、該取り込
み量が適量であり、1.5〜10であればさらに好まし
い。
The concentration ratio in the formula [1] is 0.8 or more and 12 or less. Within this range, the amount of chlorine contained in Fe 3 O 4 that is effective in lowering the calcination temperature becomes an appropriate amount.
If the concentration ratio is less than 0.8, the concentration of the aqueous solution of iron chloride is too low compared to the concentration of the aqueous alkaline solution, and the amount of chlorine necessary for lowering the calcination temperature is not contained in Fe 3 O 4 ,
The calcination temperature cannot be lowered. Conversely, when the concentration ratio is 1
If it exceeds 2, the concentration of the aqueous solution of iron chloride may exceed the solubility of ferrous chloride, which is not practical. When the concentration of iron chloride after neutralization is very low, it is possible that the concentration exceeds 12, but excessive chlorine content is taken into Fe 3 O 4 , which conversely inhibits sintering. become. When the concentration ratio of the formula [1] is 1.0 to 12, the amount of the incorporation is an appropriate amount, and 1.5 to 10 is more preferable.

【0029】Fe2+とFe3+の中和に必要なアルカリの
量は水酸基(OH- )に換算した濃度でなければならな
い。例えば、1mol/lの炭酸ナトリウム水溶液の場合
は、炭酸イオン(CO3 2- )となるので、水酸基濃度に
換算すると2mol/lとなる。また、Rは塩化鉄塩水溶液
とアルカリ水溶液の当量比を示す。塩化鉄水溶液過剰の
場合はR<1、アルカリ水溶液過剰の場合はR>1とな
る。0.90≦R≦1.5であると、フェライト原料と
して好適な粒径のFe3 4 が得られる。
The amount of alkali required for neutralization of Fe 2+ and Fe 3+ must be a concentration converted to hydroxyl groups (OH ). For example, in the case of a 1 mol / l sodium carbonate aqueous solution, it is converted to a carbonate ion (CO 3 2− ), which is 2 mol / l in terms of a hydroxyl group concentration. R represents the equivalent ratio between the aqueous solution of iron chloride salt and the aqueous solution of alkali. R <1 when the aqueous solution of iron chloride is excessive, and R> 1 when the aqueous solution of alkali is excessive. When 0.90 ≦ R ≦ 1.5, Fe 3 O 4 having a particle size suitable as a ferrite raw material is obtained.

【0030】当量比Rが0.90未満の場合は、水酸基
の量が不足し、pHが低くなるので、生成する核の数が
減り、さらに余剰のFe3+がグリーンリラストと称され
る中間生成物の生成に消費されるので、得られる粒径が
大きくなり、好適粒径が得られ難い。当量比Rが1.5
を超える場合は、未反応のアルカリが多く、また反応速
度が遅いためコスト的に好ましくない。また粒成長しや
すいため粒径が大きくなりすぎる場合がある。
When the equivalent ratio R is less than 0.90, the amount of hydroxyl groups becomes insufficient and the pH becomes low, so that the number of generated nuclei decreases, and the surplus Fe 3+ is referred to as green last. Since it is consumed for the production of the intermediate product, the obtained particle size becomes large, and it is difficult to obtain a suitable particle size. Equivalent ratio R is 1.5
If it exceeds, the amount of unreacted alkali is large and the reaction rate is low, which is not preferable in terms of cost. In addition, the grain size is likely to be too large due to easy grain growth.

【0031】本発明のアルカリ原料としては、水酸化ナ
トリウムや水酸化カリウムのような水酸化アルカリ、炭
酸ナトリウムなどの炭酸アルカリ、アンモニア等が使用
できる。
As the alkali raw material of the present invention, alkali hydroxides such as sodium hydroxide and potassium hydroxide, alkali carbonates such as sodium carbonate, ammonia and the like can be used.

