JP4664649B2 - High frequency magnetic material and high frequency magnetic component using the same - Google Patents

High frequency magnetic material and high frequency magnetic component using the same Download PDF

Info

Publication number
JP4664649B2
JP4664649B2 JP2004312353A JP2004312353A JP4664649B2 JP 4664649 B2 JP4664649 B2 JP 4664649B2 JP 2004312353 A JP2004312353 A JP 2004312353A JP 2004312353 A JP2004312353 A JP 2004312353A JP 4664649 B2 JP4664649 B2 JP 4664649B2
Authority
JP
Japan
Prior art keywords
ferrite
frequency magnetic
magnetic material
metal particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004312353A
Other languages
Japanese (ja)
Other versions
JP2006128278A (en
Inventor
孝雄 沢
敏也 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Priority to JP2004312353A priority Critical patent/JP4664649B2/en
Publication of JP2006128278A publication Critical patent/JP2006128278A/en
Application granted granted Critical
Publication of JP4664649B2 publication Critical patent/JP4664649B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高周波域で用いる磁性部品などに有効な高周波磁性材料、および高周波磁性部品、例えばインダクタ、トランス、フィルタ、電磁波吸収体などに関する。また、その製造方法に関する。   The present invention relates to a high-frequency magnetic material effective for a magnetic component used in a high-frequency region, and a high-frequency magnetic component such as an inductor, a transformer, a filter, and an electromagnetic wave absorber. Moreover, it is related with the manufacturing method.

近年、磁性材料部品をキー材料、部品にする用途は拡大しており、重要さは年々増してきている。用途の一例を挙げれば、インダクタ、トランス、フィルタ(例えばコモンモードチョークコイル、ノーマルモードチョークコイル)、電磁波吸収体、磁性インクなどがある。
例えば、1MHz以上の高周波域で使用するインダクタンス素子に用いられる磁性材料としては、主にフェライトが挙げられる。フェライトは上記周波数域で使用できるもっとも好ましい材料であるが、さらなる高周波域での特性向上は困難な状況であった。
In recent years, the use of magnetic material parts as key materials and parts has been expanding, and the importance has been increasing year by year. Examples of applications include inductors, transformers, filters (for example, common mode choke coils and normal mode choke coils), electromagnetic wave absorbers, and magnetic inks.
For example, as a magnetic material used for an inductance element used in a high frequency range of 1 MHz or higher, ferrite is mainly cited. Ferrite is the most preferable material that can be used in the above frequency range, but it has been difficult to improve the characteristics in a higher frequency range.

このような不具合を改善するために、高透磁率材料をスパッタ法、めっき法などの薄膜技術を用いたインダクタンス素子の開発も盛んに行われている(特開平5−13235号公報:特許文献1)。このようなインダクタンス素子は10GHz以上の高周波域においても優れた特性を示すことが確認されているものの、スパッタ法などの薄膜技術には大型の設備が必要であり、また、膜厚等を精密に制御しなくてはならないことからコストや歩留りの点では必ずしも十分であるとは言えなかった。
また、他の用途としては電磁波吸収体が挙げられる。電磁波吸収体は、電子機器の高周波化に伴い発生したノイズを吸収し、電子機器の誤動作等の不具合を低減させるものである。電子機器としては、ICチップ等半導体素子や各種通信機器などが挙げられる。このような電子機器は1MHzから数GHz、さらには数10GHz以上の高周波域で使用されるものなど様々なものがあり、特に近年は1GHz以上の高周波域で使用される電子機器が増加する傾向にある。
このような高周波域で使用される電子機器の電磁波吸収体として、従来はフェライト粒子、カルボニル鉄粒子、FeAlSiフレーク、FeCrAlフレークなどを樹脂と混合したものが用いられていたが1GHz以上の高周波域においては必ずしも満足行く特性は得られていなかった。
In order to improve such a problem, an inductance element using a thin film technology such as a sputtering method and a plating method for a high permeability material has been actively developed (JP-A-5-13235: Patent Document 1). ). Although such an inductance element has been confirmed to exhibit excellent characteristics even in a high frequency range of 10 GHz or higher, thin film technology such as sputtering requires a large facility, and the film thickness and the like are precisely determined. Since it has to be controlled, it was not necessarily sufficient in terms of cost and yield.
Moreover, an electromagnetic wave absorber is mentioned as another use. The electromagnetic wave absorber absorbs noise generated with higher frequency of the electronic device and reduces problems such as malfunction of the electronic device. Examples of the electronic device include a semiconductor element such as an IC chip and various communication devices. There are various electronic devices such as those used in a high frequency range of 1 MHz to several GHz, and even several tens of GHz. Especially, in recent years, electronic devices used in a high frequency range of 1 GHz or more tend to increase. is there.
As electromagnetic wave absorbers for electronic devices used in such a high frequency range, conventionally, those in which ferrite particles, carbonyl iron particles, FeAlSi flakes, FeCrAl flakes and the like are mixed with a resin have been used, but in a high frequency range of 1 GHz or more. However, satisfactory characteristics were not obtained.

近年、1GHz以上の高周波域の電磁波吸収体としては、特開2001−358493号公報(特許文献2)に示されたような磁性金属粒子とセラミックスを一体にした複合磁性粒子を用いるものが示されている。この材料は高周波域における電磁波吸収特性は良いものの、メカニカルアロイング法により製造しなければならず磁性金属粒子とセラミックス粒子を均一に反応させるためには長時間混合しなければならなかった。特に、一度に大量(例えば10kg以上)の材料をメカニカルアロング法で作製しようとすると、より長時間の混合が必要であり歩留りもよいとは言えなかった。
また、電磁波吸収能を有する磁性膜で、金属磁性体からなる磁性相と磁性相同士を電気的絶縁するフェライトからなる高電気抵抗相を有するものが示されている(特開2003−297628号公報:特許文献3)。これは、金属磁性体粒子とフェライト粒を所定の比になるように混合してエアロゾルデポジション法で1〜500μmの厚膜したものである。しかしながら、この方法で得られたものは歪みが大きく高温で熱処理しないと十分にこの歪が緩和せず、十分な特性が得られなかった。また、高温で熱処理すると金属粒子が大きくなってしまい、当初の狙いである高周波対応が困難な状態にあった。
さらに、2種類の酸化物磁性体からなる磁性膜の検討もなされている(特開2003−297629号公報:特許文献4)。この組み合わせからなる磁性膜もエアロゾルデポジション法で厚膜化したものであり、この場合も作製時に生じる歪が大きく、これを緩和するためには高温での熱処理が必要であり、その際に基板からのはがれなどにより、十分な特性が得られないことが多かった。
In recent years, as electromagnetic wave absorbers in a high frequency region of 1 GHz or more, those using composite magnetic particles in which magnetic metal particles and ceramics are integrated as shown in JP 2001-358493 A (Patent Document 2) have been shown. ing. Although this material has good electromagnetic wave absorption characteristics in a high frequency range, it must be manufactured by a mechanical alloying method and must be mixed for a long time in order to uniformly react magnetic metal particles and ceramic particles. In particular, when a large amount (for example, 10 kg or more) of material is to be produced at a time by the mechanical alloy method, mixing for a longer time is required and it cannot be said that the yield is good.
In addition, a magnetic film having electromagnetic wave absorbing ability, which has a magnetic phase made of a metal magnetic material and a high electrical resistance phase made of ferrite that electrically insulates the magnetic phases from each other, is disclosed (Japanese Patent Laid-Open No. 2003-297628). : Patent Document 3). In this method, metal magnetic particles and ferrite particles are mixed so as to have a predetermined ratio, and a thick film of 1 to 500 μm is formed by an aerosol deposition method. However, the strain obtained by this method has a large strain, and this strain is not sufficiently relaxed unless heat treatment is performed at a high temperature, and sufficient characteristics cannot be obtained. Further, when heat treatment is performed at a high temperature, the metal particles become large, and it has been difficult to cope with high frequency, which is the initial aim.
Further, studies have been made on magnetic films made of two types of oxide magnetic materials (Japanese Patent Laid-Open No. 2003-297629: Patent Document 4). The magnetic film composed of this combination is also thickened by the aerosol deposition method. In this case as well, the strain generated during fabrication is large, and heat treatment at high temperature is necessary to alleviate this, and the substrate In many cases, sufficient characteristics could not be obtained due to peeling from the surface.

