JP2002093607A - Manetic multilayer fine particle, its manufacturing method, and magnetic multilayer fine particle dispersion medium - Google Patents

Manetic multilayer fine particle, its manufacturing method, and magnetic multilayer fine particle dispersion medium

Info

Publication number
JP2002093607A
JP2002093607A JP2000281010A JP2000281010A JP2002093607A JP 2002093607 A JP2002093607 A JP 2002093607A JP 2000281010 A JP2000281010 A JP 2000281010A JP 2000281010 A JP2000281010 A JP 2000281010A JP 2002093607 A JP2002093607 A JP 2002093607A
Authority
JP
Japan
Prior art keywords
fine particles
magnetic
ferrite
magnetic multilayer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000281010A
Other languages
Japanese (ja)
Other versions
JP3755023B2 (en
Inventor
Masanori Abe
正紀 阿部
Mitsuteru Inoue
光輝 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2000281010A priority Critical patent/JP3755023B2/en
Publication of JP2002093607A publication Critical patent/JP2002093607A/en
Application granted granted Critical
Publication of JP3755023B2 publication Critical patent/JP3755023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain magnetic fine particles of multilayer structure and a method of manufacturing the same, and to improve a magnetic multilayer fine particle dispersion medium formed by the use of the magnetic fine particles in high-frequency magnetic field absorption properties and magneto-optical properties. SOLUTION: A multilayer magnetic fine particle is composed of a fine particle serving as a center nucleus and a single-layered or multilayered coating layer covering the center nucleus. A ferromagnetic layer, formed by plating ferrite, is made to serve as the coating layer for the formation of magnetic multilayer fine particles, the magnetic multilayer fine particles are dispersed in a binder, the binder, where the magnetic multilayere fine particles are dispersed, is molded into a magnetic multilayer fine particle medium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性多層微粒子と
その製造方法、および磁性多層微粒子を分散させた磁性
多層微粒子分散媒体に関し、特に多層化することによっ
て磁気光学効果や高周波マイクロ波複素透磁率特性を向
上させた磁性微粒子とその製造方法、および磁性微粒子
分散媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic multilayer fine particle, a method for producing the same, and a magnetic multilayer fine particle dispersion medium in which the magnetic multilayer fine particle is dispersed. The present invention relates to a magnetic fine particle having improved properties, a method for producing the same, and a magnetic fine particle dispersion medium.

【0002】[0002]

【従来の技術】強磁性体金属微粒子やフェライト微粒子
などの磁性微粒子は、バインダ中に分散して複合化し、
磁性微粒子分散媒体の形態で、電波吸収体として用いら
れているほか、磁気テープやフロッピーディスクなどの
磁気記録媒体として用いられているなど、幅広く用いら
れており、さらには磁気光学効果素子への応用も検討さ
れている。
2. Description of the Related Art Magnetic fine particles such as ferromagnetic metal fine particles and ferrite fine particles are dispersed in a binder to form a composite.
In the form of a magnetic fine particle dispersion medium, it is widely used as a radio wave absorber, used as a magnetic recording medium such as a magnetic tape and a floppy disk, and further applied to a magneto-optical effect element. Are also being considered.

【0003】このような分散媒体においては、磁性微粒
子はそのままの形で樹脂などに分散して用いられるもの
のほかに、磁性微粒子の表面に表面処理剤を付与して粒
子の分散を容易にしたものや、また磁性微粒子が強磁性
金属の場合に、その表面に酸化膜などの薄い層を設ける
ことにより、粒子間の絶縁を得ているものなどがある。
[0003] In such a dispersion medium, in addition to the magnetic fine particles used as they are dispersed in a resin or the like, the magnetic fine particles can be easily dispersed by applying a surface treating agent to the surface of the magnetic fine particles. Alternatively, there is a method in which when the magnetic fine particles are ferromagnetic metals, insulation between particles is obtained by providing a thin layer such as an oxide film on the surface thereof.

【0004】これらの磁性微粒子における表面層は、粒
子の分散性を向上させる役割や、磁性粒子間の磁気的あ
るいは電気的な結合を弱めるといった役割を果している
に過ぎない。このため、これらの磁性微粒子はいずれも
実質的に単層の磁性微粒子と見なして差し支えないもの
であった。
[0004] The surface layer of these magnetic fine particles merely plays a role of improving the dispersibility of the particles and a role of weakening the magnetic or electrical coupling between the magnetic particles. Therefore, any of these magnetic fine particles may be regarded as substantially a single-layer magnetic fine particle.

【0005】そこで、本発明者らは磁性粒子に多層構造
を持たせることによって、高周波マイクロ波複素透磁率
特性や磁気光学効果を向上させるなど、電磁界応答につ
いて新たな可能性に着目し、その研究を行った。
Accordingly, the present inventors have focused on new possibilities for electromagnetic field response, such as improving the high-frequency microwave complex permeability characteristics and magneto-optical effect by imparting a multilayer structure to magnetic particles. Researched.

【0006】なお、層状構造の磁性粒子としては、ポリ
アクリル球表面にフェライトめっき層を設けた粒子が本
発明者によってすでに開発されている。しかし、これは
主として医療用に用いられる粒子であって、高周波マイ
クロ波複素透磁率特性や磁気光学効果を向上させたもの
ではない。
[0006] As the magnetic particles having a layered structure, particles having a ferrite plating layer provided on the surface of a polyacryl sphere have already been developed by the present inventors. However, these are particles mainly used for medical use, and do not improve high-frequency microwave complex permeability characteristics or magneto-optical effects.

【0007】また多層構造をもつ微小粒子として、逆ミ
セルを用いて作られた多層粒子、いわゆるナノオニオン
微粒子がごく最近に発表され注目を集めている。この粒
子においては、粒子サイズが逆ミセルの可能な範囲に限
定される。このため、粒子サイズは平均径で20ないし30
nm程度がその上限となっている。このように逆ミセルを
用いて作製されたナノオニオン微粒子は、そのサイズ非
常に小さなものに限られていることから、この微粒子
は、微小サイズが本質的に重要な現象である巨大磁気抵
抗効果(GMR)などについての研究が行われているに過
ぎない。
[0007] Further, as fine particles having a multilayer structure, multilayer particles formed by using reverse micelles, so-called nano-onion fine particles, have recently been recently announced and attracted attention. In these particles, the particle size is limited to the possible range of reverse micelles. Therefore, the average particle size is 20 to 30
The upper limit is about nm. Since nano-onion fine particles produced by using reverse micelles are limited to very small ones, the fine particles have a giant magnetoresistive effect (a micro-size is essentially an important phenomenon). GMR) is only being researched.

【0008】[0008]

【発明の解決しようとする課題】本発明らは、このよう
な従来技術に対して、磁性微粒子を従来の単層構造から
多層構造に変え、多層化することによって磁気光学効果
や高周波ないしマイクロ波複素透磁率特性向上させるこ
との必要性を見出し、研究を進めた。研究を進めるにあ
たって、本発明者らは分散した磁性粒子の電磁界に対す
る応答の解析を多角的に行う一方、多層構造を持つ磁性
粒子を実際に形成する手段として、フェライトめっき法
をなどのめっき法をその手段として用いた。フェライト
めっき法は、水溶液中で基体上にフェライト層を形成す
る方法であって、本発明者の一人によって開発されたも
のであって、多くの研究を重ねて改良を行った結果、フ
ェライトめっきはその適用可能な範囲を大きく広げるこ
とができるようになった。
SUMMARY OF THE INVENTION The present invention is based on the above-mentioned conventional technology. By changing the magnetic fine particles from a conventional single-layer structure to a multi-layer structure and forming a multi-layer structure, the magneto-optical effect and the high-frequency or microwave We found the necessity of improving the complex permeability characteristics and proceeded with research. In conducting the research, the present inventors analyzed the response of the dispersed magnetic particles to the electromagnetic field from multiple angles, and used a plating method such as ferrite plating as a means to actually form magnetic particles having a multilayer structure. Was used as the means. The ferrite plating method is a method of forming a ferrite layer on a substrate in an aqueous solution, and has been developed by one of the present inventors. Its applicability has been greatly expanded.

【0009】そしてフェライトめっき技術の応用の一つ
として、本発明の多層構造を持つ磁性粒子、即ち磁性多
層微粒子に適用することができたことで、フェライトめ
っきの新たな展開が可能になったものである。
One of the applications of the ferrite plating technique is that it can be applied to the magnetic particles having a multilayer structure of the present invention, that is, the magnetic multilayer fine particles, thereby enabling a new development of ferrite plating. It is.