【0032】塩化鉄水溶液中の一部の第一鉄イオンは下
記式[2]の反応に従い、塩化第二鉄と反応し、Fe3
4 が生成する。残部の第一鉄イオンは中和されて水酸
化第一鉄になる。得られた水溶液を50〜100℃に維
持しながら酸素含有ガスを通気すると、生成したFe3
4 を核として粒成長する。酸素含有ガスは通常空気で
ある。酸化温度が50℃より低いと、針状の含水酸化物
が生成するため好ましくない。また100℃を超える場
合は設備が大掛かりになり、工業化には適さない。 Fe2++Fe3++8OH- → Fe3 4 +4H2 O [2]
Some ferrous ions in the aqueous solution of iron chloride react with ferric chloride according to the reaction of the following formula [2] to form Fe 3
O 4 is produced. The remaining ferrous ions are neutralized to ferrous hydroxide. When an oxygen-containing gas is passed while maintaining the obtained aqueous solution at 50 to 100 ° C., the generated Fe 3
The grains grow with O 4 as a nucleus. The oxygen-containing gas is usually air. If the oxidation temperature is lower than 50 ° C., a needle-like hydrated oxide is generated, which is not preferable. On the other hand, when the temperature exceeds 100 ° C., the equipment becomes large-scale and is not suitable for industrialization. Fe 2+ + Fe 3+ + 8OH → Fe 3 O 4 + 4H 2 O [2]

【0033】第三の発明のα−Fe2 3 は、第一の発
明のFe3 4 を加熱酸化して製造されるが、Fe3
4 と実質的に同じ比表面積および塩素含有量である。す
なわち、比表面積が10〜40m2/gで、塩素の含有量が
100ppm 以上3000ppm以下である。好ましい比表
面積は15〜30m2/g、好ましい塩素含有量は300〜
1600ppm であり、より好ましくは500〜1200
ppm である。
The α-Fe 2 O 3 of the third invention is produced by heating oxidation of Fe 3 O 4 of the first invention, Fe 3 O
Specific surface area and chlorine content substantially the same as 4 . That is, the specific surface area is 10 to 40 m 2 / g, and the chlorine content is 100 ppm or more and 3000 ppm or less. Preferred specific surface area is 15 to 30 m 2 / g, preferred chlorine content is 300 to
1600 ppm, more preferably 500-1200 ppm.
ppm.

【0034】第四の発明のα−Fe2 3 の製造方法
は、前記第二の製造方法で製造したFe3 4 を加熱酸
化することにより容易に実施できる。加熱温度は純度に
もよるが、300℃以上が好ましい。加熱温度が300
℃未満であるとγ−Fe2 3が生成する。γ−Fe2
3 もフェライト原料になり得るが、磁気的に凝集しや
すく、分散性の点から好ましくない。Fe3 4 の加熱
温度が高すぎると酸化鉄の粒子同士が溶融して粒成長す
るため、目的とする粒径の小さなα−Fe2 3が得ら
れにくく、α−Fe2 3 中の塩素含有量が低下しやす
い。好ましい加熱温度は450〜600℃である。
The method for producing α-Fe 2 O 3 according to the fourth invention can be easily carried out by heating and oxidizing the Fe 3 O 4 produced by the second production method. The heating temperature depends on the purity, but is preferably 300 ° C. or higher. Heating temperature is 300
If the temperature is lower than ℃, γ-Fe 2 O 3 is generated. γ-Fe 2
O 3 can also be a ferrite raw material, but is easily magnetically aggregated, which is not preferable from the viewpoint of dispersibility. Fe 3 since the heating temperature of O 4 is between the particles of too high iron oxide grain growth by melting, difficult to obtain a particle size of small α-Fe 2 O 3 for the purpose, α-Fe 2 O 3 in Tends to have a low chlorine content. The preferred heating temperature is 450-600 ° C.