特開平5−13235号公報JP-A-5-13235 特開2001−358493号公報JP 2001-358493 A 特開2003−297628号公報JP 2003-297628 A 特開2003−297629号公報JP 2003-297629 A


従来の高周波磁性材料であるアモルファス合金やフェライトなどは急冷法や焼結法により歩留まりよく製造できるものの、10MHz以上の高周波域においては、十分な特性が得られていなかった。
一方、スパッタ法を用いた磁性薄膜やメカニカルアロイングを用いた磁性材料は、1GHz以上の高周波域においても優れた特性が得られるものの、その製造においては歩留まりやコストに問題があった。
以上のように、従来の高周波磁性材料では10MHzの高周波特性と歩留まりなどの製造性の両方が優れているものは得られていなかった。また、さらに現行のスイッチング電源等で使用されている周波数での特性向上も必要であった。

A conventional high-frequency magnetic material such as an amorphous alloy or ferrite can be manufactured with a high yield by a rapid cooling method or a sintering method, but sufficient characteristics have not been obtained in a high-frequency region of 10 MHz or more.
On the other hand, a magnetic thin film using a sputtering method and a magnetic material using mechanical alloying have excellent characteristics even in a high frequency region of 1 GHz or more, but have problems in yield and cost.
As described above, no conventional high-frequency magnetic material has been obtained that is excellent in both high-frequency characteristics of 10 MHz and manufacturability such as yield. Further, it is necessary to improve the characteristics at the frequency used in the current switching power supply and the like.

本発明は上記のような課題を解決するためのものであり、フェライト酸化物とFe、Co、FeまたはCoを基とする合金の少なくとも1種以上からなる金属粒子を具備したことを特徴とする高周波磁性材料である。また、フェライト酸化物としては六方晶フェライト、ガーネットフェライトまたはスピネル型フェライトが好ましい。
なお、六方晶フェライトは M型:MFe1219、W型:MMe2Fe1627、X型:M2Me2Fe2846、Y型:M2Me2Fe1222、Z型:M3Me2Fe2441、U型:M4Me2Fe3660があり、少なくとも1種が選ばれる(MはBa,Sr,Caから選ばれる少なくとも1種、MeはMg,Mn,Fe,Co,Ni,Cu,Znなどの少なくとも1種)。また、ガーネットフェライトはR3Fe512(R:希土類元素)であらわされる。さらにスピネル型フェライトはNiZn系、MnZn系フェライトなどMFe(Mは、Ni,Zn,Mnなどの少なくとも1種)で表される。
前記Fe、Co、FeまたはCoを基とする合金の少なくとも1種以上からなる金属粒子は、少なくともその一部がフェライト酸化物の内部に存在することが好ましい。
The present invention is for solving the above-mentioned problems, and is characterized by comprising metal particles comprising at least one of ferrite oxide and an alloy based on Fe, Co, Fe or Co. It is a high frequency magnetic material. The ferrite oxide is preferably hexagonal ferrite, garnet ferrite or spinel type ferrite.
The hexagonal ferrite is M type: MFe 12 O 19 , W type: MMe 2 Fe 16 O 27 , X type: M 2 Me 2 Fe 28 O 46 , Y type: M 2 Me 2 Fe 12 O 22 , Z type. : M 3 Me 2 Fe 24 O 41 , U type: M 4 Me 2 Fe 36 O 60 , at least one selected (M is at least one selected from Ba, Sr, Ca, Me is Mg, Mn , Fe, Co, Ni, Cu, Zn, etc.). Garnet ferrite is expressed by R 3 Fe 5 O 12 (R: rare earth element). Further, the spinel type ferrite is represented by MFe 2 O 4 (M is at least one of Ni, Zn, Mn, etc.) such as NiZn type and MnZn type ferrite.
It is preferable that at least a part of the metal particles made of at least one of the Fe, Co, Fe, or Co-based alloys exist in the ferrite oxide.

また、該金属粒子の平均粒径が5nm〜5μmであることが好ましい。また、金属粒子の体積率は5〜60%であることが好ましい。このような高周波磁性材料を1種、あるいは2種以上用いた高周波磁性部品は、例えば、電磁波吸収体または1MHz以上で動作させる高周波磁性部品等に好適である。
また、前記Fe、Co、FeまたはCoを基とする合金の少なくとも1種以上からなる金属粒子は、少なくともその一部がフェライト酸化物の内部に存在する製造方法としては、フェライトを還元してFe、Co、FeまたはCoを基とする合金の少なくとも1種以上からなる金属粒子を析出させる方法がコスト、量産性の観点から好ましい。
Moreover, it is preferable that the average particle diameter of this metal particle is 5 nm-5 micrometers. Moreover, it is preferable that the volume ratio of a metal particle is 5 to 60%. A high-frequency magnetic component using one or more of such high-frequency magnetic materials is suitable, for example, as an electromagnetic wave absorber or a high-frequency magnetic component that operates at 1 MHz or higher.
In addition, as a manufacturing method in which at least a part of the metal particles composed of at least one of the Fe, Co, Fe, or Co-based alloy is present in the ferrite oxide, the ferrite is reduced to Fe From the viewpoint of cost and mass productivity, a method of depositing metal particles comprising at least one of Co, Fe or Co based alloys is preferred.

本発明によれば、1MHz〜10MHzの周波数域のみならず、1GHz以上の高周波域で用いる磁性部品、あるいは100kHz以上のスイッチング周波数で用いられている電源用部品などに用いる、有効な高周波磁性材料を提供できる。また、本発明の高周波磁性材料は、例えばインダクタ、トランス、フィルタ、チップ部品、電磁波吸収体などの高周波磁性部品に好適である。
また、フェライト酸化物を還元する方法を用いれば、安価に安定して優れた特性を示す高周波磁性材料を製造することが可能である。
According to the present invention, an effective high-frequency magnetic material used not only in a frequency range of 1 MHz to 10 MHz but also in a magnetic component used in a high frequency range of 1 GHz or higher, or a power supply component used in a switching frequency of 100 kHz or higher is provided. Can be provided. The high-frequency magnetic material of the present invention is suitable for high-frequency magnetic parts such as inductors, transformers, filters, chip parts, and electromagnetic wave absorbers.
Further, if a method of reducing ferrite oxide is used, it is possible to produce a high-frequency magnetic material exhibiting excellent characteristics stably at low cost.