【0010】[0010]

【課題を解決するための手段】本発明は、磁性多層微粒
子とその製造方法、およびこの磁性多層微粒子を分散し
た分散媒体の発明であって、磁性微粒子を多層化するこ
とにより、これを用いた磁性微粒子分散媒体の電磁界特
性を向上させること、例えば磁気光学効果を向上させ、
あるいは高周波ないしマイクロ波における複素透磁率や
複素誘電率を高めることができるものである。
SUMMARY OF THE INVENTION The present invention is directed to a magnetic multilayer fine particle, a method for producing the same, and a dispersion medium in which the magnetic multilayer fine particle is dispersed. Improving the electromagnetic field characteristics of the magnetic fine particle dispersion medium, for example, improving the magneto-optical effect,
Alternatively, it is possible to increase the complex magnetic permeability and the complex permittivity at a high frequency or a microwave.

【0011】本発明の第1の磁性多層微粒子は、強磁性
を有する中心核と、中心核を被覆する1層または複数層
の被覆層とを有し、被覆層にはめっき法によって形成さ
れた強磁性層を有するものである。なお、被覆層の厚さ
は特に制限はされない。多層構造の効果を十分に得るた
めに、例えば中心核の平均直径の約1/10以上の平均厚さ
を有することが好ましい。
The first magnetic multilayer fine particle of the present invention has a center core having ferromagnetism and one or more coating layers covering the center core, and the coating layer is formed by plating. It has a ferromagnetic layer. The thickness of the coating layer is not particularly limited. In order to sufficiently obtain the effect of the multilayer structure, for example, it is preferable to have an average thickness of about 1/10 or more of the average diameter of the central core.

【0012】本発明の磁性多層微粒子においては、強磁
性を有する中心核として、金属鉄などの強磁性金属微粒
子を用いることができる。磁性多層微粒子の中心核とし
て飽和磁化の大きい強磁性金属粒子を用い、これに高抵
抗の磁性体であるフェライト層の被覆を設けることによ
り、磁性多層微粒子は高い飽和磁化を有するとともに、
粒子間には高い比抵抗を有することができる。また本発
明の磁性多層微粒子においては、強磁性を有する中心核
がスピネル型などのフェライト微粒子であってもよく、
またガーネット型フェライト微粒子や六方晶フェライト
微粒子であってもよい。
In the magnetic multilayer fine particles of the present invention, ferromagnetic metal fine particles such as metallic iron can be used as the core having ferromagnetism. By using a ferromagnetic metal particle having a large saturation magnetization as a central nucleus of the magnetic multilayer fine particle and providing a coating of a ferrite layer which is a high-resistance magnetic substance, the magnetic multilayer fine particle has a high saturation magnetization,
A high specific resistance can be provided between particles. In the magnetic multilayer fine particles of the present invention, the ferromagnetic core may be ferrite fine particles such as spinel type,
Garnet-type ferrite fine particles and hexagonal ferrite fine particles may also be used.

【0013】本発明の磁性多層微粒子の中心核として、
磁気光学特性の優れたガーネット型フェライトを用い、
これを例えばスピネルフェライトで被覆することによっ
て、磁気光学特性の適切に制御された磁性多層微粒子を
得ることができる。また六方晶フェライト微粒子を中心
核にすれば、その強い異方性を利用することによって、
粒子配向の容易な磁性多層微粒子を得ることができ、ま
た六方晶フェライト微粒子の強い異方性磁界による特異
な複素透磁率特性を多層構造によって制御して用いるこ
とができる。さらに中心核にスピネルフェライトを用
い、これをスピネルフェライトで被覆する場合にも、そ
れぞれの組成を選ぶことにより、磁気光学特性あるいは
複素透磁率特性を適正に制御することができる。
As the central nucleus of the magnetic multilayer fine particles of the present invention,
Using garnet type ferrite with excellent magneto-optical properties,
By coating this with, for example, spinel ferrite, it is possible to obtain magnetic multilayer fine particles whose magneto-optical properties are appropriately controlled. If hexagonal ferrite fine particles are used as the central nucleus, by utilizing their strong anisotropy,
Magnetic multilayer fine particles with easy particle orientation can be obtained, and the unique complex magnetic permeability characteristics of the hexagonal ferrite fine particles due to a strong anisotropic magnetic field can be controlled and used by the multilayer structure. Further, even when spinel ferrite is used for the central core and the core is coated with spinel ferrite, the magneto-optical characteristics or the complex magnetic permeability characteristics can be appropriately controlled by selecting the respective compositions.

【0014】本発明の第2の磁性多層微粒子は、強誘電
性を有する中心核と、中心核を被覆する1層または複数
層の被覆層とを有し、被覆層にはめっき法によって形成
された強磁性層を有するものである。
The second magnetic multilayer fine particle of the present invention has a central core having ferroelectricity and one or more coating layers covering the central core, and the coating layer is formed by plating. It has a ferromagnetic layer.

【0015】本発明においては、強誘電性を有する中心
核として、強誘電体を有する中心核のほかに、強誘電体
と同程度に高誘電率を有する中心核をも含むものとす
る。誘電率の大きさとしては、高誘電率の効果を得るた
めに100以上が好ましく、500以上がより好ましい。
In the present invention, the central core having ferroelectricity includes, in addition to the central core having a ferroelectric substance, the central core having a dielectric constant as high as that of the ferroelectric substance. The magnitude of the dielectric constant is preferably 100 or more, more preferably 500 or more, in order to obtain the effect of a high dielectric constant.

【0016】このような中心核を有することにより、高
い複素透磁率とともに高い複素誘電率を有する磁性多層
微粒子を得ることができる。従来、電波吸収体などにお
いては、高い複素透磁率とともに、高い複素誘電率を有
することが望まれていたが、強磁性を有し同時に強誘電
性を有する実用の材料が得られないので、これに応える
ことができなかった。本発明のこの構成の磁性多層微粒
子は、こうした要求に応えることができるものである。
By having such a central nucleus, magnetic multilayer fine particles having a high complex magnetic permeability and a high complex dielectric constant can be obtained. Conventionally, it has been desired that radio wave absorbers have a high complex permittivity as well as a high complex magnetic permeability.However, since a practical material having ferromagnetism and ferroelectricity cannot be obtained at the same time, Could not respond to. The magnetic multilayer fine particles of this configuration according to the present invention can meet such demands.

【0017】本発明の磁性多層微粒子においては、被覆
層の少なくとも1層がフェライト層であることが好まし
く、フェライト層はフェライトめっきによって形成され
た層であることが好ましい。
In the magnetic multilayer fine particles of the present invention, at least one of the coating layers is preferably a ferrite layer, and the ferrite layer is preferably a layer formed by ferrite plating.

【0018】フェライトめっきでは水溶液中で温度やpH
など、いずれも比較的穏やかな条件で良質の膜形成を行
うことができるという特徴がある。このため、被覆層を
形成する際に中心核を変質させずに、しかも膜厚のよく
調整された良質で磁気特性の優れたの被覆層を設けるこ
とができる。
In ferrite plating, temperature and pH in aqueous solution
Each of them has a feature that a high-quality film can be formed under relatively mild conditions. For this reason, it is possible to provide a coating layer having a good quality and excellent magnetic properties with a well-adjusted film thickness without deteriorating the central nucleus when forming the coating layer.

【0019】また本発明の磁性多層微粒子においては、
被覆層の少なくとも1層を金属層にすることができる。
この場合、金属層は無電解めっきによって形成すること
ができる。無電界めっきを用いることにより、フェライ
トめっきと同様に、水溶液中での処理が可能である。
In the magnetic multilayer fine particles of the present invention,
At least one of the coating layers can be a metal layer.
In this case, the metal layer can be formed by electroless plating. By using electroless plating, treatment in an aqueous solution is possible, as with ferrite plating.

【0020】また本発明の磁性多層微粒子においては、
中心核の形状が球状を有するものや立方対称性を有する
形状など、粒子形状が等方性のものを用いることができ
る。中心核が等方性の形状の微粒子であれば、磁性多層
微粒子媒体の形状についても等方性にすることが容易で
ある。そして等方性の形状の磁性多層微粒子を用いるこ
とにより、方向性を持たない磁性粒子分散媒体を製造す
ることが容易である。
In the magnetic multilayer fine particles of the present invention,
Particles having an isotropic particle shape, such as a central core having a spherical shape or a cubic symmetry, can be used. If the central nucleus is a fine particle having an isotropic shape, it is easy to make the shape of the magnetic multilayer fine particle medium isotropic. By using the magnetic multilayer fine particles having an isotropic shape, it is easy to manufacture a magnetic particle dispersion medium having no directivity.

【0021】また本発明の磁性多層微粒子においては、
中心核の形状が板状など扁平な粒子形状であってもよ
い。さらに本発明の磁性多層微粒子においては、中心核
の形状が針状、棒状や紡糸状などの一方向に伸びた形状
を有するものを用いることもできる。中心核がこのよう
な形状の微粒子を有することにより、得られる磁性多層
微粒子を同様の粒子形状とすることができる。
In the magnetic multilayer fine particles of the present invention,
The shape of the central nucleus may be a flat particle shape such as a plate shape. Further, in the magnetic multilayer fine particles of the present invention, those having a shape in which a central core has a shape extending in one direction such as a needle shape, a rod shape, a spinning shape, or the like can be used. When the central nucleus has the fine particles having such a shape, the obtained magnetic multilayer fine particles can have the same particle shape.

【0022】こうして得られる扁平な粒子形状の磁性多
層微粒子や一方向に長い粒子形状の磁性多層微粒子を用
いれば、これらの粒子を配向させ、方向性を有する磁性
粒子分散媒体を製造することが容易になる。このように
分散媒体に方向性を持たせること、即ち異方性を付与す
ることは、電波吸収材として用いる場合に有用であり、
また磁気光学材料として用いる場合にも有用である。
By using the magnetic multilayer fine particles having a flat particle shape or the magnetic multilayer fine particles having a long particle shape in one direction, it is easy to orient these particles and produce a magnetic particle dispersion medium having directionality. become. Giving the dispersion medium directionality in this way, that is, imparting anisotropy, is useful when used as a radio wave absorber,
It is also useful when used as a magneto-optical material.

【0023】本発明の磁性多層微粒子分散媒体は、上記
の磁性多層微粒子がバイン+ダ中に分散されていること
を特徴とするものである。本発明の磁性多層微粒子はバ
インダ中に分散して磁性多層微粒子分散媒体とすること
により、その高周波やマイクロ波電磁界、および光に対
する磁性多層微粒子の特徴を利用することができ、幅広
い用途が得られる。
The magnetic multilayer fine particle dispersion medium of the present invention is characterized in that the above magnetic multilayer fine particles are dispersed in a binder + binder. The magnetic multilayer fine particles of the present invention are dispersed in a binder to form a magnetic multilayer fine particle dispersion medium, so that the characteristics of the magnetic multilayer fine particles with respect to high frequency, microwave electromagnetic field, and light can be utilized, and a wide range of applications can be obtained. Can be

【0024】本発明の磁性多層微粒子分散媒体は、電波
吸収体として用いることができる。特に準マイクロ波お
よびマイクロ波領域の電波吸収体として用いることによ
り、従来の電波吸収体に比べ、大きな減衰量を得ること
ができる。電波吸収体として用いる場合には、磁性多層
微粒子分散媒体を例えば板状に形成し、その一方の面に
金属の終端板を設けて用いることが好ましい。電波吸収
体として用いる場合に十分な電波吸収を得るためには、
磁性多層微粒子の平均粒径はとして、好ましくは0.1μm
ないし1mm、より好ましくは1μmないし100μmである。
The magnetic multilayer fine particle dispersion medium of the present invention can be used as a radio wave absorber. In particular, when used as a radio wave absorber in the quasi-microwave and microwave regions, a large amount of attenuation can be obtained as compared with a conventional radio wave absorber. When used as a radio wave absorber, it is preferable that the magnetic multilayer fine particle dispersion medium is formed in a plate shape, for example, and a metal end plate is provided on one surface thereof. In order to obtain sufficient radio wave absorption when used as a radio wave absorber,
The average particle size of the magnetic multilayer fine particles is preferably 0.1 μm
To 1 mm, more preferably 1 μm to 100 μm.

【0025】また本発明の磁性多層微粒子分散媒体は、
磁気光学効果材料として用いることができる。磁性微粒
子を分散した媒体では、磁性微粒子の分散効果によって
屈折率テンソルの非対角項の値の拡大を得ることがで
き、ファラデー回転角などの増大を得ることが可能であ
り、磁性微粒子の多層化によってさらにその値を高める
ことが可能である。この場合の磁性多層微粒子の平均粒
径としては、光との相互作用が大きい平均粒径範囲であ
る0.05μmないし1μmが好ましく、0.1μmないし0.3μm
がさらに好ましい。
Further, the magnetic multilayer fine particle dispersion medium of the present invention comprises:
It can be used as a magneto-optical effect material. In the medium in which the magnetic fine particles are dispersed, the value of the off-diagonal term of the refractive index tensor can be increased due to the dispersion effect of the magnetic fine particles, and the Faraday rotation angle and the like can be increased. It is possible to further increase the value by the conversion. In this case, the average particle size of the magnetic multilayer fine particles is preferably 0.05 μm to 1 μm, which is a large average particle size range having a large interaction with light, and 0.1 μm to 0.3 μm.
Is more preferred.

【0026】本発明の磁性多層微粒子の製造方法は、電
磁界に対して機能性の微粒子の表面にフェライトめっき
および無電解めっきの少なくともいずれか一方の工程に
より磁性層を被覆することにより、磁性多層微粒子を製
造するものである。ここに本発明において電磁界に対し
て機能性の微粒子とは、強磁性を有する微粒子、強誘電
性を有する微粒子または強誘電体と同程度に高誘電率を
有する微粒子である。
According to the method for producing magnetic multilayer fine particles of the present invention, the magnetic layer is coated on the surface of the fine particles functional with respect to an electromagnetic field by at least one of ferrite plating and electroless plating. It is for producing fine particles. In the present invention, the fine particles functional with respect to an electromagnetic field in the present invention are fine particles having ferromagnetism, fine particles having ferroelectricity, or fine particles having a dielectric constant as high as a ferroelectric substance.

【0027】フェライトめっき法では、微粒子を分散
し、これに2価鉄イオンを有する反応液を加え、2価鉄イ
オンの酸化とpHの調整により反応を進行させて微粒子の
表面にフェライトめっき層を形成する。
In the ferrite plating method, fine particles are dispersed, a reaction solution having ferrous iron ions is added thereto, and the reaction proceeds by oxidizing the ferrous iron ions and adjusting the pH to form a ferrite plating layer on the surfaces of the fine particles. Form.

【0028】この方法によれば、すでに述べたように室
温近くの温度での形成で、よく固定されたフェライト層
が形成され、しかも良好な結晶性や良好な磁気特性が得
られる。ここで反応液に超音波を印加しながらフェライ
トめっき層の形成をすれば、より均等にフェライトめっ
きを行うことができ、結晶性をさらに向上させることが
できる。
According to this method, a well-fixed ferrite layer is formed at a temperature near room temperature as described above, and good crystallinity and good magnetic properties can be obtained. Here, if the ferrite plating layer is formed while applying ultrasonic waves to the reaction solution, ferrite plating can be performed more uniformly, and crystallinity can be further improved.

【0029】本発明の磁性多層微粒子の製造方法によれ
ば、めっき液に微粒子を分散させた状態で粒子の表面に
めっきを行うので、粒子の周囲を被覆することができ、
しかも中心核の形状寸法や被覆層の厚さを任意に選定す
ることができ、目的によく適合した磁性多層微粒子が製
造できる。
According to the method for producing magnetic multilayer fine particles of the present invention, the surfaces of the particles are plated in a state in which the fine particles are dispersed in a plating solution, so that the periphery of the particles can be coated.
In addition, the shape and size of the central nucleus and the thickness of the coating layer can be arbitrarily selected, and magnetic multilayer fine particles well suited to the purpose can be manufactured.

【0030】[0030]

【発明の実施の形態】図1は本発明の磁性多層微粒子11
の実施形態の数例を模式的に示した断面図である。図1
において、(a)は中心核12の周囲を被覆層13aで覆ったも
の、(b)は中心核の周囲を被覆層13aおよび13bで2重に
被覆したもの、(c)は中心核の周囲を被覆層13a,13bお
よび13cの3重に被覆したものである。(d)は中心核の周
囲を被覆層13a,13b,13cおよび13dの4重に被覆したも
のである。図1では中心核に4層までの被覆をした例を示
したが、必要に応じて被覆層はさらに多層にしてもよ
い。
FIG. 1 shows a magnetic multilayer fine particle 11 according to the present invention.
It is sectional drawing which showed typically several examples of Embodiment of this invention. Figure 1
In (a), the periphery of the central nucleus 12 is covered with a covering layer 13a, (b) is the periphery of the central nucleus covered with the covering layers 13a and 13b, and (c) is the periphery of the central nucleus. Is coated in three layers of coating layers 13a, 13b and 13c. (d) is a diagram in which the periphery of the central nucleus is covered four times with coating layers 13a, 13b, 13c and 13d. FIG. 1 shows an example in which the central core is coated with up to four layers, but the coating layer may be further multilayered as necessary.

【0031】中心核12の粒子形状としては、図1に示し
たような球状あるいは球状に近い形状や立方体などの正
多面体に近い形状など、等方的なものであってもよい
し、また図2(a)の模式的断面図に示した平板状など偏
平形状、図2(b)の模式的断面図に示した棒状やそれら
に近い一方向に長い粒子形状など、異方的な中心核22に
被覆層23を設けた磁性多層微粒子21であってもよい。
The particle shape of the central core 12 may be isotropic, such as a spherical shape or a shape close to a sphere as shown in FIG. 1, a shape close to a regular polyhedron such as a cube, or the like. Anisotropic central nucleus, such as a flat shape such as the flat plate shape shown in the schematic cross-sectional view of Fig. 2 (a), the rod shape shown in the schematic cross-sectional view of Fig. 2 (b), and the shape of particles long in one direction close to them Magnetic multilayer fine particles 21 provided with a coating layer 23 on 22 may be used.

【0032】中心核を球状あるいは球状に近い形状や立
方体などの正多面体に近い形状、これらを用いた磁性多
層微粒子も中心核と同様な形状が可能である。このよう
な磁性多層微粒子をバインダ樹脂に分散し、成形した場
合には、図3(a)の模式的断面図に示すような等方的な
分散媒体とすることが容易である。図3(a)において、
磁性多層微粒子31はバインダ樹脂34中に分散され成形さ
れて板状の磁性多層微粒子分散媒体35が形成されてい
る。
The central nucleus can have a spherical or nearly spherical shape or a shape close to a regular polyhedron such as a cube, and magnetic multilayer fine particles using these can have the same shape as the central nucleus. When such magnetic multilayer fine particles are dispersed in a binder resin and molded, it is easy to provide an isotropic dispersion medium as shown in the schematic cross-sectional view of FIG. In FIG. 3 (a),
The magnetic multilayer fine particles 31 are dispersed in a binder resin and molded to form a plate-like magnetic multilayer fine particle dispersion medium.

【0033】なお、ここで用いるバインダには特に制限
はなく、用途に応じて周知の材料から選択して用いるこ
とができる。例えばシロキサンを主成分とするシリコー
ン樹脂などの樹脂を選択して用いることができる。
The binder used here is not particularly limited, and can be selected from known materials according to the application. For example, a resin such as a silicone resin containing siloxane as a main component can be selected and used.

【0034】また、中心核を平板状などの偏平形状、あ
るいは棒状などの一方向に長い粒子形状にすることによ
って、磁性多層微粒子を偏平形状や一方向に長い粒子形
状にすることができる。このように、磁性多層微粒子を
平板状や棒状にして、磁性体粒子内の反磁界に適当な方
向性を与えるようにしてもよい。また磁性多層微粒子
が、例えば中心核に強誘電体などの誘電体を有する場合
には、中心核の形状を扁平形状や一方向に長い形状にし
て、誘電体内部の反電界に適当な方向性を与えるように
してもよい。
Further, by forming the central core into a flat shape such as a flat plate shape or a unidirectionally long particle shape such as a rod shape, the magnetic multilayer fine particles can be formed into a flat shape or a unidirectionally long particle shape. As described above, the magnetic multilayer fine particles may be formed into a plate shape or a rod shape so as to give an appropriate directionality to the demagnetizing field in the magnetic material particles. When the magnetic multilayer fine particles have a dielectric such as a ferroelectric substance in the center nucleus, for example, the shape of the center nucleus is made to be flat or long in one direction, so that a suitable directional property can be applied to the demagnetizing field inside the dielectric. May be given.

【0035】なお、上記の各図には、中心核を被覆する
各層は均一な厚さで覆った場合を示したが、被覆層は必
ずしも均一である必要はなく、本発明の多層化の効果を
得ることのできる範囲で、被覆形状として不均一な層で
あってもよいし、部分的に被覆層を有するものであって
もよい。
In each of the above figures, the case where each layer covering the central core is covered with a uniform thickness is shown. However, the covering layer is not necessarily required to be uniform, and the effect of the multilayer structure of the present invention is not required. The layer may be a layer having a nonuniform coating shape or a layer having a partial coating layer, as long as it is possible to obtain.

【0036】これらの粒子をバインダ中に分散して配向
させることにより、図3の(b)および(c)の模式的断
面図に示されたそれぞれ扁平板状粒子および棒状粒子を
分散した異方性を有する分散媒体を得ることができる。
ここで粒子の配向には機械的な方法や磁気的な方法を用
いることができる。
By dispersing and orienting these particles in a binder, anisotropic dispersion of flat and rod-like particles shown in the schematic cross-sectional views of FIGS. 3 (b) and 3 (c), respectively. A dispersion medium having a property can be obtained.
Here, a mechanical method or a magnetic method can be used for the orientation of the particles.

【0037】本発明の磁性多層微粒子は、図4の模式的
断面図に示すように中心核42に金属鉄や金属コバルトな
どの強磁性金属微粒子を用い、この中心核42の周囲を例
えばフェライトめっきを用いてフェライト層43で被覆し
て構成してもよい。
As shown in the schematic cross-sectional view of FIG. 4, the magnetic multilayer fine particles of the present invention use ferromagnetic metal fine particles such as metallic iron or metallic cobalt for the central core 42, and surround the central core 42 with, for example, ferrite plating. And may be covered with the ferrite layer 43.

【0038】このような構成により、高抵抗でしかもフ
ェライトよりも飽和磁化の大きい磁性粒子41が形成され
るので、この磁性粒子を分散した分散媒体は、例えば図
5に示す複素透磁率の周波数スペクトラム特性におい
て、フェライトの場合の限界(Snoek限界)を超えるこ
とができる。
With such a configuration, the magnetic particles 41 having high resistance and a larger saturation magnetization than ferrite are formed.
In the frequency spectrum characteristic of the complex magnetic permeability shown in 5, the limit in the case of ferrite (Snoek limit) can be exceeded.

【0039】また図6(a)の模式的断面図に示すよう
に、本発明の磁性多層微粒子の中心核には、誘電率の高
い材料、例えばチタン酸バリウムなどの強誘電体粒子62
を用い、この周囲をフェライトめっき63aで被覆するこ
とによって、高い透磁率と高い誘電率とを備えた磁性多
層微粒子61を得る。また、図6(b)に模式的断面図で示
すように、中心核に、このような誘電率の高い材料62を
用い、この周囲を無電解めっきで金属コバルト金属ニッ
ケルの層63bを設けた後、フェライトめっき63aで被覆し
てもよい。
As shown in the schematic cross-sectional view of FIG. 6A, the core of the magnetic multilayer fine particles of the present invention is made of a material having a high dielectric constant, for example, ferroelectric particles 62 such as barium titanate.
By coating the periphery with ferrite plating 63a, magnetic multilayer fine particles 61 having high magnetic permeability and high dielectric constant are obtained. Further, as shown in a schematic cross-sectional view of FIG. 6B, a material 62 having such a high dielectric constant was used for the central core, and a layer 63b of metallic cobalt metal nickel was provided around the periphery by electroless plating. After that, it may be covered with ferrite plating 63a.

【0040】また図7の模式的断面図に示すように、本
発明の磁性多層微粒子中心核72にフェライト微粒子を用
いる場合には、スピネル型フェライトのほか、ガーネッ
ト型フェライトや六方晶フェライトを用いることができ
る。フェライトの中心核を被覆する被覆層には、フェラ
イトめっきによって形成される被覆層や無電解めっきに
よって形成される被覆層73を設ける。また、これらの被
覆層を積層して多層にした層を用いることもできる。こ
のような複合化によって、単一フェライト粒子では得ら
れない複合特性を有する磁性多層微粒子71を得る。
As shown in the schematic sectional view of FIG. 7, when ferrite fine particles are used for the core 72 of the magnetic multilayer fine particles of the present invention, garnet type ferrite or hexagonal ferrite besides spinel type ferrite is used. Can be. The coating layer covering the core of ferrite is provided with a coating layer formed by ferrite plating or a coating layer 73 formed by electroless plating. In addition, a multilayered layer obtained by laminating these coating layers can also be used. By such a composite, the magnetic multilayer fine particles 71 having composite characteristics that cannot be obtained by a single ferrite particle are obtained.

【0041】本発明の磁性多層微粒子の製造は、先ず中
心核を形成する微粒子を粒子表面の被覆を行う反応液
(フェライトめっき液または無電界めっき液)に浸漬
し、微粒子をできるだけ均一に分散する。次に反応液を
反応させて、分散された微粒子の表面に被覆を行う。被
覆を終えた粒子に対し、反応液を変えてさらに被覆を重
ねることにより、多層の被覆層を有する磁性微粒子を得
ることができる。
In the production of the magnetic multilayer fine particles of the present invention, first, the fine particles forming the central nucleus are immersed in a reaction solution (ferrite plating solution or electroless plating solution) for coating the particle surface, and the fine particles are dispersed as uniformly as possible. . Next, the reaction liquid is reacted to coat the surface of the dispersed fine particles. Magnetic fine particles having a multilayer coating layer can be obtained by changing the reaction solution and further coating the coated particles.

【0042】その具体例として、微粒子の被覆をフェラ
イトめっきで行う場合の工程を図8に示したフェライト
めっき装置に従って説明する。中心核を形成する微粒子
82、例えばチタン酸バリウムの微粒子を水に分散し、ホ
ットバス80に浸したガラスベッセル86にて、FeClなど
の2価鉄イオン塩、MClなどの2価金属イオン塩、およ
び必要に応じてFeClをなどの3価の鉄イオンを含むフ
ェライトめっき反応液87にてフェライトめっきを行う。
フェライトめっきは、超音波ホーン88により超音波(1
9.5kHz、600w)を加えながら亜硝酸NaNOなどの酸化剤
を徐々に加えて酸化することによって進行させ、またpH
コントローラ89により、NHOHなどでpHを調整する。
As a specific example, a process in which fine particles are coated by ferrite plating will be described with reference to a ferrite plating apparatus shown in FIG. Fine particles that form the central nucleus
82, for example, barium titanate fine particles are dispersed in water, and in a glass vessel 86 immersed in a hot bath 80, a divalent iron ion salt such as FeCl 2 , a divalent metal ion salt such as MCl 2 and, if necessary, Then, ferrite plating is performed using a ferrite plating reaction solution 87 containing trivalent iron ions such as FeCl 3 .
Ferrite plating is performed by ultrasonic (1
9.5 kHz, 600 w) while adding an oxidizing agent such as NaNO 2 nitrite gradually to oxidize,
The controller 89 adjusts the pH with NH 4 OH or the like.

【0043】ここでチタン酸バリウムの微粒子表面の吸
着席であるOH基に2価のFeイオンやMイオンが吸着されて
水素イオンが放出される。次いで酸化により2価のFeの
一部が3価になる反応を行うと、この面に再び2価のFeイ
オンおよびMイオンが吸着する。次いで酸化により2価の
Feの一部が3価になる反応を行い、こうした繰り返り返
しにより、粒子表面にスピネルフェライトのめっき層が
形成される。中心核が他の材質、例えば金属鉄の場合も
同様であって、酸化された表面に存在する吸着席である
OH基に2価のFeイオンやMイオンが吸着され、同様にして
フェライトめっき層を形成することができる。
Here, divalent Fe ions and M ions are adsorbed to OH groups, which are adsorption sites on the surface of the barium titanate fine particles, and hydrogen ions are released. Next, when a reaction in which a part of divalent Fe becomes trivalent by oxidation is performed, divalent Fe ions and M ions are again adsorbed on this surface. Then, oxidation
A reaction in which a part of Fe becomes trivalent is performed, and by such repetition, a plating layer of spinel ferrite is formed on the particle surface. The same applies to the case where the central core is made of another material, for example, metallic iron, which is an adsorption site present on the oxidized surface.
A divalent Fe ion or M ion is adsorbed on the OH group, and a ferrite plating layer can be formed in the same manner.

【0044】ここで液に超音波を照射しながらフェライ
ト生成反応を進行させると、微粒子の表面全体にフェラ
イト層を形成するのを容易にし、しかも結晶性の良好な
フェライトめっき層を形成することができる。ここで被
覆層の厚さについては、酸化による反応の進行速度とそ
の時間を調整することによって容易に制御することがで
きる。
Here, when the ferrite generation reaction proceeds while irradiating the liquid with ultrasonic waves, it is easy to form a ferrite layer on the entire surface of the fine particles, and it is possible to form a ferrite plating layer having good crystallinity. it can. Here, the thickness of the coating layer can be easily controlled by adjusting the progress rate and the time of the reaction by oxidation.

【0045】次に本発明の実施例を述べる。Next, an embodiment of the present invention will be described.

【0046】(実施例1) (中心核が金属鉄、これをフェライトめっきにて被覆す
る。また、これを用いた電波吸収体を作製する。)平均
粒径0.2μmで表面に酸化層を有する金属鉄粒子を中心核
とし、フェライトめっき法を用いてその表面に平均厚さ
0.1μmのフェライト層を形成して、金属鉄とNiZnFeフェ
ライトとの複合構造を有する磁性微粒子を得た。
(Example 1) (The central core is metallic iron, which is coated with ferrite plating, and a radio wave absorber is prepared using the same.) An average particle diameter of 0.2 μm and an oxide layer on the surface Using metal iron particles as the central core, the average thickness is applied to the surface using ferrite plating.
A ferrite layer of 0.1 μm was formed to obtain magnetic fine particles having a composite structure of metallic iron and NiZnFe ferrite.

【0047】ここでフェライトめっきは図9で示したガ
ラスベッセル(容積500ml)を用い、超音波を印加しな
がら次の条件で行った。 反応液:FeCl2(12g/l)+NiCl2(4g/l)+ZnCl2(0.5g
/l)、pH=6.0 温度:80℃ 超音波:周波数19.5kHz、パワー600w めっき時間:6分
Here, the ferrite plating was performed under the following conditions using a glass vessel (capacity: 500 ml) shown in FIG. 9 and applying ultrasonic waves. Reaction solution: FeCl 2 (12 g / l) + NiCl 2 (4 g / l) + ZnCl 2 (0.5 g
/ l), pH = 6.0 Temperature: 80 ℃ Ultrasonic: Frequency 19.5kHz, Power 600w Plating time: 6 minutes

【0048】次に、この磁性微粒子を、シランカップリ
ング剤で表面処理した後、シリコーン樹脂中に分散さ
せ、成形し硬化させて磁性多層微粒子分散媒体を作製し
た。微粒子と不揮発樹脂の比率は重量比で5:1、微粒子
の体積充填率は57%とした。
Next, the magnetic fine particles were subjected to a surface treatment with a silane coupling agent, dispersed in a silicone resin, molded and cured to prepare a magnetic multilayer fine particle dispersion medium. The ratio between the fine particles and the nonvolatile resin was 5: 1 by weight, and the volume filling ratio of the fine particles was 57%.

【0049】この磁性多層微粒子分散媒体について複素
透磁率の周波数特性を測定した。その結果、Snoekの限
界を超える複素透磁率の周波数特性を得た。
The frequency characteristics of the complex magnetic permeability of the magnetic multilayer fine particle dispersion medium were measured. As a result, frequency characteristics of complex magnetic permeability exceeding the limit of Snoek were obtained.

【0050】(実施例2) (中心核をチタン酸バリウム粒子とし、これをフェライ
トめっきにて被覆する。また、これを用いた電波吸収体
を作製する。)平均粒径0.5μmのチタン酸バリウム粒子
を中心核とし、その表面にフェライトめっき法を用いて
NiZnFeフェライト層を平均厚さ0.2μm形成して、チタン
酸バリウムとフェライトとの複合構造を有する磁性微粒
子を得た。
(Example 2) (Barium titanate particles are used as a central nucleus, which are coated with ferrite plating, and a radio wave absorber is prepared using the particles.) Barium titanate having an average particle size of 0.5 μm Using the particles as the central nucleus and using ferrite plating on the surface
A NiZnFe ferrite layer was formed with an average thickness of 0.2 μm to obtain magnetic fine particles having a composite structure of barium titanate and ferrite.

【0051】ここでフェライトめっきは以下の条件にて
行った。 反応液:FeCl2(12g/l)+NiCl2(4g/l)+ZnCl2(0.5g
/l)、pH=6.0 温度:80℃ 超音波:周波数19.5kHz、パワー600w めっき時間:12分
Here, the ferrite plating was performed under the following conditions. Reaction solution: FeCl 2 (12 g / l) + NiCl 2 (4 g / l) + ZnCl 2 (0.5 g
/ l), pH = 6.0 Temperature: 80 ℃ Ultrasonic: Frequency 19.5kHz, Power 600w Plating time: 12 minutes

【0052】次に、作製した磁性微粒子を、シランカッ
プリング剤で表面処理した後、シリコーン樹脂中に分散
させ、成形し硬化させて磁性多層微粒子分散媒体を作製
した。微粒子と不揮発樹脂の比率は重量比で6:1、微粒
子の体積充填率は60%とした。
Next, the prepared magnetic fine particles were surface-treated with a silane coupling agent, dispersed in a silicone resin, molded and cured to prepare a magnetic multilayer fine particle dispersion medium. The ratio of the fine particles to the nonvolatile resin was 6: 1 by weight, and the volume filling ratio of the fine particles was 60%.

【0053】この磁性多層微粒子分散媒体について複素
透磁率の周波数特性を測定した。その結果、Snoekの限
界を超える複素透磁率の周波数特性を得た。
The frequency characteristics of the complex magnetic permeability of this magnetic multilayer fine particle dispersion medium were measured. As a result, frequency characteristics of complex magnetic permeability exceeding the limit of Snoek were obtained.

【0054】(実施例3) (ビスマスイットリウム鉄ガーネット粒子にフェライト
めっきを行う。またこれを用いた磁気光学用分散体を作
製する。)平均粒径0.2μmのビスマスイットリウム鉄ガ
ーネット粒子を中心核とし、その表面にフェライトめっ
き法を用いてCoFeフェライト層を形成して、ビスマスイ
ットリウムガーネットとCoFeフェライトとの複合構造を
有する磁性微粒子を得た。
(Example 3) (Ferrite plating is applied to bismuth yttrium iron garnet particles, and a dispersion for magneto-optics is produced using the same.) Bismuth yttrium iron garnet particles having an average particle size of 0.2 μm are used as a central nucleus. Then, a CoFe ferrite layer was formed on the surface by using a ferrite plating method to obtain magnetic fine particles having a composite structure of bismuth yttrium garnet and CoFe ferrite.

【0055】ここでフェライトめっきは以下の条件にて
行った。 反応液:FeCl2(12g/l)+CoCl2(6g/l)、pH=6.2 温度:80℃ 超音波:周波数19.5kHz、パワー600w めっき時間:12分
Here, ferrite plating was performed under the following conditions. Reaction solution: FeCl 2 (12 g / l) + CoCl 2 (6 g / l), pH = 6.2 Temperature: 80 ° C Ultrasonic: frequency 19.5 kHz, power 600 w Plating time: 12 minutes

【0056】次に、この磁性微粒子を、シランカップリ
ング剤で表面処理した後、アクリル樹脂に約10%の含有
量で分散させた透光性の磁性多層微粒子分散体を得た。
Next, the magnetic fine particles were subjected to a surface treatment with a silane coupling agent, and then dispersed in an acrylic resin at a content of about 10% to obtain a light-transmitting magnetic multilayer fine particle dispersion.

【0057】得られた磁性多層微粒子分散体の磁気光学
特性を測定した結果、ファラデー効果の増大がみられ
た。これは光の局在効果が磁性粒子の多層化によって強
調されたものと考えられる。
As a result of measuring the magneto-optical properties of the obtained magnetic multilayer fine particle dispersion, an increase in the Faraday effect was observed. This is presumably because the localization effect of light was emphasized by the multilayering of the magnetic particles.

【0058】(実施例4) (金属鉄中心核にフェライトめっきを行い、次いでCo無
電解めっきを行い、フェライトめっきを行う。またこれ
を用いた電波吸収体を作製する。)平均粒径が約1μmの
金属鉄微粒子粉末の粒子表面に、フェライトめっき法に
より、 反応液:FeCl2(12g/l)+NiCl2(4g/l)+ZnCl2(0.5g
/l)、pH=6.0 温度:80℃ 超音波:周波数19.5kHz、パワー600w めっき時間:24分 の条件で約0.4μm のNiZnFeフェライト層を形成して被
覆した。続いて、得られた微粒子粉末の表面に、無電解
めっき法により、まずNi下地を形成し、その上に硫酸コ
バルト液を含みpH値が9になるように設定した緩衝液で8
0℃にて約0.1μmのCo膜を形成した。
(Example 4) (Ferrite plating is performed on the central core of metallic iron, then electroless plating of Co is performed, and ferrite plating is performed, and a radio wave absorber using the same is produced.) Reaction solution: FeCl 2 (12 g / l) + NiCl 2 (4 g / l) + ZnCl 2 (0.5 g) on the surface of 1 μm metal iron fine particles by ferrite plating.
/ l), pH = 6.0 Temperature: 80 ° C Ultrasound: Frequency 19.5 kHz, Power 600w Plating time: 24 minutes A NiZnFe ferrite layer of about 0.4 μm was formed and covered. Subsequently, a Ni base was first formed on the surface of the obtained fine particle powder by electroless plating, and a buffer solution containing a cobalt sulfate solution and having a pH value of 9 was set thereon.
At 0 ° C., a Co film of about 0.1 μm was formed.

【0059】このあと、この微粒子粉末の表面に、再度
上記と同じ条件で再びフェライトめっき法により約0.4
μm のNiZnFeフェライト層によって被覆を行い、金属鉄
中心核、フェライト層、金属層およびフェライト層から
なる磁性多層微粒子を得た。
After that, the surface of the fine particle powder was again applied to the surface by the ferrite plating method under the same conditions as above for about 0.4 mm.
Coating was performed with a μm NiZnFe ferrite layer to obtain magnetic multilayer fine particles composed of a metal iron core, a ferrite layer, and a metal layer and a ferrite layer.

【0060】次に、この磁性微粒子を、シランカップリ
ング剤で表面処理した後、シリコーン樹脂中に分散さ
せ、成形し硬化させて磁性多層微粒子分散媒体を作製し
た。微粒子と不揮発樹脂の比率は重量比で5:1、微粒子
の体積充填率は57%とした。
Next, the magnetic fine particles were subjected to a surface treatment with a silane coupling agent, then dispersed in a silicone resin, molded and cured to prepare a magnetic multilayer fine particle dispersion medium. The ratio between the fine particles and the nonvolatile resin was 5: 1 by weight, and the volume filling ratio of the fine particles was 57%.

【0061】この磁性多層微粒子分散媒体について複素
透磁率の周波数特性を測定した。その結果、Snoekの限
界を超える複素透磁率の周波数特性を得た。
The frequency characteristics of the complex magnetic permeability of the magnetic multilayer fine particle dispersion medium were measured. As a result, frequency characteristics of complex magnetic permeability exceeding the limit of Snoek were obtained.

【0062】(実施例5) (チタン酸バリウム/フェライト/Co層/フェライト
層) (これを用いた電波吸収体の作製)平均粒径約1μmのル
チル構造を有する酸化チタンの表面にフェライトめっき
法により、 反応液:FeCl2(12g/l)+NiCl2(4g/l)+ZnCl2(0.5g
/l)、pH=6.0 温度:80℃ 超音波:周波数19.5kHz、パワー600w めっき時間:48分 により、約0.8μm のNiZnFeフェライト層を形成して被
覆した。続いて、得られた微粒子粉末の表面に、無電解
めっき法により、まずNi下地を形成し、その上に硫酸コ
バルト液を含みpH値が9になるように設定した緩衝液で8
0℃にて約0.1μmのCo膜を形成した。
(Example 5) (Barium titanate / ferrite / Co layer / ferrite layer) (Production of radio wave absorber using this) Ferrite plating method on the surface of titanium oxide having a rutile structure with an average particle size of about 1 μm Reaction solution: FeCl 2 (12 g / l) + NiCl 2 (4 g / l) + ZnCl 2 (0.5 g
/ l), pH = 6.0 Temperature: 80 ° C. Ultrasonic: frequency 19.5 kHz, power 600 w Plating time: 48 minutes, and formed and covered a NiZnFe ferrite layer of about 0.8 μm in thickness. Subsequently, a Ni base was first formed on the surface of the obtained fine particle powder by electroless plating, and a buffer solution containing a cobalt sulfate solution and having a pH value of 9 was set thereon.
At 0 ° C., a Co film of about 0.1 μm was formed.

【0063】このあと、この微粒子粉末の表面に、再度
のフェライトめっき法により約0.8μm のNiZnFeフェラ
イト層によって被覆を行い、誘電体中心核、フェライト
層、金属層およびフェライト層からなる磁性多層微粒子
を得た。
Thereafter, the surface of the fine particle powder is coated with a NiZnFe ferrite layer of about 0.8 μm by another ferrite plating method, and magnetic multilayer fine particles comprising a dielectric core, a ferrite layer, a metal layer and a ferrite layer are formed. Obtained.

【0064】次に、この磁性微粒子を、シランカップリ
ング剤で表面処理した後、シリコーン樹脂中に分散さ
せ、成形し硬化させて磁性多層微粒子分散媒体を作製し
た。微粒子と不揮発樹脂の比率は重量比で6.5:1、微粒
子の体積充填率は62%とした。
Next, the magnetic fine particles were subjected to a surface treatment with a silane coupling agent, then dispersed in a silicone resin, molded and cured to prepare a magnetic multilayer fine particle dispersion medium. The ratio between the fine particles and the nonvolatile resin was 6.5: 1 by weight, and the volume filling ratio of the fine particles was 62%.

【0065】この磁性多層微粒子分散媒体について複素
透磁率の周波数特性を測定した。その結果、Snoekの限
界を超える複素透磁率の周波数特性を得た。
The frequency characteristics of the complex magnetic permeability of the magnetic multilayer fine particle dispersion medium were measured. As a result, frequency characteristics of complex magnetic permeability exceeding the limit of Snoek were obtained.

【0066】[0066]

【発明の効果】本発明の磁性多層微粒子とその製造方法
によれば、中心核の材質や形状寸法、および被覆層の厚
さを任意に選定でき、また被覆層を多層にして各層の材
質をさまざまに選ぶことができる。
According to the magnetic multilayer fine particles of the present invention and the method for producing the same, the material and shape and size of the central core and the thickness of the coating layer can be arbitrarily selected. You can choose variously.

【0067】このため本発明の磁性多層微粒子を分散さ
せた分散媒体においては、中心核や被覆層を選ぶことに
よって、ファラデー回転角やそのfigure of meritなど
の磁気光学特性を高めることが可能であるため、優れた
磁気光学材料を得ることができ、また複素透磁率の周波
数特性においてスネークの限界線を超える伸びを得るこ
とができるので、例えば電波吸収材として優れた特性を
得ることができる。
For this reason, in the dispersion medium in which the magnetic multilayer fine particles of the present invention are dispersed, it is possible to enhance the magneto-optical characteristics such as the Faraday rotation angle and its figure of merit by selecting the center nucleus and the coating layer. Therefore, an excellent magneto-optical material can be obtained, and an elongation exceeding a snake limit line can be obtained in the frequency characteristic of the complex magnetic permeability, so that, for example, an excellent characteristic as a radio wave absorber can be obtained.

【0068】さらに本発明の磁性多層微粒子の製造方法
によれば、磁性た槽微粒子の製造を真空を用いず水溶液
中で行うことができ、しかも常温に近い温度と常圧のも
とで行うことかできるので、大掛かりな製造装置を必要
とせず、生産性よく製造を行うことができる。
Further, according to the method for producing magnetic multilayer fine particles of the present invention, the production of magnetic tank fine particles can be carried out in an aqueous solution without using a vacuum, and at a temperature close to normal temperature and normal pressure. Therefore, the production can be performed with high productivity without requiring a large-scale production apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の磁性多層微粒子の実施形態を模式的
に示した断面図である。
FIG. 1 is a cross-sectional view schematically showing an embodiment of a magnetic multilayer fine particle of the present invention.

【図2】 本発明の他の実施形態である偏平形状および
棒状などの異方的な粒子形状の磁性多層微粒子を模式的
に示した断面図である。
FIG. 2 is a cross-sectional view schematically showing magnetic multilayer fine particles having an anisotropic particle shape such as a flat shape and a rod shape according to another embodiment of the present invention.

【図3】 本発明の磁性多層微粒子をバインダ樹脂に分
散し、成形した分散媒体の実施形態を模式的に示した断
面図である。
FIG. 3 is a cross-sectional view schematically showing an embodiment of a dispersion medium in which the magnetic multilayer fine particles of the present invention are dispersed in a binder resin and molded.

【図4】 中心核に強磁性金属微粒子を用い、この周囲
をフェライト層で被覆して構成した本発明の一実施形態
の磁性多層微粒子を示す模式的断面図である。
FIG. 4 is a schematic cross-sectional view showing magnetic multilayer fine particles of one embodiment of the present invention in which ferromagnetic metal fine particles are used as a central nucleus and the periphery thereof is covered with a ferrite layer.

【図5】 複素透磁率の周波数スペクトラムを示す図で
ある。
FIG. 5 is a diagram showing a frequency spectrum of a complex magnetic permeability.

【図6】 中心核に誘電率の高い強誘電体粒子を用い、
この周囲をフェライトめっき63で被覆することによって
構成した本発明の実施形態の磁性多層微粒子を示す模式
的断面図である。
FIG. 6: Ferroelectric particles having a high dielectric constant are used for the central core,
FIG. 4 is a schematic cross-sectional view showing magnetic multilayer fine particles according to an embodiment of the present invention constituted by coating the periphery with ferrite plating 63.

【図7】 中心核にフェライト微粒子を用いた本発明の
実施形態の磁性多層微粒子を示す模式的断面図である。
FIG. 7 is a schematic cross-sectional view showing magnetic multilayer fine particles of the embodiment of the present invention using ferrite fine particles as a central nucleus.

【図8】 本発明の磁性多層微粒子の実施形態のフェラ
イトめっき層形成のフェライトめっき槽の一例を模式的
に示す図である。
FIG. 8 is a diagram schematically illustrating an example of a ferrite plating tank for forming a ferrite plating layer according to the embodiment of the magnetic multilayer fine particles of the present invention.

【符号の説明】[Explanation of symbols]

11,21,31,41,61,71……磁性多層微粒子、 12,22,32,42,62,72……中心核、 13a,13b,13c,13d,23,43, 63a,63b,73……被覆層、 34……バインダ樹脂、 35……磁性多層微粒子分散媒体、 80……ホットバス、 86……ガラスベッセル、 87……反応液、 88……超音波ホーン、 89……pHコントローラ 11,21,31,41,61,71: Magnetic multilayer fine particles, 12,22,32,42,62,72 ... Central core, 13a, 13b, 13c, 13d, 23,43,63a, 63b, 73 ... Coating layer, 34 ... Binder resin, 35 ... Magnetic multilayer fine particle dispersion medium, 80 ... Hot bath, 86 ... Glass vessel, 87 ... Reaction liquid, 88 ... Ultrasonic horn, 89 ... pH controller

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 強磁性を有する中心核と、 前記中心核を被覆する1層または複数層の被覆層とを有
し、 前記被覆層にはめっき法によって形成された強磁性層を
有する磁性多層微粒子。
1. A magnetic multilayer having a ferromagnetic center core and one or more coating layers covering the center core, wherein the coating layer has a ferromagnetic layer formed by plating. Fine particles.
【請求項2】 前記中心核が強磁性金属微粒子である請
求項1記載の磁性多層微粒子。
2. The magnetic multilayer fine particles according to claim 1, wherein the central nucleus is a ferromagnetic metal fine particle.
【請求項3】 前記中心核がフェライト微粒子である請
求項1記載の磁性多層微粒子。
3. The magnetic multilayer fine particle according to claim 1, wherein the central nucleus is a ferrite fine particle.
【請求項4】 強誘電性を有する中心核と、 前記中心核を被覆する1層または複数層の被覆層とを有
し、 前記被覆層にはめっきによって形成された強磁性層を有
する磁性多層微粒子。
4. A magnetic multilayer comprising: a core having ferroelectricity; and one or more coating layers covering the core, wherein the coating layer has a ferromagnetic layer formed by plating. Fine particles.
【請求項5】 前記被覆層の少なくとも1層がフェライ
トめっき層である請求項1ないし4記載のいずれか1項記
載の磁性多層微粒子。
5. The magnetic multilayer fine particles according to claim 1, wherein at least one of the coating layers is a ferrite plating layer.
【請求項6】 請求項1ないし5のいずれか1項記載の磁
性多層微粒子がバインダ中に分散され成形されている磁
性多層微粒子分散媒体。
6. A magnetic multilayer fine particle dispersion medium in which the magnetic multilayer fine particles according to claim 1 are dispersed in a binder and molded.
【請求項7】 請求項1ないし5のいずれか1項記載の磁
性多層微粒子がバインダ中に分散され成形されている電
波吸収材。
7. A radio wave absorber in which the magnetic multilayer fine particles according to claim 1 are dispersed in a binder and molded.
【請求項8】 請求項1ないし5のいずれか1項記載の磁
性多層微粒子がバインダ中に分散され成形されている磁
気光学効果材料。
8. A magneto-optical effect material comprising the magnetic multilayer fine particles according to claim 1 dispersed and molded in a binder.
【請求項9】 電磁界に対して機能性の微粒子の表面に
フェライトめっきおよび無電解めっきの少なくともいず
れか一方の工程により磁性層を被覆することにより、磁
性多層微粒子を製造する磁性多層微粒子の製造方法。
9. Production of magnetic multi-layer fine particles for producing magnetic multi-layer fine particles by coating a magnetic layer on the surface of fine particles functional with respect to an electromagnetic field by at least one of ferrite plating and electroless plating. Method.
JP2000281010A 2000-09-14 2000-09-14 Radio wave absorber and manufacturing method thereof Expired - Lifetime JP3755023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000281010A JP3755023B2 (en) 2000-09-14 2000-09-14 Radio wave absorber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000281010A JP3755023B2 (en) 2000-09-14 2000-09-14 Radio wave absorber and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003344537A Division JP2004134795A (en) 2003-10-02 2003-10-02 Magneto-optical effect material, its manufacturing method, and magneto-optical effect material dispersing element

Publications (2)

Publication Number Publication Date
JP2002093607A true JP2002093607A (en) 2002-03-29
JP3755023B2 JP3755023B2 (en) 2006-03-15

Family

ID=18765742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000281010A Expired - Lifetime JP3755023B2 (en) 2000-09-14 2000-09-14 Radio wave absorber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3755023B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005053372A1 (en) * 2003-11-25 2005-06-09 Aica Kogyo Co., Ltd. Electromagnetic wave shielding resin composition, ferrite-coated metal magnetic microparticle suitable for use therein and process for producing the same
JP2006128278A (en) * 2004-10-27 2006-05-18 Toshiba Corp High-frequency magnetic material and high-frequency magnetic part using the same, and its manufacturing method
WO2008136391A1 (en) * 2007-04-27 2008-11-13 Asahi Kasei Kabushiki Kaisha Magnetic material for high frequency wave, and method for production thereof
JP2009105368A (en) * 2007-10-19 2009-05-14 Taida Electronic Ind Co Ltd Inductor and core thereof
US20100181522A1 (en) * 2009-01-22 2010-07-22 Korea Institute Of Science And Technology Magnetic composite powders, preparing method thereof and electromagnetic noise suppressing films comprising same
US8836331B2 (en) 2004-03-25 2014-09-16 Dai Nippon Printing Co., Ltd. Volume hologram resin composition, surface relief hologram resin composition, and hologram layer, hologram transfer foil and brittle hologram label using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005053372A1 (en) * 2003-11-25 2005-06-09 Aica Kogyo Co., Ltd. Electromagnetic wave shielding resin composition, ferrite-coated metal magnetic microparticle suitable for use therein and process for producing the same
US8836331B2 (en) 2004-03-25 2014-09-16 Dai Nippon Printing Co., Ltd. Volume hologram resin composition, surface relief hologram resin composition, and hologram layer, hologram transfer foil and brittle hologram label using the same
JP2006128278A (en) * 2004-10-27 2006-05-18 Toshiba Corp High-frequency magnetic material and high-frequency magnetic part using the same, and its manufacturing method
JP4664649B2 (en) * 2004-10-27 2011-04-06 株式会社東芝 High frequency magnetic material and high frequency magnetic component using the same
WO2008136391A1 (en) * 2007-04-27 2008-11-13 Asahi Kasei Kabushiki Kaisha Magnetic material for high frequency wave, and method for production thereof
KR101250673B1 (en) * 2007-04-27 2013-04-03 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Magnetic material for high frequency wave, and method for production thereof
JP5669389B2 (en) * 2007-04-27 2015-02-12 旭化成株式会社 Magnetic material for high frequency and its manufacturing method
JP2009105368A (en) * 2007-10-19 2009-05-14 Taida Electronic Ind Co Ltd Inductor and core thereof
US20100181522A1 (en) * 2009-01-22 2010-07-22 Korea Institute Of Science And Technology Magnetic composite powders, preparing method thereof and electromagnetic noise suppressing films comprising same
EP2214180A1 (en) * 2009-01-22 2010-08-04 Korea Institute of Science and Technology Magnetic composite powders, preparing method thereof and electromagnetic noise suppressing films comprising same
US10008311B2 (en) 2009-01-22 2018-06-26 Korea Institute Of Science And Technology Magnetic composite powders, preparing method thereof and electromagnetic noise suppressing films comprising same

Also Published As

Publication number Publication date
JP3755023B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
Liu et al. Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance
Shukla Review of electromagnetic interference shielding materials fabricated by iron ingredients
Yan et al. Coaxial multi-interface hollow Ni-Al 2 O 3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions
JP5553688B2 (en) Manufacturing method of magnetic thin film, magnetic thin film and magnetic body
Zhou et al. Hydrothermal synthesis of polyhedral FeCo alloys with enhanced electromagnetic absorption performances
US20040238796A1 (en) Composite magnetic material prepared by compression forming of ferrite-coated metal particles and method for preparation thereof
Wang et al. Synthesis, surface modification and characterization of nanoparticles
Liu et al. Magnetic nanoparticles with core/shell structures
Li et al. Hollow CoFe2O4–Co3Fe7 microspheres applied in electromagnetic absorption
CN101941076A (en) Method for preparing multilayer hollow metal microspheres for electromagnetic wave absorbing material
He et al. The multilayer structure design of magnetic-carbon composite for ultra-broadband microwave absorption via PSO algorithm
Li et al. The microstructure and magnetic properties of Ni nanoplatelets
Sahu et al. Enhanced microwave absorbing performance of Sr2+ substituted Nickel-Cobalt nano ferrite for radar and stealth applications
Bai et al. Multi− interface spin exchange regulated biased magnetoelectric coupling in Cluster− assembled multiferroic heterostructural films
JP3755023B2 (en) Radio wave absorber and manufacturing method thereof
Motamedi et al. Synthesis and microwave absorption characteristics of BaFe12O19/BaTiO3/MWCNT/polypyrrole quaternary composite
Ghazkoob et al. Structural, magnetic and optical investigation of AC pulse electrodeposited zinc ferrite nanowires with different diameters and lengths
JP2004134795A (en) Magneto-optical effect material, its manufacturing method, and magneto-optical effect material dispersing element
Qin et al. Enhance the electromagnetic absorption performance of Co&Ni@ GNs by designing appropriate cCo: cNi deposited on GNs surface
JP4328885B2 (en) Ferrite-plated sendust fine particles and method for producing the same
Andriyanti et al. Microstructures, magnetic properties and microwave absorption of ion-implanted bismuth ferrite thin films
CN102634779B (en) Electromagnetic shielding material with chemically plated iron modified carbon nano-tubes and method for preparing same
JP2004095937A (en) Composite magnetic material and electromagnetic noise absorbing body
Tyagi et al. Microwave absorption and magnetic studies of strontium hexaferrites nanoparticles synthesized by modified flux method
Chumakov et al. Sprayed Nanometer-Thick Hard-Magnetic Coatings with Strong Perpendicular Anisotropy for Data Storage Applications

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040521

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3755023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term