【0035】本発明のα−Fe2 3 は湿式法で製造し
たFe3 4 を加熱酸化して得るため、塩素含有量が1
00〜3000ppm 、比表面積が10〜40m2/gであ
り、小粒径で粒度分布がシャープで、分散性に優れてい
る。したがって、これを用いてフェライトを製造する場
合、低温での仮焼が可能であり、結果的には、得られた
フェライト粉末を900℃の低温で焼成しても高い焼結
密度を得ることが可能である。
The α-Fe 2 O 3 of the present invention is obtained by heating and oxidizing Fe 3 O 4 produced by a wet method, so that the chlorine content is 1%.
It has a particle size of 100 to 3000 ppm, a specific surface area of 10 to 40 m 2 / g, a small particle size, a sharp particle size distribution, and excellent dispersibility. Therefore, when ferrite is manufactured using this, calcining at a low temperature is possible, and as a result, a high sintered density can be obtained even when the obtained ferrite powder is fired at a low temperature of 900 ° C. It is possible.

【0036】このようにして得られたα−Fe2 3
酸化ニッケル、酸化亜鉛、酸化第二銅、酸化マンガンな
どと混合、仮焼してフェライト粉末とする。フェライト
粉末は、例えば、バインダーを混合してペーストとした
後、印刷法やドクターブレード法などで磁性材層を形成
され、焼成後、積層チップインダクタや平面インダクタ
とすることができる。また、フェライト粉末とポリビニ
ルアルコール(PVA)などの結合剤や微量の添加元素
を添加して、造粒、成形した後、焼成してフェライトコ
アとすることもできる。
The α-Fe 2 O 3 thus obtained is mixed with nickel oxide, zinc oxide, cupric oxide, manganese oxide and the like, and calcined to obtain a ferrite powder. For example, a ferrite powder is formed into a paste by mixing a binder, then a magnetic material layer is formed by a printing method, a doctor blade method, or the like, and after firing, a laminated chip inductor or a planar inductor can be obtained. Also, a ferrite core can be obtained by adding a binder such as polyvinyl alcohol (PVA) or a trace amount of an additional element to the ferrite powder, granulating and molding, and then firing.

【0037】[0037]

【実施例】(実施例1)ステンレス製円筒容器(容量1
5l)に、濃度1.37mol/lの水酸化ナトリウム水溶
液7lを投入し、窒素ガスを通気して窒素雰囲気とし
た。塩化第一鉄水溶液と塩化第二鉄水溶液をFe3+
(Fe2++Fe3+)=9%になるように混合し、塩化鉄
の濃度が1.5mol/lの水溶液3lを調製した。該鉄塩
水溶液を、該円筒容器の水酸化ナトリウム水溶液に攪拌
しながら添加した。混合液10lの当量比Rは1.02
であり、(合計鉄イオン濃度(mol/ l) )/Aの値は
1.095であった。
(Example 1) Stainless steel cylindrical container (capacity 1)
To 5 l), 7 l of an aqueous sodium hydroxide solution having a concentration of 1.37 mol / l was added, and a nitrogen gas was passed to create a nitrogen atmosphere. An aqueous solution of ferrous chloride and an aqueous solution of ferric chloride are combined with Fe 3+ /
(Fe 2+ + Fe 3+ ) = 9% were mixed to prepare 3 L of an aqueous solution having a concentration of iron chloride of 1.5 mol / L. The aqueous iron salt solution was added to the aqueous sodium hydroxide solution in the cylindrical container with stirring. The equivalent ratio R of 10 l of the mixed solution is 1.02
And the value of (total iron ion concentration (mol / l)) / A was 1.095.

【0038】該溶液を窒素雰囲気のまま85℃まで昇温
し、温度が安定した後、空気を3l/min通気して酸化を
行い、Fe3 4 粒子を製造した。酸化完了後、イオン
交換水を用いて、沈降脱塩を十分繰り返し、吸引ろ過し
て、大気中70℃で乾燥させ、解砕してFe3 4 粉末
を得た。これを480℃で1時間加熱酸化して、α−F
2 3 を得た。Fe3 4 粉末とα−Fe2 3 粉末
の比表面積をBET法で測定した。塩素含有量、ナトリ
ウム含有量はICPにより求めた。
The temperature of the solution was raised to 85 ° C. in a nitrogen atmosphere, and after the temperature was stabilized, air was passed through the solution at a flow rate of 3 l / min to perform oxidation to produce Fe 3 O 4 particles. After the completion of the oxidation, precipitation and desalination were sufficiently repeated using ion-exchanged water, suction-filtered, dried at 70 ° C. in the air, and pulverized to obtain Fe 3 O 4 powder. This is heated and oxidized at 480 ° C. for 1 hour to obtain α-F
e 2 O 3 was obtained. The specific surface areas of the Fe 3 O 4 powder and the α-Fe 2 O 3 powder were measured by the BET method. The chlorine content and the sodium content were determined by ICP.