<フェライト酸化物>
まず、本発明はフェライト酸化物を具備するものである。フェライト酸化物としては、六方晶型フェライト(第1の実施形態)、ガーネット型フェライト(第2の実施形態)、スピネル型フェライト(第3の実施形態)の1種であることが好ましい。
3つの実施形態は使用する周波数域で使い分けることができるが、特に六方晶フェライトと金属粒子の組み合わせからなる高周波磁性材料、高周波磁性部品、およびガーネット系フェライトと金属粒子の組み合わせからなる高周波磁性材料、高周波磁性部品は広い周波数帯域で使用することが可能であり好ましく、特に特性面から前者の実施形態が好ましい。また、スピネルフェライトと金属粒子との組み合わせからなる高周波磁性材料、高周波磁性部品は対象とする周波数域では比較的低い側で有効である。
<Ferrite oxide>
First, the present invention comprises a ferrite oxide. The ferrite oxide is preferably one of hexagonal ferrite (first embodiment), garnet ferrite (second embodiment), and spinel ferrite (third embodiment).
The three embodiments can be selectively used in the frequency range to be used, in particular, a high-frequency magnetic material composed of a combination of hexagonal ferrite and metal particles, a high-frequency magnetic component, and a high-frequency magnetic material composed of a combination of garnet ferrite and metal particles, The high-frequency magnetic component can be used in a wide frequency band, and the former embodiment is particularly preferable from the viewpoint of characteristics. Further, high-frequency magnetic materials and high-frequency magnetic parts made of a combination of spinel ferrite and metal particles are effective on the relatively low side in the target frequency range.

本発明の第1の実施形態において、六方晶フェライトはM型:MFe1219、W型:MMe2Fe1627、X型:M2Me2Fe2846、Y型:M2Me2Fe1222、Z型:M3Me2Fe2441、U型:M4Me2Fe3660で表される少なくとも1種が好ましい。ここで、MはBa、Sr,Caから選ばれる少なくとも1種、Meは金属元素であり、2価になるもの、例えばMg,Mn,Fe,Co,Ni,Cu,Znなどの少なくとも1種が好ましいが、これらの元素に限られるものではない。また、Feの一部を例えば2価イオンと4価イオン、例えばCo2+とTi4+、あるいはCo2+とZr4+を置換することもできる。 In the first embodiment of the present invention, the hexagonal ferrite includes M type: MFe 12 O 19 , W type: MMe 2 Fe 16 O 27 , X type: M 2 Me 2 Fe 28 O 46 , Y type: M 2 Me. 2 Fe 12 O 22 , Z type: M 3 Me 2 Fe 24 O 41 , U type: M 4 Me 2 Fe 36 O 60 are preferred. Here, M is at least one selected from Ba, Sr, and Ca, Me is a metal element, and is divalent, for example, at least one of Mg, Mn, Fe, Co, Ni, Cu, Zn, and the like. Although it is preferable, it is not limited to these elements. Further, a part of Fe can be substituted with, for example, divalent ions and tetravalent ions such as Co 2+ and Ti 4+ , or Co 2+ and Zr 4+ .

本発明の第2の実施形態において、ガーネットフェライトはR3Fe512(R:希土類元素)で表される。
また、本発明の第3の実施形態において、スピネル型フェライトは、MeFe24で表される。ここでMeは第1の発明の実施形態と同様に例えばMg,Mn,Fe,Co,Ni,Cu,Znなどの少なくとも1種が好ましいが、これらの元素に限られるものではない。
In the second embodiment of the present invention, the garnet ferrite is represented by R 3 Fe 5 O 12 (R: rare earth element).
In the third embodiment of the present invention, the spinel ferrite is represented by MeFe 2 O 4 . Here, like the first embodiment, Me is preferably at least one of Mg, Mn, Fe, Co, Ni, Cu, Zn and the like, but is not limited to these elements.

<金属粒子>
また、本発明の高周波磁性材料はFe、Co、FeまたはCoを基とする合金の少なくとも1種以上からなる金属粒子を具備している。金属粒子としては、Fe粒子、Co粒子、Fe基合金粒子、Co基合金粒子の1種が存在していればよい。
Fe基合金、Co基合金としてはFe−Co基合金が好ましい。第2成分(Fe−Co基合金のときは第3成分)を含有させる場合はNi、Mn、Cuなどを含有した合金粒子が挙げられる。
なお、本発明においては、金属粒子としてFe粒子、Co粒子、Fe−Co基合金粒子の少なくとも一種が存在していればよく、これに他の非磁性金属元素が合金化していてもよいが、多すぎると飽和磁化が下がりすぎるため、高周波特性を考慮すると他の非磁性金属元素(Fe、Co以外の還元性金属、本発明の還元性金属はフェライトを構成している金属元素のうち、最も難還元性の元素以外の金属元素をいう)による合金化は30at%以下であることが好ましい。
前記Fe、Co、FeまたはCoを基とする合金の少なくとも1種以上からなる金属粒子は、少なくともその一部がフェライト酸化物の内部に存在することが好ましい。これは、金属がフェライトの内部に存在することで熱処理を行っても、金属粒子の粒径が大きくなりにくく、高周波での使用には好ましい。また、エアロゾルデポジション法で堆積させた場合でも、作製時に生じる歪を緩和できるため、高温での熱処理が軽減される。フェライト酸化物の内部に存在するとは、粒子内分散のことで、フェライト酸化物粒子の内部に金属粒子が析出している状態を示す。また、このような粒子内分散の状態が存在すれば結晶粒界に金属粒子が存在していてもよい。
<Metal particles>
The high-frequency magnetic material of the present invention includes metal particles made of at least one of Fe, Co, Fe, or an alloy based on Co. As the metal particles, one kind of Fe particles, Co particles, Fe-based alloy particles, and Co-based alloy particles may be present.
The Fe-based alloy and the Co-based alloy are preferably Fe-Co based alloys. When the second component (third component in the case of an Fe—Co based alloy) is included, alloy particles containing Ni, Mn, Cu, and the like can be cited.
In the present invention, at least one of Fe particles, Co particles, and Fe—Co based alloy particles may be present as metal particles, and other nonmagnetic metal elements may be alloyed with this, If the amount is too large, the saturation magnetization is too low. Therefore, in consideration of the high frequency characteristics, other nonmagnetic metal elements (reducing metals other than Fe and Co, the reducing metal of the present invention is the most among the metal elements constituting the ferrite). The alloying by a metal element other than the non-reducible element is preferably 30 at% or less.
It is preferable that at least a part of the metal particles made of at least one of Fe, Co, Fe, or Co-based alloys exist inside the ferrite oxide. This is preferable for use at high frequencies because the metal particles are less likely to have a large particle size even when heat treatment is performed due to the presence of metal in the ferrite. In addition, even when deposited by the aerosol deposition method, distortion generated at the time of production can be alleviated, so that heat treatment at high temperature is reduced. Presence within the ferrite oxide means dispersion within the particle, and indicates a state in which metal particles are precipitated inside the ferrite oxide particles. In addition, metal particles may exist at the crystal grain boundaries as long as such a state of intra-particle dispersion exists.