【0039】α−Fe2 3 と酸化ニッケル、酸化亜
鉛、酸化第二銅をボールミルを用い、α−Fe2 3
NiO:ZnO:CuO=49:11:30:10(モ
ル比)で混合し、乾燥した。混合粉末を600℃以上の
温度で2時間仮焼し、NiZnCu系フェライトを得
た。得られたフェライト粉末のスピネル化率をXRD
(X線回折)により求め、スピネル化率が90%以上と
なる最低温度725℃を仮焼可能温度とした。
Using a ball mill, α-Fe 2 O 3 and nickel oxide, zinc oxide and cupric oxide were used to obtain α-Fe 2 O 3 :
NiO: ZnO: CuO = 49: 11: 30: 10 (molar ratio) and mixed and dried. The mixed powder was calcined at a temperature of 600 ° C. or higher for 2 hours to obtain a NiZnCu-based ferrite. The spinelization rate of the obtained ferrite powder was determined by XRD.
The lowest temperature at which the spinel conversion rate becomes 90% or more, which was determined by (X-ray diffraction), was 725 ° C., which was the calcinable temperature.

【0040】仮焼したフェライト粉末をさらにボールミ
ルにより湿式粉砕し、比表面積が12±1m2/gになるま
で粉砕した。得られた粉末を乾燥し、PVA溶液を混合
して造粒した後、トロイダル形状にプレス成形した。成
形体を850〜900℃で焼成して焼結体(フェライ
ト)とした。焼結密度は焼結体の重量と寸法から算出し
た。初透磁率はLCRメータを用いて、900℃で焼成
したコアについて測定した。製造条件と評価結果を表1
に示した。
The calcined ferrite powder was further wet-pulverized by a ball mill until the specific surface area became 12 ± 1 m 2 / g. The obtained powder was dried, mixed with a PVA solution, granulated, and then pressed into a toroidal shape. The formed body was fired at 850 to 900 ° C. to obtain a sintered body (ferrite). The sintering density was calculated from the weight and dimensions of the sintered body. The initial magnetic permeability was measured for the core fired at 900 ° C. using an LCR meter. Table 1 shows manufacturing conditions and evaluation results.
It was shown to.

【0041】(比較例1)実施例1の塩化第一鉄から噴
霧焙焼法により製造された高純度α−Fe2 3を用い
て、実施例1におけるフェライト粉末製造およびフェラ
イト製造条件を、表1に示す条件に変更し、実施例1と
同様にサンプルを製造した。製造条件と評価結果を表1
に示した。
(Comparative Example 1) Using the high-purity α-Fe 2 O 3 produced from the ferrous chloride of Example 1 by the spray roasting method, the ferrite powder production and ferrite production conditions in Example 1 were as follows: A sample was manufactured in the same manner as in Example 1 except that the conditions shown in Table 1 were changed. Table 1 shows manufacturing conditions and evaluation results.
It was shown to.

【0042】(比較例2、3)実施例1において、塩化
第一鉄と塩化第二鉄を含有する塩化鉄水溶液の代わり
に、工業用試薬の硫酸第一鉄および硫酸第二鉄から調製
した硫酸鉄水溶液を用いる以外は、実施例1と同様にF
3 4 を製造し、α−Fe2 3 を製造し、さらにフ
ェライト粉末およびフェライトを製造した。製造条件と
評価結果を表1に示した。
(Comparative Examples 2 and 3) In Example 1, instead of the aqueous solution of ferric chloride containing ferrous chloride and ferric chloride, it was prepared from industrial reagents of ferrous sulfate and ferric sulfate. Except that an aqueous solution of iron sulfate is used, F
e 3 O 4 was produced, α-Fe 2 O 3 was produced, and further, ferrite powder and ferrite were produced. Table 1 shows the manufacturing conditions and the evaluation results.

【0043】実施例1と比較例1〜3の対比から、本発
明のα−Fe2 3 からのフェライト粉末は、噴霧焙焼
法によるα−Fe2 3 からのフェライト粉末に比べ、
仮焼温度を低くすることができ、また、900℃以下の
低温で焼成しても、高い焼結密度と高い初透磁率を示す
フェライトの製造が可能であることが分かる。
From the comparison between Example 1 and Comparative Examples 1 to 3 , the ferrite powder from α-Fe 2 O 3 according to the present invention is different from the ferrite powder from α-Fe 2 O 3 by the spray roasting method.
It can be seen that the calcining temperature can be lowered, and that even when firing at a low temperature of 900 ° C. or less, ferrite having a high sintered density and a high initial permeability can be produced.

【0044】(実施例2〜6、比較例4〜6)実施例1
におけるFe3 4 、α−Fe2 3 、フェライト粉末
およびフェライト製造の各条件を、表2に示す各条件に
変更し、実施例1と同様にサンプルを製造した。製造条
件と評価結果を表2に示した。
(Examples 2 to 6, Comparative Examples 4 to 6) Example 1
The samples were manufactured in the same manner as in Example 1 except that the conditions for producing Fe 3 O 4 , α-Fe 2 O 3 , ferrite powder and ferrite were changed to the conditions shown in Table 2. Table 2 shows the manufacturing conditions and evaluation results.

【0045】実施例2〜6と比較例4〜6の対比から、
本発明のα−Fe2 3 からのフェライト粉末は900
℃以下の低温で焼成しても、高い焼結密度と高い初透磁
率を示すフェライトの製造が可能であることが分かる。
なお、比較例5の場合は、鉄塩水溶液の濃度が塩化第一
鉄の溶解度を超えてしまうため、水溶液を調製すること
が不可能であった。
From the comparison between Examples 2 to 6 and Comparative Examples 4 to 6,
The ferrite powder from α-Fe 2 O 3 of the present invention is 900
It can be seen that ferrite having a high sintering density and a high initial permeability can be produced even when firing at a low temperature of not more than ℃.
In the case of Comparative Example 5, it was impossible to prepare an aqueous solution of iron salt because the concentration of the aqueous solution of iron salt exceeded the solubility of ferrous chloride.

【0046】(実施例7〜11、比較例7〜8)実施例
1において、塩化第一鉄水溶液と塩化第二鉄水溶液の混
合割合を変える以外は、実施例1と同様にFe3 4
製造した。Fe3 4 の加熱温度を600℃に、加熱時
間1時間を30分に変える以外は、実施例1と同様にα
−Fe23 を製造し、実施例1と同様にフェライト粉
末とフェライトを製造した。製造条件と評価結果を表3
に示した。
Examples 7 to 11 and Comparative Examples 7 to 8 In the same manner as in Example 1, except that the mixing ratio of the aqueous ferrous chloride solution and the aqueous ferric chloride solution was changed, Fe 3 O 4 was used. Was manufactured. Except that the heating temperature of Fe 3 O 4 was changed to 600 ° C. and the heating time of 1 hour was changed to 30 minutes, α
-Fe 2 O 3 was produced, and ferrite powder and ferrite were produced in the same manner as in Example 1. Table 3 shows the manufacturing conditions and evaluation results
It was shown to.

【0047】実施例7〜11と比較例7〜8の対比か
ら、本発明のFe3+/(Fe2++Fe 3+)=2〜30%
を満足するFe3 4 からのフェライト粉末は、900
℃以下の低温で焼成しても、高い焼結密度と高い初透磁
率を示すフェライトの製造が可能であることが分かる。
Comparison between Examples 7 to 11 and Comparative Examples 7 to 8
Et al. Of the present invention3+/ (Fe2++ Fe 3+) = 2-30%
Fe that satisfiesThreeOFourFerrite powder from
High sintering density and high initial permeability even when fired at low temperatures below ℃
It can be seen that the production of ferrite exhibiting a ratio is possible.