金属あるいは合金粒子は平均粒径5nm〜5μmが好ましい。平均粒径が5nm未満では、超常磁性が生じたりして磁束量が足りなくなってしまう。一方、5μmを超えると渦電流損が大きくなり、狙いとする高周波領域での磁気特性が低下してしまう。さらに、好ましくは10nm〜3μmである。特に、100nm以下では交換相互作用が起こり、優れた高周波特性が得られる。
また、上記金属粒子は高周波磁性材料を構成する結晶粒子の結晶粒子内または結晶粒界の少なくとも一方に存在していることが好ましい。高周波磁気特性を向上させるためには、結晶粒子内および結晶粒界の両方に金属粒子を存在させることが好ましい。
周波数が比較的低周波側(例えば1MHz)では金属粒子の平均粒径は大きくても良く、例えば5μm以下であればよい。使用周波数の増大とともに、金属粒子の平均粒径は小さい方が好ましくなり、1GHz以上と周波数が高くなると磁性材料(磁性部品)には表皮効果(skin effect)の影響が大きくなるため、平均粒径の最大値は3μm(=3000nm)以下の金属粒子が好ましい。なお、5nm未満となるとむしろ特性が低下してしまうため、5nmから5μmの範囲で使用周波数によって適正化される。
The metal or alloy particles preferably have an average particle size of 5 nm to 5 μm. If the average particle size is less than 5 nm, superparamagnetism occurs, and the amount of magnetic flux becomes insufficient. On the other hand, if it exceeds 5 μm, the eddy current loss increases, and the magnetic characteristics in the intended high frequency region are degraded. Furthermore, it is preferably 10 nm to 3 μm. In particular, exchange interaction occurs at 100 nm or less, and excellent high frequency characteristics can be obtained.
The metal particles are preferably present in at least one of the crystal grains of the crystal grains constituting the high-frequency magnetic material or in the crystal grain boundaries. In order to improve the high-frequency magnetic characteristics, it is preferable that metal particles exist both in the crystal grains and in the crystal grain boundaries.
On the relatively low frequency side (for example, 1 MHz), the average particle diameter of the metal particles may be large, for example, 5 μm or less. As the operating frequency increases, the average particle size of the metal particles is preferably small, and when the frequency is increased to 1 GHz or higher, the influence of the skin effect on the magnetic material (magnetic component) increases. The maximum value of is preferably metal particles of 3 μm (= 3000 nm) or less. If the thickness is less than 5 nm, the characteristics are rather deteriorated. Therefore, the frequency is optimized in the range of 5 nm to 5 μm.

また、金属粒子の占める割合は体積%で5〜60%が好ましい。これは5%未満では金属粒子の効果が見られず、フェライトそのものの特性と差がない。また、60%を超えるとフェライトの特性である高周波での良好な特性が十分引き出せなくなる。好ましくは10〜55%であり、さらに好ましくは15〜50%である。
周波数の比較的低い側(100kHz〜1MHz領域)では、スピネル系フェライトと金属粒子の組み合わせを主体とした高周波磁性材料が好ましく、周波数が高い帯域(1MHzからGHz領域)と六方晶フェライトあるいはガーネット系フェライトと金属粒子の組み合わせを主体とした高周波磁性材料が好ましい。なお、前述の周波数は一応の目安であり、フェライトの種類は目的に応じ、適宜選択できるものとする。
The proportion of the metal particles is preferably 5 to 60% by volume. If this is less than 5%, the effect of the metal particles is not observed, and there is no difference from the characteristics of the ferrite itself. On the other hand, if it exceeds 60%, good characteristics at high frequencies, which are the characteristics of ferrite, cannot be sufficiently extracted. Preferably it is 10-55%, More preferably, it is 15-50%.
On the relatively low frequency side (100 kHz to 1 MHz region), a high frequency magnetic material mainly composed of a combination of spinel ferrite and metal particles is preferable, and a high frequency band (1 MHz to GHz region) and hexagonal ferrite or garnet ferrite. A high-frequency magnetic material mainly composed of a combination of metal particles and metal is preferred. It should be noted that the above-mentioned frequency is a rough standard, and the type of ferrite can be appropriately selected according to the purpose.

<高周波磁性部品>
本発明の高周波磁性材料を高周波磁性部品に適用する際は、1種類のフェライトを用いても良いし、前記六方晶型、ガーネット型またはスピネル型の1種または2種以上を組み合わせて用いても良い。
前記高周波磁性材料を用いた高周波磁性部品は優れた高周波特性を示すことから、例えばインダクタ、チョークコイル、フィルタ、トランス、チップ部品や電磁波吸収体などの100kHz以上からGHz帯域の高周波域で使用される高周波磁性部品に好適である。高周波磁性部品の形態としては焼結体、バルク体、粉末、樹脂との混合体など様々な形態で使用可能である。
<High-frequency magnetic parts>
When the high-frequency magnetic material of the present invention is applied to a high-frequency magnetic component, one type of ferrite may be used, or one or more of the hexagonal type, garnet type, or spinel type may be used in combination. good.
Since the high frequency magnetic component using the high frequency magnetic material exhibits excellent high frequency characteristics, it is used in a high frequency range from 100 kHz to GHz, such as an inductor, choke coil, filter, transformer, chip component, and electromagnetic wave absorber. Suitable for high frequency magnetic parts. The high-frequency magnetic component can be used in various forms such as a sintered body, a bulk body, a powder, and a mixture with a resin.

<製造方法>
本発明の高周波磁性材料は前記の構成を具備すれば製造方法が限定されるものではないが、好ましい製造方法は次の通りである。
製造方法としては、一般的な方法で六方晶フェライト、ガーネット型フェライトあるいはスピネル型フェライトを作製した後、還元雰囲気で熱処理することにより、Fe、Co、FeまたはCoを基とする合金の少なくとも1種以上からなる金属粒子を析出させる方法が好適である。本方法によると前記Fe、Co、FeまたはCoを基とする合金の少なくとも1種以上からなる金属粒子が、少なくともその一部はフェライト粒子の内部に存在するという好ましい形態が得られる。
ここで、一般的な方法とは通常の乾式法、あるいは湿式法であり、具体的にはフェライトを構成する金属元素を含む炭酸塩などを所定の比になるように混合し、その後1200℃以下で焼成し目的のフェライトを作製する方法、あるいはフェライトを構成する金属塩を用いてその水溶液を強アルカリに加えることにより、水酸化物あるいは多量の水を含む酸化物の形で沈殿物が得られ、これを熱処理することにより所定の酸化物となる。あるいは噴霧乾燥法などがある。
さらに、結晶化ガラス法でもよい。この手法は、所定の組成比で得られたフェライトとガラス化元素、例えばBを1:1の重量比で混合溶融したのち、双ロール法により急冷し、アモルファス化する。この後、結晶化熱処理を行い、ガラス化成分は化学処理により分離して、析出したフェライトを回収する。このフェライト粉を還元熱処理で、金属粒子と各種フェライトの複合磁性材料とする。
<Manufacturing method>
The manufacturing method of the high-frequency magnetic material of the present invention is not limited as long as it has the above-described configuration, but a preferable manufacturing method is as follows.
As a production method, hexagonal ferrite, garnet-type ferrite or spinel-type ferrite is prepared by a general method, and then heat-treated in a reducing atmosphere, so that at least one of alloys based on Fe, Co, Fe, or Co is produced. A method of depositing the metal particles composed of the above is suitable. According to this method, it is possible to obtain a preferable form in which at least a part of the metal particles composed of at least one of the Fe, Co, Fe or Co-based alloys are present inside the ferrite particles.
Here, the general method is a normal dry method or a wet method. Specifically, a carbonate containing a metal element constituting ferrite is mixed to a predetermined ratio, and then 1200 ° C. or less. A precipitate is obtained in the form of a hydroxide or an oxide containing a large amount of water by firing the material with ferrite or by adding the aqueous solution to a strong alkali using a metal salt constituting the ferrite. By heating this, a predetermined oxide is obtained. Or there is a spray drying method.
Furthermore, a crystallized glass method may be used. In this method, ferrite obtained by a predetermined composition ratio and a vitrification element such as B 2 O 3 are mixed and melted at a weight ratio of 1: 1, and then rapidly cooled by a twin roll method to be amorphous. Thereafter, crystallization heat treatment is performed, the vitrification component is separated by chemical treatment, and the precipitated ferrite is recovered. This ferrite powder is reduced to a composite magnetic material of metal particles and various ferrites by heat treatment.

還元方法はフェライトを還元雰囲気中に配置する方法であり、雰囲気の温度や還元時間を調整することにより金属粒子の析出量を調整できる。
還元条件の一例としては水素還元が挙げられる。水素還元の温度と時間は、水素により少なくともフェライトの一部が還元される温度であれば良く、特に限定されるものではない。ただし、200℃以下では還元反応の進みが遅すぎ、また1500℃を超えると析出した金属粒子の成長が短時間で進むため、200〜1500℃の範囲が好ましい。また、時間は還元温度との兼ね合いで決まるが、10分〜100時間の範囲でよい。また、水素雰囲気は、フローが好ましく、その値は10cc/min以上であればよい。この場合、還元される試料は固定していても、ロータリーキルンのような回転させる機構がついた装置で試料を動かしながら還元できる装置では均一還元ができるため好ましい。
また、還元により金属粒子を析出させる方法を用いていることから、フェライトが焼結体や粉末など様々な形状であったとしても表面に均一に析出させることもできる。
The reduction method is a method of arranging ferrite in a reducing atmosphere, and the amount of metal particles deposited can be adjusted by adjusting the temperature of the atmosphere and the reduction time.
An example of the reducing condition is hydrogen reduction. The temperature and time of hydrogen reduction are not particularly limited as long as at least a part of the ferrite is reduced by hydrogen. However, since the progress of the reduction reaction is too slow at 200 ° C. or lower and the growth of the deposited metal particles proceeds in a short time when the temperature exceeds 1500 ° C., the range of 200 to 1500 ° C. is preferable. Moreover, although time is decided by balance with reduction temperature, the range of 10 minutes-100 hours may be sufficient. The hydrogen atmosphere is preferably a flow, and the value may be 10 cc / min or more. In this case, even if the sample to be reduced is fixed, an apparatus that can perform reduction while moving the sample with an apparatus having a rotating mechanism such as a rotary kiln is preferable because uniform reduction can be performed.
Moreover, since the method of depositing metal particles by reduction is used, even if the ferrite has various shapes such as a sintered body and powder, it can be uniformly deposited on the surface.

また、高周波磁性材料を高周波磁性部品に加工する場合は、焼結体の場合は研磨や切削等の機械加工、粉末の場合は樹脂との混合物化(複合化)、さらには表面処理などを必要に応じ行うものとする。また、インダクタ、チョークコイル、フィルタ、チップ部品、トランスとして用いる場合は適した巻線処理を行う。
さらに、バルク化する方法としてエアロゾルデポジション法がある。この方法は、原料粉末をエアロゾル化して基板、フィルムなどの上に吹きつけ、所定の厚さの試料を形成させる方法である。この場合、原料粉に本発明の第1から第3の高周波用磁性材料を所定の割合で混合することにより、均質に分散した厚膜を比較的短時間で得ることができる。なお、本発明の高周波磁性材料を用いてエアロゾルデポジション法で厚膜化した場合、金属粒子が一種のクッションの効果をもたらせ、熱処理をしなくても良好な磁気特性、および磁性部品としての良好な特性を示す。なお、熱処理を行っても良い。
When processing high-frequency magnetic materials into high-frequency magnetic parts, machining such as polishing or cutting is required for sintered bodies, and mixing (compositing) with resin is required for powder, and surface treatment is also required. According to In addition, when used as an inductor, choke coil, filter, chip component, or transformer, suitable winding processing is performed.
Further, there is an aerosol deposition method as a bulking method. In this method, the raw material powder is aerosolized and sprayed onto a substrate, a film or the like to form a sample having a predetermined thickness. In this case, a homogeneously dispersed thick film can be obtained in a relatively short time by mixing the raw material powder with the first to third high-frequency magnetic materials of the present invention at a predetermined ratio. In addition, when the high-frequency magnetic material of the present invention is used to thicken the film by the aerosol deposition method, the metal particles can provide a kind of cushion effect, and good magnetic properties and magnetic parts can be obtained without heat treatment. Shows good characteristics. Note that heat treatment may be performed.

以下に、本発明を実施例で説明する。
(実施例1〜22、比較例1〜3)
表1に示した組成になるように、Fe、BaCO、SrCO,Co、ZnO、Mnなどの各種原料を所定のフェライトの組成比になるように秤量した後、乾式混合した。得られた試料をもとにして、ロータリーキルンで焼成し、目的のフェライトを作製した。
得られた試料を粉砕した後、水素炉内に入れ、純度99.9%の水素ガスを毎分200cc流しながら、毎分10℃の速度で所定の各温度まで昇温し、20〜90分間還元を行った後、炉冷して、本実施例の高周波磁性材料を得た。
これをエポキシ樹脂(5wt%)と混合し、幅4.4mm、長さ5mm、高さ1mmの直方体に成形し、150℃でキュアして、評価用試料に供した。
Hereinafter, the present invention will be described with reference to examples.
(Examples 1-22, Comparative Examples 1-3)
Various raw materials such as Fe 2 O 3 , BaCO 3 , SrCO 3 , Co 3 O 4 , ZnO, and Mn 3 O 4 were weighed so as to have a predetermined composition ratio of ferrite so as to have the composition shown in Table 1. After that, it was dry mixed. Based on the obtained sample, it was fired in a rotary kiln to produce the desired ferrite.
After pulverizing the obtained sample, it was put in a hydrogen furnace and heated to a predetermined temperature at a rate of 10 ° C. per minute while flowing 9cc of hydrogen gas having a purity of 99.9% at a rate of 10 ° C. per minute for 20 to 90 minutes. After reduction, the furnace was cooled to obtain the high-frequency magnetic material of this example.
This was mixed with an epoxy resin (5 wt%), formed into a rectangular parallelepiped having a width of 4.4 mm, a length of 5 mm, and a height of 1 mm, cured at 150 ° C., and used as an evaluation sample.

比較例として、FeAlSi粒子をエポキシ樹脂で固めたものを比較例1、カルボニル鉄粒子をエポキシ樹脂で固めたものを比較例2、またNiZnフェライト焼結体を比較例3とした。
高周波の磁気特性は透磁率と電磁波吸収特性の評価を行った。透磁率の測定は2GHzで行った。また、電磁波吸収特性として2.45GHzでの電磁波の吸収量=[入力―(反射量+透過量)]の比を測定し,比較例1を1として、相対値で示した。さらに、温度60℃、湿度90%の高温恒湿槽内に1000時間(H)放置した後、再度透磁率を測定し、初期値との比較をした。
析出金属粒子の平均結晶粒径の測定方法は、TEM観察をもとに行った。具体的にはTEM観察(写真)あるいはSEM観察(写真)で示された個々の金属粒子の最も長い対角線をその粒子径とし、その平均から求めた。なお、TEM写真あるいはSEM写真は単位面積10μm×10μmを3ヶ所以上とり平均値を求めた。また、金属粒子の割合(体積%)はSEM写真あるいはTEM写真で求めた面積比を5ヶ所以上測定し、その平均値から求めた。表1、表2にその結果を示す。なお、表1および表2に示したフェライトは、いずれも六方晶型フェライトである。
As comparative examples, FeAlSi particles hardened with an epoxy resin were used as Comparative Example 1, carbonyl iron particles hardened with an epoxy resin were used as Comparative Example 2, and NiZn ferrite sintered bodies were used as Comparative Example 3.
High-frequency magnetic characteristics were evaluated for permeability and electromagnetic wave absorption characteristics. The permeability was measured at 2 GHz. Further, as the electromagnetic wave absorption characteristics, the ratio of electromagnetic wave absorption amount at 2.45 GHz = [input− (reflection amount + transmission amount)] was measured. Furthermore, after leaving for 1000 hours (H) in a high temperature and humidity chamber having a temperature of 60 ° C. and a humidity of 90%, the magnetic permeability was measured again and compared with the initial value.
The average crystal grain size of the deposited metal particles was measured based on TEM observation. Specifically, the longest diagonal line of each metal particle shown by TEM observation (photograph) or SEM observation (photograph) was taken as the particle diameter, and the average was obtained from the average. In addition, the average value was calculated | required for the TEM photograph or the SEM photograph, taking a unit area 10 micrometers x 10 micrometers at three or more places. Further, the ratio (volume%) of the metal particles was obtained from an average value obtained by measuring five or more area ratios obtained by an SEM photograph or a TEM photograph. Tables 1 and 2 show the results. The ferrites shown in Tables 1 and 2 are all hexagonal ferrites.

Figure 0004664649
Figure 0004664649

Figure 0004664649
Figure 0004664649

表から分かる通り、本実施例にかかる高周波磁性材料は、優れた磁気特性が得られることが分かった。本実施例にかかる高周波磁性材料には、少なくともフェライト酸化物に粒子内分散された析出金属粒子が確認されていた。
また、実施例にかかる高周波磁性材料において析出金属粒子はいずれもFe粒子、Co粒子、Fe基合金粒子、Co基合金粒子の少なくとも1種であった。また、析出金属粒子の最大径はいずれも5μm以下であった。
As can be seen from the table, it was found that the high-frequency magnetic material according to this example can obtain excellent magnetic properties. In the high-frequency magnetic material according to this example, at least precipitated metal particles dispersed in the ferrite oxide were confirmed.
In the high-frequency magnetic material according to the example, the precipitated metal particles were all at least one of Fe particles, Co particles, Fe-based alloy particles, and Co-based alloy particles. In addition, the maximum diameter of the deposited metal particles was 5 μm or less.

(実施例23〜30)
表3に示した組成になるように、Fe、NiO、Co、ZnO、Mn、MgO、CuO、Ga、R(R:希土類元素)などの各種原料を所定のフェライトの組成比になるように秤量した後、乾式混合した。得られた試料をもとにして、ロータリーキルンで焼成し、目的のフェライトを作製した。
得られた試料を粉砕した後、水素炉内に入れ、純度99.9%の水素ガスを毎分200cc流しながら、毎分10℃の速度で所定の各温度まで昇温し、20〜90分間還元を行った後、炉冷して、本実施例の高周波磁性材料を得た。
(Examples 23 to 30)
Fe 2 O 3 , NiO, Co 3 O 4 , ZnO, Mn 3 O 4 , MgO, CuO, Ga 2 O 3 , R 2 O 3 (R: rare earth element), etc. so as to have the composition shown in Table 3 These raw materials were weighed so as to have a predetermined ferrite composition ratio, and then dry-mixed. Based on the obtained sample, it was fired in a rotary kiln to produce the desired ferrite.
After pulverizing the obtained sample, it was put in a hydrogen furnace and heated to a predetermined temperature at a rate of 10 ° C. per minute while flowing 200 cc of hydrogen gas having a purity of 99.9% per minute for 20 to 90 minutes. After reduction, the furnace was cooled to obtain the high-frequency magnetic material of this example.

これをエポキシ樹脂(5wt%)と混合し、幅4.4mm、長さ5mm、高さ1mmの直方体に成形し、150℃でキュアして、評価用試料に供した。
高周波の磁気特性は透磁率と電磁波吸収特性の評価を行った。透磁率の測定は実施例23〜26については800MHz、実施例27〜30は5GHzで行った。また、電磁波吸収特性として同様に実施例23〜26については800MHzで、実施例27〜30については5GHzでの電磁波の吸収量=[入力―(反射量+透過量)]の比を測定し,比較例4、5を1として、相対値で示した。析出金属粒子の平均結晶粒径の測定方法は、TEM観察をもとに行った。具体的にはTEM観察(写真)で示された個々の金属粒子の最も長い対角線をその粒子径とし、その平均から求めた。なお、TEM写真は単位面積10μm×10μmを3ヶ所以上とり平均値を求めた。金属粒子の割合(体積%)は表1に示した実施例と同様の方法で求めた。
なお、実施例23〜26はスピネル型フェライト、実施例27〜30はガーネット型フェライトである。
This was mixed with an epoxy resin (5 wt%), formed into a rectangular parallelepiped having a width of 4.4 mm, a length of 5 mm, and a height of 1 mm, cured at 150 ° C., and used as an evaluation sample.
High-frequency magnetic characteristics were evaluated for permeability and electromagnetic wave absorption characteristics. The magnetic permeability was measured at 800 MHz for Examples 23 to 26 and at 5 GHz for Examples 27 to 30. Similarly, the ratio of electromagnetic wave absorption = [input− (reflection amount + transmission amount)] at 800 MHz for Examples 23 to 26 and 5 GHz for Examples 27 to 30 was measured as electromagnetic wave absorption characteristics. Comparative examples 4 and 5 were set to 1 and indicated as relative values. The average crystal grain size of the deposited metal particles was measured based on TEM observation. Specifically, the longest diagonal line of each metal particle shown by TEM observation (photograph) was used as the particle diameter, and the average was obtained from the average. In addition, the average value was calculated | required for the TEM photograph, taking a unit area of 10 μm × 10 μm at three or more locations. The ratio of metal particles (volume%) was determined by the same method as in the examples shown in Table 1.
In addition, Examples 23-26 are spinel type ferrites, and Examples 27-30 are garnet type ferrites.

Figure 0004664649
Figure 0004664649

(実施例31〜40、比較例5,6)
表1〜3に示した各実施例の試料を表3に示す割合で混合し、エアロゾルデポジション法により、SiO基板上に厚さ50μmの試料を作製した。これらの試料をもとに、電磁波吸収特性を1GHzと5GHzについて評価した。その値は下記の比較例6の値を基準に比較した。また、Q値についても50MHzと500MHzの2条件で測定し、この値も比較例6の値を基準に相対値として測定した。
比較例5として、Fe50Co50組成の平均粒径200nmの金属粒子と平均粒径200nmのNiZnフェライトを75:25の割合(体積%)で混合し、エアロゾルデポジション法でSiO2基板上に膜厚50μmの試料を作製した。
さらに、比較例6としてNiZnフェライトとMnZnフェライトを体積比(体積%)で67:33の割合で混合し、同様の方法で膜厚50μmの試料を作製した。
なお、比較例5、6を900℃1時間熱処理するとSiO2基板から剥離する部分があり、測定に供せる試料とはならなかった。
(Examples 31 to 40, Comparative Examples 5 and 6)
Samples of each example shown in Tables 1 to 3 were mixed in the proportions shown in Table 3, and samples having a thickness of 50 μm were prepared on the SiO 2 substrate by the aerosol deposition method. Based on these samples, electromagnetic wave absorption characteristics were evaluated for 1 GHz and 5 GHz. The value was compared based on the value of Comparative Example 6 below. The Q value was also measured under two conditions of 50 MHz and 500 MHz, and this value was also measured as a relative value based on the value of Comparative Example 6.
As Comparative Example 5, Fe 50 Co 50 with metal particles having an average particle diameter of 200nm composition of NiZn ferrite having an average particle diameter of 200nm were mixed in a ratio of 75:25 (vol%), film on SiO2 substrate aerosol deposition A sample having a thickness of 50 μm was prepared.
Further, as Comparative Example 6, NiZn ferrite and MnZn ferrite were mixed at a volume ratio (volume%) of 67:33, and a sample with a thickness of 50 μm was produced by the same method.
In addition, when Comparative Examples 5 and 6 were heat-treated at 900 ° C. for 1 hour, there were portions that were peeled off from the SiO 2 substrate, so that the samples could not be used for measurement.

Figure 0004664649
Figure 0004664649

本実施例にかかる高周波磁性部品は、幅広い周波数域で良好な高周波特性を示すことが分かる。
(実施例41、比較例7)
実施例6の試料を同様の方法で処理量のみ変化させて六方晶系Baフェライトを作製し、1kg/バッチあるいは10kg/バッチで還元処理し、FeCo粒子の析出を試みた。なお、均質還元を目的として試料をロータリーキルンで動かしながら、還元している。
比較例7として、平均粒径5μmのFe粒子と平均粒径2μmのSiO2粒子を体積比で1:1として、メカニカルアロイング法にてFe結晶粒含有SiO粒子の作製を試みた。ステンレス製ボールと上記粉末の重量比を40:1として、SUS製のポットに入れ、200rpmで50時間処理した。なお、処理量は1kg/バッチと10kg/バッチである。
得られた試料を粉砕し、平均粒径20μm以下になるように分級して実施例41、比較例7の高周波磁性材料(粉末試料)とした。
各粉末試料を任意に抜き取り、FeCo粒子の有無を測定した。歩留り(%)=(FeCo粒子を確認した試料数/全体抜き取り試料数)×100(%)で示した。
It can be seen that the high-frequency magnetic component according to this example exhibits good high-frequency characteristics in a wide frequency range.
(Example 41, Comparative Example 7)
A hexagonal Ba ferrite was prepared by changing only the treatment amount of the sample of Example 6 in the same manner, and reduction treatment was performed at 1 kg / batch or 10 kg / batch to attempt precipitation of FeCo particles. For the purpose of homogeneous reduction, the sample is reduced while moving with a rotary kiln.
As Comparative Example 7, Fe particles having an average particle diameter of 5 μm and SiO 2 particles having an average particle diameter of 2 μm were set to have a volume ratio of 1: 1, and an attempt was made to produce Fe crystal grain-containing SiO 2 particles by a mechanical alloying method. The weight ratio of the stainless steel balls to the powder was 40: 1, and the mixture was placed in a SUS pot and treated at 200 rpm for 50 hours. The throughput is 1 kg / batch and 10 kg / batch.
The obtained samples were pulverized and classified so as to have an average particle size of 20 μm or less, and high-frequency magnetic materials (powder samples) of Example 41 and Comparative Example 7 were obtained.
Each powder sample was arbitrarily extracted and the presence or absence of FeCo particles was measured. Yield (%) = (number of samples in which FeCo particles were confirmed / total number of samples taken) × 100 (%).

Figure 0004664649
Figure 0004664649

以上のようにメカニカルアロイング法では、処理量が増えると金属粒子の析出にバラツキが生じることが分かった。それに対し、本実施例は水素気流中で還元しているので、均一に金属粒子を析出できることが分かった。
(実施例42〜46、比較例8)
実施例1と同様の組成の高周波磁性材料において還元条件を変えることにより析出金属粒子のサイズを変えたものを用意した。各試料に関して実施例1と同様の測定を行った。その結果を表5に示す。
As described above, in the mechanical alloying method, it was found that when the amount of treatment increases, the precipitation of metal particles varies. On the other hand, since the present Example reduced in the hydrogen stream, it turned out that a metal particle can be deposited uniformly.
(Examples 42 to 46, Comparative Example 8)
A high-frequency magnetic material having the same composition as in Example 1 was prepared by changing the reducing conditions to change the size of the deposited metal particles. The same measurement as in Example 1 was performed on each sample. The results are shown in Table 5.

Figure 0004664649
Figure 0004664649

以上のように析出金属粒子の平均結晶粒径は10nm〜5μm、さらには析出した金属粒子の最大径が3μm以下である方が優れた特性を示すことが分かった。   As described above, it has been found that the average crystal grain size of the deposited metal particles is 10 nm to 5 μm, and that the maximum diameter of the deposited metal particles is 3 μm or less exhibits excellent characteristics.

Claims (9)

フェライト酸化物とFe、Co、FeまたはCoを基とする合金の少なくとも1種以上からなる平均粒径5nm〜2μmの金属粒子を体積%で5〜60%の範囲具備し、該金属粒子は、還元熱処理により、少なくともその一部をフェライト酸化物粒子の内部に存在させたことを特徴とする高周波磁性材料。 5% to 60% by volume of metal particles having an average particle diameter of 5 nm to 2 μm made of at least one of ferrite oxide and Fe, Co, Fe or Co based alloys, A high-frequency magnetic material characterized in that at least a part thereof is present inside ferrite oxide particles by reductive heat treatment. 前記フェライト酸化物が六方晶フェライトであることを特徴とする請求項1記載の高周波磁性材料。   The high-frequency magnetic material according to claim 1, wherein the ferrite oxide is hexagonal ferrite. 前記六方晶フェライトは、M型、W型、X型、Y型、Z型、U型の少なくとも1種以上から選ばれることを特徴とする請求項2記載の高周波磁性材料。   The high-frequency magnetic material according to claim 2, wherein the hexagonal ferrite is selected from at least one of M type, W type, X type, Y type, Z type, and U type. 前記フェライト酸化物がガーネットフェライトであることを特徴とする請求項1記載の高周波磁性材料。   The high-frequency magnetic material according to claim 1, wherein the ferrite oxide is garnet ferrite. 前記フェライト酸化物がスピネル型フェライトであることを特徴とする請求項1記載の高周波磁性材料。   2. The high-frequency magnetic material according to claim 1, wherein the ferrite oxide is spinel type ferrite. 該金属粒子を体積%で15〜50%具備することを特徴とする請求項1乃至5のいずれかに記載の高周波磁性材料。   The high-frequency magnetic material according to any one of claims 1 to 5, comprising 15 to 50% by volume of the metal particles. 該金属粒子の平均粒径が100nm以下であることを特徴とする請求項1乃至6のいずれかに記載の高周波磁性材料。   7. The high frequency magnetic material according to claim 1, wherein the average particle diameter of the metal particles is 100 nm or less. 請求項1乃至7のいずれか1項に記載の高周波磁性材料を用いたことを特徴とする高周波磁性部品。 A high frequency magnetic component using the high frequency magnetic material according to claim 1. 請求項1乃至7のいずれかに記載の高周波磁性材料を少なくとも2種類以上用いたことを特徴とする高周波磁性部品。 A high-frequency magnetic component comprising at least two types of the high-frequency magnetic material according to claim 1.
JP2004312353A 2004-10-27 2004-10-27 High frequency magnetic material and high frequency magnetic component using the same Active JP4664649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312353A JP4664649B2 (en) 2004-10-27 2004-10-27 High frequency magnetic material and high frequency magnetic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312353A JP4664649B2 (en) 2004-10-27 2004-10-27 High frequency magnetic material and high frequency magnetic component using the same

Publications (2)

Publication Number Publication Date
JP2006128278A JP2006128278A (en) 2006-05-18
JP4664649B2 true JP4664649B2 (en) 2011-04-06

Family

ID=36722681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312353A Active JP4664649B2 (en) 2004-10-27 2004-10-27 High frequency magnetic material and high frequency magnetic component using the same

Country Status (1)

Country Link
JP (1) JP4664649B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041771A (en) 2006-08-02 2008-02-21 Toshiba Corp Method of manufacturing high frequency magnetic material
JP4686494B2 (en) * 2007-03-12 2011-05-25 株式会社東芝 High frequency magnetic material and manufacturing method thereof
JP5133338B2 (en) * 2007-04-17 2013-01-30 株式会社日立ハイテクノロジーズ Composite filler for resin mixing
KR20100113321A (en) * 2009-04-13 2010-10-21 한국기계연구원 Highly dense and nano-grained spinel ntc thermistor thick films and preparation method thereof
JP2012174745A (en) * 2011-02-18 2012-09-10 Nitta Ind Corp Structure for improving communication
KR20130063363A (en) * 2011-12-06 2013-06-14 삼성전기주식회사 Common mode noise filter
JP6215163B2 (en) 2014-09-19 2017-10-18 株式会社東芝 Method for producing composite magnetic material
JP6519315B2 (en) * 2015-05-22 2019-05-29 Tdk株式会社 Composite magnetic body and high frequency magnetic component using the same
CN107123500A (en) * 2017-06-13 2017-09-01 安徽中研辐射防护有限公司 A kind of composite wave-suction material
JP7016713B2 (en) * 2018-02-05 2022-02-07 株式会社豊田中央研究所 Powder magnetic core and powder for magnetic core

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230801A (en) * 1985-07-31 1987-02-09 Kawasaki Steel Corp Ferromagnetic powder
JPS6312198A (en) * 1986-07-03 1988-01-19 ティーディーケイ株式会社 Electric wave absorbing electromagnetic shielding member
JPH07254506A (en) * 1994-03-16 1995-10-03 Toshiba Corp Magnetic powder and its production
JPH09205015A (en) * 1996-01-24 1997-08-05 Tokin Corp High polymer composite oxide magnet powder and its manufacturing method
JP2002093607A (en) * 2000-09-14 2002-03-29 Tokyo Inst Of Technol Manetic multilayer fine particle, its manufacturing method, and magnetic multilayer fine particle dispersion medium
JP2004281846A (en) * 2003-03-18 2004-10-07 Toshiba Corp High-frequency magnetic material, high-frequency magnetic part using the same, and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230801A (en) * 1985-07-31 1987-02-09 Kawasaki Steel Corp Ferromagnetic powder
JPS6312198A (en) * 1986-07-03 1988-01-19 ティーディーケイ株式会社 Electric wave absorbing electromagnetic shielding member
JPH07254506A (en) * 1994-03-16 1995-10-03 Toshiba Corp Magnetic powder and its production
JPH09205015A (en) * 1996-01-24 1997-08-05 Tokin Corp High polymer composite oxide magnet powder and its manufacturing method
JP2002093607A (en) * 2000-09-14 2002-03-29 Tokyo Inst Of Technol Manetic multilayer fine particle, its manufacturing method, and magnetic multilayer fine particle dispersion medium
JP2004281846A (en) * 2003-03-18 2004-10-07 Toshiba Corp High-frequency magnetic material, high-frequency magnetic part using the same, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2006128278A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
KR100697752B1 (en) High frequency magnetic materials and method for producing the same
US8703282B2 (en) Core-shell type magnetic particle and high-frequency magnetic material
JP4686494B2 (en) High frequency magnetic material and manufacturing method thereof
Huq et al. Ni-Cu-Zn ferrite research: A brief review
Mürbe et al. Ni-Cu-Zn ferrites for low temperature firing: I. Ferrite composition and its effect on sintering behavior and permeability
CN111233452B (en) High-frequency high-impedance lean iron manganese zinc ferrite and preparation method thereof
CN111246952A (en) Crystalline Fe-based alloy powder and method for producing same
JP4664649B2 (en) High frequency magnetic material and high frequency magnetic component using the same
JP6981200B2 (en) Soft magnetic alloys and magnetic parts
JP2006193343A (en) Ferrite sintered body and electronic component using the same
JP4601907B2 (en) High frequency magnetic material powder, high frequency magnetic component using the same, and manufacturing method
TWI778112B (en) Fe-BASED ALLOY, CRYSTALLINE Fe-BASED ALLOY ATOMIZED POWDER, AND MAGNETIC CORE
US7763094B2 (en) Method of manufacturing high frequency magnetic material
JP6981199B2 (en) Soft magnetic alloys and magnetic parts
WO2019053948A1 (en) Soft magnetic alloy and magnetic component
WO2020241023A1 (en) Soft magnetic alloy and magnetic component
WO2019053950A1 (en) Soft magnetic alloy and magnetic component
JP4444191B2 (en) High frequency magnetic material, high frequency magnetic device, and method of manufacturing high frequency magnetic material
JP5734078B2 (en) Ferrite sintered body and noise filter including the same
JP5472694B2 (en) Composite sintered body of aluminum oxide and iron, and method for producing the same
JP3256460B2 (en) Oxide magnetic material and method for producing the same
TWI751302B (en) Nickel-based ferrite sintered body, coil parts, and manufacturing method of nickel-based ferrite sintered body
JP4587541B2 (en) Ferrite material and ferrite core using the same
JPWO2020189035A1 (en) MnCoZn-based ferrite and its manufacturing method
JPWO2020158334A1 (en) MnCoZn-based ferrite and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

R150 Certificate of patent or registration of utility model

Ref document number: 4664649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3