【0048】(実施例12〜17、比較例9〜10)実
施例1において、中和時の当量比Rを変える以外は、実
施例1と同様にFe 3 4 を製造した。Fe3 4 の加
熱温度を550℃に変える以外は、実施例1と同様にα
−Fe2 3 を製造し、実施例1と同様にフェライト粉
末とフェライトを製造した。製造条件と評価結果を表4
に示した。
(Examples 12 to 17, Comparative Examples 9 to 10)
In Example 1, except that the equivalent ratio R at the time of neutralization was changed,
As in the first embodiment, ThreeOFourWas manufactured. FeThreeOFourAddition
Except for changing the heat temperature to 550 ° C.,
-FeTwoOThreeAnd ferrite powder was produced in the same manner as in Example 1.
Powder and ferrite were manufactured. Table 4 shows manufacturing conditions and evaluation results.
It was shown to.

【0049】実施例12〜17と比較例9〜11の対比
から、中和時の当量比Rが0.9〜1.5とした時の本
発明のFe3 4 からのフェライト粉末は、900℃以
下の低温で焼成しても、高い焼結密度と高い初透磁率を
示すフェライトの製造が可能であることが分かる。Rが
0.9未満の場合は、粒径が大きく、塩素含有量も少な
いため、仮焼温度の低下効果が認められない。逆にRが
1.5を超えると、Fe3 4 生成時の酸化反応が遅く
なり、粒子が成長し、粒径が大きくなるので、好ましく
ない。
From the comparison between Examples 12 to 17 and Comparative Examples 9 to 11, the ferrite powder from Fe 3 O 4 of the present invention when the equivalent ratio R during neutralization was 0.9 to 1.5 was as follows: It can be seen that even when firing at a low temperature of 900 ° C. or less, ferrite having high sintering density and high initial permeability can be produced. When R is less than 0.9, the effect of lowering the calcining temperature is not recognized because the particle size is large and the chlorine content is small. Conversely, if R exceeds 1.5, the oxidation reaction at the time of producing Fe 3 O 4 becomes slow, and particles grow and the particle size increases, which is not preferable.

【0050】[0050]

【発明の効果】本発明のα−Fe2 3 は、湿式法で製
造したFe3 4 を加熱酸化して得られるため、小粒径
で、粒度分布がシャープで、しかも分散性に優れてい
る。このα−Fe2 3 よりフェライト粉末を製造する
場合、仮焼温度を低くすることができ、該フェライト粉
末を900℃以下の低温で焼成しても焼結密度が高く、
初透磁率に優れた小型磁気素子用磁性材料として好適な
フェライトを得ることができる。
Effects of the Invention α-Fe 2 O 3 of the present invention, since obtained by heating oxidation of Fe 3 O 4 prepared by a wet process, a small particle size, particle size distribution is sharp, yet excellent dispersibility ing. When producing a ferrite powder from this α-Fe 2 O 3 , the calcination temperature can be lowered, and even when the ferrite powder is fired at a low temperature of 900 ° C. or less, the sintered density is high,
Ferrite suitable as a magnetic material for a small magnetic element having excellent initial permeability can be obtained.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G002 AA03 AA04 AB04 AE03 5E041 AB11 AB19 CA01 HB09 HB15 HB17 NN02 NN06 NN17  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G002 AA03 AA04 AB04 AE03 5E041 AB11 AB19 CA01 HB09 HB15 HB17 NN02 NN06 NN17

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】湿式法で製造してなるFe3 4 であっ
て、比表面積が10〜40m2/g、塩素含有量が100pp
m 以上3000ppm 以下であることを特徴とするFe3
4
1. Fe 3 O 4 produced by a wet method, having a specific surface area of 10 to 40 m 2 / g and a chlorine content of 100 pp.
Fe 3 or less and 3000 ppm or less
O 4 .
【請求項2】塩化鉄水溶液とアルカリ水溶液を混合して
中和し、得られる中和液を酸化してFe3 4 を製造す
る方法において、前記塩化鉄水溶液中の第二鉄イオン濃
度(mol) を、第一鉄イオンと第二鉄イオンの合計鉄イオ
ン濃度(mol) に対し2〜30%に調整し、かつ前記塩化
鉄水溶液と前記アルカリ水溶液の濃度を、 0.8 ≦ 合計鉄イオン濃度(mol /l) /A ≦ 1
2 ただし、A=(Fe2+とFe3+の中和に必要な水酸基換
算量(mol) )×R/(アルカリ水溶液の量(l) ) (ここで、Rは前記塩化鉄水溶液と前記アルカリ水溶液
の当量比を示し、0.90≦R≦1.5である)に調整
して中和することを特徴とするFe3 4 の製造方法。
2. A method for producing Fe 3 O 4 by mixing and neutralizing an aqueous solution of iron chloride and an aqueous alkali solution and oxidizing the resulting neutralized solution, wherein the concentration of ferric ion in the aqueous solution of iron chloride is mol) is adjusted to 2 to 30% with respect to the total iron ion concentration (mol) of ferrous ions and ferric ions, and the concentrations of the aqueous iron chloride solution and the alkaline aqueous solution are set to 0.8 ≦ total iron Ion concentration (mol / l) / A ≦ 1
2 where A = (hydroxyl equivalent (mol) required for neutralization of Fe 2+ and Fe 3+ ) × R / (amount of alkaline aqueous solution (l)) (where R is the iron chloride aqueous solution and The method of producing Fe 3 O 4 , wherein the neutralization is performed by adjusting the equivalent ratio of the aqueous alkali solution to 0.90 ≦ R ≦ 1.5).
【請求項3】請求項1に記載のFe3 4 を酸化してな
る比表面積が10〜40m2/g、塩素含有量が100ppm
以上3000ppm 以下であることを特徴とするα−Fe
2 3
3. The Fe according to claim 1,ThreeOFourOxidize
Specific surface area is 10-40mTwo/ g, chlorine content 100ppm
At least 3000 ppm or less.
TwoO Three.
【請求項4】請求項2に記載の製造方法で製造したFe
3 4 を加熱し、酸化することを特徴とするα−Fe2
3 の製造方法。
4. A method according to claim 2, wherein
Α-Fe 2 characterized by heating and oxidizing 3 O 4
Method for producing O 3 .
JP2000340192A 2000-11-08 2000-11-08 Iron oxide and method for producing the same Expired - Fee Related JP4087555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000340192A JP4087555B2 (en) 2000-11-08 2000-11-08 Iron oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000340192A JP4087555B2 (en) 2000-11-08 2000-11-08 Iron oxide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002145620A true JP2002145620A (en) 2002-05-22
JP4087555B2 JP4087555B2 (en) 2008-05-21

Family

ID=18815147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000340192A Expired - Fee Related JP4087555B2 (en) 2000-11-08 2000-11-08 Iron oxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP4087555B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210633A (en) * 2002-12-20 2004-07-29 Jfe Chemical Corp Iron oxide and its manufacturing method
JP2005145802A (en) * 2003-11-20 2005-06-09 Jfe Chemical Corp Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME
JP2005145803A (en) * 2003-11-20 2005-06-09 Jfe Chemical Corp Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME
JP2010184840A (en) * 2009-02-12 2010-08-26 Dowa Electronics Materials Co Ltd Magnetic powder and magnetic sintered body and manufacturing method
CN102659189A (en) * 2012-02-28 2012-09-12 天津工业大学 Method for preparing magnetic Fe3O4 nano-powder using pickling waste liquor
CN102757099A (en) * 2012-08-09 2012-10-31 青岛新中基环保科技有限公司 Process for producing high magnetic ferroferric oxide by galvanized pickle liquor
KR20160084224A (en) * 2015-01-05 2016-07-13 한양대학교 산학협력단 Method for manufacturing magnetic iron oxide and apparatus for removal and recovery of phosphate using the same
TWI636016B (en) * 2017-10-13 2018-09-21 中國鋼鐵股份有限公司 Methods of fabricating modified iron oxide powder and fabricating ferrite magnet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210633A (en) * 2002-12-20 2004-07-29 Jfe Chemical Corp Iron oxide and its manufacturing method
JP2005145802A (en) * 2003-11-20 2005-06-09 Jfe Chemical Corp Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME
JP2005145803A (en) * 2003-11-20 2005-06-09 Jfe Chemical Corp Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME
JP2010184840A (en) * 2009-02-12 2010-08-26 Dowa Electronics Materials Co Ltd Magnetic powder and magnetic sintered body and manufacturing method
CN102659189A (en) * 2012-02-28 2012-09-12 天津工业大学 Method for preparing magnetic Fe3O4 nano-powder using pickling waste liquor
CN102757099A (en) * 2012-08-09 2012-10-31 青岛新中基环保科技有限公司 Process for producing high magnetic ferroferric oxide by galvanized pickle liquor
CN102757099B (en) * 2012-08-09 2014-05-28 青岛新中基环保科技有限公司 Process for producing high magnetic ferroferric oxide by galvanized pickle liquor
KR20160084224A (en) * 2015-01-05 2016-07-13 한양대학교 산학협력단 Method for manufacturing magnetic iron oxide and apparatus for removal and recovery of phosphate using the same
KR101697848B1 (en) * 2015-01-05 2017-01-19 한양대학교 산학협력단 Method for manufacturing magnetic iron oxide and apparatus for removal and recovery of phosphate using the same
TWI636016B (en) * 2017-10-13 2018-09-21 中國鋼鐵股份有限公司 Methods of fabricating modified iron oxide powder and fabricating ferrite magnet

Also Published As

Publication number Publication date
JP4087555B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP6480715B2 (en) Precursor of iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder using the same
CN100532321C (en) Ferrite sintered compact and method for producing the same, and electronic parts using the same
Hessien et al. Synthesis and magnetic properties of strontium hexaferrite from celestite ore
JP4087555B2 (en) Iron oxide and method for producing the same
US7481946B2 (en) Method for producing ferrite material and ferrite material
CN103159469A (en) Preparation method of Mn-Zn ferrite powder with high permeability
Patil A review: Influence of divalent, trivalent, rare earth and additives ions on Ni–Cu–Zn ferrites
JP4664649B2 (en) High frequency magnetic material and high frequency magnetic component using the same
JP4053230B2 (en) Iron oxide and method for producing the same
TWI768299B (en) SUBSTITUTION TYPE ε IRON OXIDE MAGNETIC PARTICLE POWDER, METHOD FOR MANUFACTURING SUBSTITUTION TYPE ε IRON OXIDE MAGNETIC PARTICLE POWDER, GREEN COMPACT, METHOD FOR MANUFACTURING GREEN COMPACT AND ELECTROMAGNETIC WAVE ABSORBER
JP3931960B2 (en) Fe (2) O (3) and production method thereof
KR101931635B1 (en) Method for producing Ferrite core and the Ferrite core
JP3919546B2 (en) Iron oxide powder
JP3580145B2 (en) Method for producing Ni-Cu-Zn ferrite material
JP4587541B2 (en) Ferrite material and ferrite core using the same
JP3406382B2 (en) Method for producing ferrite magnetic powder
JP3406381B2 (en) Ferrite-based magnetic powder raw material oxide and method for producing ferrite-based magnetic powder
JP3406380B2 (en) Ferrite-based magnetic powder raw material oxide and method for producing ferrite-based magnetic powder
JP3894298B2 (en) Fe (2) O (3) and production method thereof
JP2010150053A (en) SINTERED COMPACT OF SPINEL TYPE Ni-Cu-Zn-BASED FERRITE
JPH07315844A (en) Production of ferrite powder
JP3908045B2 (en) Manufacturing method of iron oxide powder and ferrite powder for chip inductor
US5626788A (en) Production of magnetic oxide powder
JP2002151318A (en) Method of manufacturing ferrite powder
JP3389937B2 (en) Manufacturing method of soft ferrite particles for low temperature sintering

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees