JP2024030548A - Method for producing cobalt hydroxide - Google Patents
Method for producing cobalt hydroxide Download PDFInfo
- Publication number
- JP2024030548A JP2024030548A JP2022133509A JP2022133509A JP2024030548A JP 2024030548 A JP2024030548 A JP 2024030548A JP 2022133509 A JP2022133509 A JP 2022133509A JP 2022133509 A JP2022133509 A JP 2022133509A JP 2024030548 A JP2024030548 A JP 2024030548A
- Authority
- JP
- Japan
- Prior art keywords
- cobalt
- cobalt hydroxide
- slurry
- chlorine
- hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 title claims abstract description 36
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 239000002002 slurry Substances 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 11
- 239000003513 alkali Substances 0.000 claims abstract description 10
- 238000000926 separation method Methods 0.000 claims abstract description 9
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 7
- 239000010941 cobalt Substances 0.000 claims abstract description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 abstract description 27
- 239000000460 chlorine Substances 0.000 abstract description 27
- 229910052801 chlorine Inorganic materials 0.000 abstract description 27
- 239000002994 raw material Substances 0.000 abstract description 12
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 abstract description 11
- 238000001914 filtration Methods 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 239000002245 particle Substances 0.000 description 17
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000000635 electron micrograph Methods 0.000 description 8
- 239000000706 filtrate Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000008139 complexing agent Substances 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 238000010979 pH adjustment Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 150000001868 cobalt Chemical class 0.000 description 2
- 150000001869 cobalt compounds Chemical class 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- GTKRFUAGOKINCA-UHFFFAOYSA-M chlorosilver;silver Chemical compound [Ag].[Ag]Cl GTKRFUAGOKINCA-UHFFFAOYSA-M 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- -1 secondary batteries Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、濾過性が良く低塩素品位の水酸化コバルトの製造方法に関する。 The present invention relates to a method for producing cobalt hydroxide with good filterability and low chlorine grade.
二次電池などの材料に用いられる酸化コバルト等のコバルト化合物を得る方法として、コバルトを含む原料を酸などで浸出して溶液を得、この溶液を溶媒抽出などの方法を用いて不純物を除去する精製工程に付して精製液を得、次いで前記精製液を中和して水酸化コバルトを得て中間原料とし、この中間原料を例えば焼成して酸化コバルトを得る方法が知られている。 To obtain cobalt compounds such as cobalt oxide used in materials such as secondary batteries, raw materials containing cobalt are leached with acid to obtain a solution, and impurities are removed from this solution using methods such as solvent extraction. A method is known in which a purified liquid is obtained through a purification process, the purified liquid is then neutralized to obtain cobalt hydroxide as an intermediate raw material, and this intermediate raw material is fired, for example, to obtain cobalt oxide.
上記のような工程で処理される場合、原料の溶解に用いる酸が塩酸の場合、精製液を中和して得た中間原料に塩素(塩化物)が混在する課題がある。
その一つとして焼成を行う場合、塩素は焼成炉の材質にも損傷を与えることから、塩化物品位はなるべく低濃度であることが好ましい。
特に水酸化コバルトを電池用途に用いる場合、特性を維持するために水酸化コバルト中の塩素品位をできるだけ、具体的には1重量%以下、に低減することが求められる。
When processing in the above steps, when the acid used to dissolve the raw material is hydrochloric acid, there is a problem that chlorine (chloride) is mixed in the intermediate raw material obtained by neutralizing the purified liquid.
As one of the methods, when firing is performed, the chloride level is preferably as low as possible because chlorine also damages the material of the firing furnace.
In particular, when cobalt hydroxide is used for battery applications, it is required to reduce the chlorine content in the cobalt hydroxide as much as possible, specifically to 1% by weight or less, in order to maintain properties.
同時に、精製液にアルカリ剤を添加して中和するため、アルカリ剤コストが低いことも大切である。さらに中和で生成する水酸化物は一般に微細で濾過性が低い傾向がある。ところで、濾過性が良好であれば、設備が簡略化でき設備投資や操業の手間が省けてコスト減少に効果が大きい。
さらに、濾過性が悪い場合、水酸化コバルトの周囲に塩素(塩化物)が付着することで水酸化コバルトの塩素品位が上昇し、上述するように電池特性への影響も懸念され好ましくない。
すなわち濾過性が良く不純物濃度が低い水酸化コバルトが求められている。
At the same time, since an alkali agent is added to the purified liquid to neutralize it, it is important that the cost of the alkali agent is low. Furthermore, the hydroxide produced by neutralization is generally fine and tends to have low filterability. By the way, if the filtration performance is good, the equipment can be simplified, equipment investment and operational effort can be saved, which is highly effective in reducing costs.
Furthermore, if the filterability is poor, chlorine (chloride) will adhere around the cobalt hydroxide, which will increase the chlorine quality of the cobalt hydroxide, which is undesirable as it may affect the battery characteristics as described above.
In other words, cobalt hydroxide with good filterability and low impurity concentration is required.
塩化コバルト溶液から水酸化コバルトを製造する方法として、例えば特許文献1には、塩化コバルト溶液に水酸化ナトリウムなどのアルカリを添加してpHを8.0~9.5に調整する中和に付し、水酸化コバルトを得る方法が開示されている。 As a method for producing cobalt hydroxide from a cobalt chloride solution, for example, Patent Document 1 describes a method for neutralizing the cobalt chloride solution by adding an alkali such as sodium hydroxide to adjust the pH to 8.0 to 9.5. A method for obtaining cobalt hydroxide is disclosed.
しかしながら、上記の方法で塩化コバルト溶液を中和した場合、得られる水酸化コバルトに含有される塩素(塩化物)品位が高く、また固液分離する際の濾過性が劣るという課題がある。 However, when a cobalt chloride solution is neutralized by the above method, there are problems in that the resulting cobalt hydroxide contains high chlorine (chloride) quality and has poor filtration performance during solid-liquid separation.
上述するように、塩素品位の高い水酸化コバルトは、電池の材料として用いる用途には適さず、また濾過性が劣ることは生産性の低下や操業コストの増加をもたらすなど、いずれも好ましくない。 As mentioned above, cobalt hydroxide with a high chlorine content is not suitable for use as a material for batteries, and poor filtration performance leads to a decrease in productivity and an increase in operating costs, both of which are undesirable.
また、特許文献2には、塩化コバルト溶液にアルカリを添加して中和する際、最初にpHを10.5~12.0の範囲に制御して水酸化コバルト結晶の核となる粒子を発生させ、次いでpHを9.5~10.5となる範囲に低下させると共に錯化剤を添加して粒子を成長させる方法が開示されている。粒子の成長により濾過性の向上が期待できる特徴がある。 Furthermore, Patent Document 2 states that when neutralizing a cobalt chloride solution by adding an alkali, the pH is first controlled in the range of 10.5 to 12.0 to generate particles that will become the core of cobalt hydroxide crystals. A method is disclosed in which particles are grown by lowering the pH to a range of 9.5 to 10.5 and adding a complexing agent. It has the characteristic that filterability can be expected to improve due to the growth of particles.
しかしながら、上記の方法では、錯化剤としてアンモニアを使用しており、コバルト回収後の溶液を排水処理に付して処分しようとする際、排水の窒素を除去する脱窒処理が必要となり手間とコストがかかる課題がある。 However, the above method uses ammonia as a complexing agent, and when disposing of the solution after cobalt recovery by subjecting it to wastewater treatment, denitrification treatment is required to remove nitrogen from the wastewater, which is time-consuming and time-consuming. There are costly issues.
また、2段目のpH調整にともなって塩素濃度が下がるので、水酸化コバルト中の塩素品位が増加する課題もあった。
このように、電池材料用の中間原料となる水酸化コバルトの品質と製造時の生産性を向上することは容易ではなかった。
Furthermore, since the chlorine concentration decreases with the second stage pH adjustment, there is also the problem that the chlorine grade in the cobalt hydroxide increases.
As described above, it has not been easy to improve the quality and productivity of cobalt hydroxide, which is an intermediate raw material for battery materials.
本発明の目的は、このような状況を解決するため、塩化コバルト液を原料として水酸化コバルトを安価かつ濾過性が良く塩素(塩化物)品位を低くすることが可能な、水酸化コバルトの製造方法を提供することである。 In order to solve this situation, the purpose of the present invention is to produce cobalt hydroxide using cobalt chloride liquid as a raw material, which is inexpensive, has good filterability, and can lower the chlorine (chloride) grade. The purpose is to provide a method.
本発明者らは、塩素を含有するコバルト塩溶液を原料としてアルカリ剤を後から添加し、撹拌しながら、pHが10.5以上になった時点から25分間以上保持することで、塩素品位が1%以下で濾過性の良い水酸化コバルトを得られることを見出し、本発明を完成した。 The present inventors used a chlorine-containing cobalt salt solution as a raw material, added an alkaline agent later, and maintained the pH for 25 minutes or more from the time when the pH reached 10.5 or higher while stirring, thereby reducing the chlorine level. It was discovered that cobalt hydroxide with good filterability can be obtained at 1% or less, and the present invention was completed.
すなわち、本発明の第1の態様は、塩化物とコバルトを含有する溶液にアルカリを添加してスラリーを生成し、このスラリーを固液分離して水酸化コバルトを得る方法において、その固液分離が、スラリーのpHを、10を超えて14以下となる範囲で、25分間以上保持した後、前記スラリーを固液分離に付すことを特徴とする水酸化コバルトの製造方法である。 That is, the first aspect of the present invention is a method for producing cobalt hydroxide by adding an alkali to a solution containing chloride and cobalt, and separating the slurry into solid-liquid to obtain cobalt hydroxide. is a method for producing cobalt hydroxide, which comprises maintaining the pH of the slurry in a range of more than 10 and less than or equal to 14 for 25 minutes or more, and then subjecting the slurry to solid-liquid separation.
本発明の水酸化コバルトの製造方法を用いることで、濾過性が良く塩素品位の低い水酸化コバルトを得ることができる。 By using the method for producing cobalt hydroxide of the present invention, cobalt hydroxide with good filterability and low chlorine content can be obtained.
以下、本発明の、水酸化コバルトの製造方法を詳細に説明する。
本発明の水酸化コバルト製造方法は、塩素を含有するコバルト塩溶液を原料としてアルカリ剤を後から添加し、撹拌しながら、pHが10を超えた段階で25分以上維持することを特徴とし、塩素品位が1%以下で濾過性の良好な水酸化コバルトを得ることができる。
さらに本発明では、錯化剤を用いないので排水処理の手間やコストを低減でき、環境面でも優れている。
本発明ではpHを上げることで結晶を成長させ、低塩素濃度かつ濾過性の良い水酸化コバルトを製造する。
Hereinafter, the method for producing cobalt hydroxide of the present invention will be explained in detail.
The method for producing cobalt hydroxide of the present invention is characterized by using a chlorine-containing cobalt salt solution as a raw material, adding an alkali agent later, and maintaining it for 25 minutes or more when the pH exceeds 10 while stirring, Cobalt hydroxide with a chlorine content of 1% or less and good filterability can be obtained.
Furthermore, since the present invention does not use a complexing agent, the effort and cost of wastewater treatment can be reduced, and it is also environmentally friendly.
In the present invention, crystals are grown by increasing the pH to produce cobalt hydroxide with low chlorine concentration and good filterability.
塩化コバルト溶液に水酸化ナトリウムを添加して中和した場合、最初は微細なCo2Cl(OH)3とCo(OH)2の混合物が生成し、その後時間の経過とともにCo2Cl(OH)3がCo(OH)2に変化することを見出した。
つまり、所定のpHまで中和を行っても保持することで形態が変化するとともに図1aから図1dに示すように粒径も粗大化し、生成するコバルト化合物の粒子自身や粒子同士の隙間に巻き込まれて含有される塩素品位を低減することができる。
When sodium hydroxide is added to neutralize a cobalt chloride solution, a fine mixture of Co2Cl (OH) 3 and Co(OH) 2 is formed at first, and then Co2Cl (OH) is formed over time. It was found that 3 was converted to Co(OH) 2 .
In other words, even if neutralization is carried out to a predetermined pH, the morphology will change and the particle size will become coarser as shown in Figures 1a to 1d, and the resulting cobalt compound particles will get caught up in the particles themselves or in the gaps between the particles. chlorine content can be reduced.
また、図2aから図2dに示すように、同じ保持時間であってもpHが高い方が大きな粒径の水酸化コバルトが得られ、塩素品位も減少傾向となる。
このことからpHを、10を超えて高く、かつpH調整後に濾過を開始するまでに25分以上の保持時間を持つことで、従来からの方法と異なって1段のpH調整で済み、アンモニアなどの錯化剤を用いなくても塩素濃度が低く濾過性のよい水酸化コバルトを得ることができる。
Furthermore, as shown in FIGS. 2a to 2d, even if the holding time is the same, cobalt hydroxide with a larger particle size is obtained when the pH is higher, and the chlorine grade also tends to decrease.
Therefore, by raising the pH to a value higher than 10 and having a holding time of 25 minutes or more before starting filtration after pH adjustment, only one stage of pH adjustment is required, unlike conventional methods, and ammonia, etc. Cobalt hydroxide with low chlorine concentration and good filterability can be obtained without using a complexing agent.
以下、実施例および比較例によって、本発明をより詳細に説明する。
コバルト濃度が76g/Lの塩化コバルト溶液を原料に用いた。溶液のpHは2.5を示した。なお、原料は塩化コバルト液に限定されず、硫酸コバルト液等の酸性の含コバルト溶液でも同様に処理できる。
アルカリ剤には、富士フイルム和光純薬株式会社製の濃度8mol/Lの水酸化ナトリウム溶液を用いた。他のアルカリ剤として水酸化マグネシウム、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、あるいはこれらの混合物も使用できる。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.
A cobalt chloride solution with a cobalt concentration of 76 g/L was used as a raw material. The pH of the solution was 2.5. Note that the raw material is not limited to a cobalt chloride solution, and an acidic cobalt-containing solution such as a cobalt sulfate solution can be similarly treated.
As the alkaline agent, a sodium hydroxide solution with a concentration of 8 mol/L manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. was used. Other alkaline agents that can be used include magnesium hydroxide, calcium hydroxide, calcium oxide, sodium carbonate, or mixtures thereof.
容量500mlのガラス製の反応容器をウォーターバス中に設置し、前記塩化コバルト溶液の液温を60℃の一定温度に維持した。液温も室温から95℃程度まで実施可能である。なお、反応容器の上部に塩ビ製の蓋を設けた。蓋にはアルカリ剤投入口、窒素ガス吹き込み口、pH電極差し込み口を設けた。 A glass reaction vessel with a capacity of 500 ml was placed in a water bath, and the temperature of the cobalt chloride solution was maintained at a constant temperature of 60°C. The liquid temperature can also be varied from room temperature to about 95°C. Note that a PVC lid was provided on the top of the reaction container. The lid was provided with an alkali agent inlet, a nitrogen gas inlet, and a pH electrode inlet.
反応時はpHを連続して測定した。測定器には東亜DKK株式会社製の形式HM41X型を用い、pH電極には銀塩化銀電極を参照電極とする東亜DKK株式会社製の形式GST―5841Cを用いた。アルカリ剤を添加する定量ポンプには東京理化器械株式会社製の形式SMP-21を用いた。 During the reaction, pH was continuously measured. A model HM41X manufactured by Toa DKK Co., Ltd. was used as a measuring device, and a model GST-5841C manufactured by Toa DKK Co., Ltd., which uses a silver-silver chloride electrode as a reference electrode, was used as a pH electrode. As a metering pump for adding the alkali agent, model SMP-21 manufactured by Tokyo Rikakikai Co., Ltd. was used.
具体的な手順として、まず反応容器に200mlの塩化コバルト溶液を装入し、送液ポンプで濃度8mol/Lの水酸化ナトリウム溶液をpHが各設定値になるまで流量2ml/minで添加し、同時にボンベから供給した窒素ガスを1L/minの流量で反応槽のスラリー内にシンターグラスを介して吹き込んだ。 As a specific procedure, first, 200 ml of cobalt chloride solution was charged into the reaction container, and a sodium hydroxide solution with a concentration of 8 mol/L was added using a liquid pump at a flow rate of 2 ml/min until the pH reached each set value. At the same time, nitrogen gas supplied from a cylinder was blown into the slurry in the reaction tank through a sinter glass at a flow rate of 1 L/min.
設定値に到達後は、設定pHを維持するように流量を調整しながら0分~75分の設定時間を維持し、設定時間到達後濾過を行い、濾過物と濾液に分離した。
なお、保持時間0分の場合は、設定pHに到達後ただちに濾過を開始した。
After reaching the set value, the set time was maintained from 0 minutes to 75 minutes while adjusting the flow rate so as to maintain the set pH, and after reaching the set time, filtration was performed to separate the filtrate and the filtrate.
Note that when the holding time was 0 minutes, filtration was started immediately after reaching the set pH.
試験終了後、ヌッチェ濾過器を用いて、濾過を行った。濾紙はアドバンテック社製の125mm径の5C濾紙(粒子保持能1μm)を用いた。ドライ真空ポンプはアルバック機工株式会社製の商品名DTC-41型を用いた。濾過時間は、スラリーをヌッチェ投入開始後、目視し、濾過物ケーキにヒビが入るまでの間とした。 After the test was completed, filtration was performed using a Nutsche filter. As the filter paper, a 125 mm diameter 5C filter paper (particle retention capacity 1 μm) manufactured by Advantech was used. The dry vacuum pump used was a model DTC-41 manufactured by ULVAC Kiko Co., Ltd. The filtration time was determined from the time when the slurry was added to Nutsche until cracks appeared in the filtrate cake by visual observation.
なお、濾過時間は短いほど良いが、一般的に本量程度のスラリーであれば、300秒以下が好ましいとされる。濾過完了後、300mlの純水を4回通水して濾過物ケーキを洗浄し洗浄後濾過物を得た。 Note that the shorter the filtration time, the better; however, in general, if the amount of slurry is approximately the same, 300 seconds or less is preferable. After the filtration was completed, 300 ml of pure water was passed through the filter 4 times to wash the filtrate cake to obtain a washed filtrate.
次に洗浄後濾過物を真空乾燥機に入れて12時間かけて乾燥させて乾燥後の濾過物を得、次いで乾燥後濾過物の成分を分析した。なお、塩素(塩化物)濃度の分析には、市販の蛍光X線分析装置(XRF)を用いた。 Next, the washed filtrate was placed in a vacuum dryer and dried for 12 hours to obtain a dried filtrate, and the components of the dried filtrate were then analyzed. Note that a commercially available X-ray fluorescence analyzer (XRF) was used to analyze the chlorine (chloride) concentration.
(実施例1~実施例9)
表1に示す諸条件(「設定pH」、「保持時間[min]」、塩素品位[%])で、本発明に係る実施例1~実施例9による水酸化コバルト生成試験後、濾過による固液分離を行い、その「濾過時間[sec]」を計測し、先の諸条件と合わせて、その結果を表1に記した。
(Example 1 to Example 9)
Under the conditions shown in Table 1 (“set pH”, “retention time [min]”, chlorine grade [%]), after the cobalt hydroxide production test according to Examples 1 to 9 according to the present invention, solidification by filtration was performed. Liquid separation was performed, and the "filtration time [sec]" was measured, and the results are listed in Table 1 together with the above conditions.
(比較例1~比較例11)
表1に示す諸条件(「設定pH」、「保持時間[min]」、塩素品位[%]、)で、本発明の比較例1~比較例11による水酸化コバルト生成試験後、濾過による固液分離を行い、その「濾過時間[sec]」を計測し、先の諸条件と合わせて、その結果を表1に合わせて記した。
(Comparative Example 1 to Comparative Example 11)
After the cobalt hydroxide production test according to Comparative Examples 1 to 11 of the present invention under the conditions shown in Table 1 (“set pH”, “holding time [min]”, chlorine grade [%]), solidification by filtration was performed. Liquid separation was performed, the "filtration time [sec]" was measured, and the results are listed in Table 1 together with the above conditions.
[考察]
設定pHを、本発明の範囲内の「10.5、11.2、12.0」とし、保持時間を「25分以上」とした実施例1から実施例9では、表1に示したように、塩化物品位が低く、濾過時間も短い(すなわち濾過速度が速い)結果を得た。
一方、設定pHを本発明の範囲外の「8.0」および「10.0」とした比較例4から比較例11では、濾過に要する時間と塩素品位の両方で目標を達成できなかった。
又、保持時間が25分に満たない比較例1から比較例3(保持時間なし)では、設定pHを満足していたが、濾過に要する時間が過大となり、塩素品位も目標を達成できなかった。
[Consideration]
In Examples 1 to 9, the set pH was set to "10.5, 11.2, 12.0" within the scope of the present invention, and the holding time was set to "25 minutes or more", as shown in Table 1. In addition, results were obtained in which the chloride level was low and the filtration time was short (that is, the filtration rate was fast).
On the other hand, in Comparative Examples 4 to 11, in which the set pH was set to "8.0" and "10.0" outside the range of the present invention, the targets could not be achieved in both the time required for filtration and the chlorine quality.
In addition, in Comparative Examples 1 to 3 (no holding time) where the holding time was less than 25 minutes, the set pH was satisfied, but the time required for filtration was too long, and the chlorine quality could not achieve the target. .
このように、pHで10.0を超え、保持時間を25分以上にすることで、濾過性がよく塩素品位が1%未満の水酸化コバルトを得られることがわかった。 As described above, it was found that cobalt hydroxide with good filterability and a chlorine content of less than 1% can be obtained by setting the pH to over 10.0 and the holding time to 25 minutes or more.
Claims (1)
前記固液分離が、前記スラリーのpHを、10を超えて14以下となる範囲で、25分間以上保持した後、前記スラリーを固液分離に付すことを特徴とする水酸化コバルトの製造方法。
A method of producing a slurry by adding an alkali to a solution containing chloride and cobalt, and separating the slurry into solid-liquid to obtain cobalt hydroxide,
A method for producing cobalt hydroxide, wherein the solid-liquid separation is performed by maintaining the pH of the slurry in a range of more than 10 and 14 or less for 25 minutes or more, and then subjecting the slurry to solid-liquid separation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022133509A JP2024030548A (en) | 2022-08-24 | 2022-08-24 | Method for producing cobalt hydroxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022133509A JP2024030548A (en) | 2022-08-24 | 2022-08-24 | Method for producing cobalt hydroxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024030548A true JP2024030548A (en) | 2024-03-07 |
Family
ID=90105576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022133509A Pending JP2024030548A (en) | 2022-08-24 | 2022-08-24 | Method for producing cobalt hydroxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024030548A (en) |
-
2022
- 2022-08-24 JP JP2022133509A patent/JP2024030548A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101604954B1 (en) | Manufacturing Method of High Purity Lithium Phosphate from The Waste Liquid of The Exhausted Litium-Ion Battery | |
KR101973479B1 (en) | Manufacturing Method of High Purity Lithium Carbonate with Controlled Size, Size Distribution And Shape | |
JP5406386B2 (en) | Method for producing manganese sulfate monohydrate | |
US8747802B2 (en) | Method for preparing manganese sulfate monohydrate | |
JP2023552175A (en) | Impurity removal and treatment method in the recovery process of waste cathode materials of lithium batteries | |
EA010106B1 (en) | Process for complete utilization of olivine constituents | |
JP2018108923A (en) | Hydrogen-containing rare earth fluoride, production method thereof and use thereof | |
KR101973475B1 (en) | Manufacturing Method of Controlling Size and High Purity Lithium Carbonate Using Lithium Sulfate and Low Purity Barium Hydroxide | |
KR101266437B1 (en) | Method of preparing manganese sulfate with high purity | |
FR2766842A1 (en) | PROCESS FOR SELECTIVE PRECIPITATION OF NICKEL AND COBALT | |
JP4597169B2 (en) | Wastewater treatment method containing heavy metals | |
CN113086981B (en) | Modified coconut shell activated carbon and application thereof in preparation of pharmaceutical-grade guanidine hydrochloride | |
US3760064A (en) | Process for the production of neutral calcium hypochlorite crystals | |
JP2024030548A (en) | Method for producing cobalt hydroxide | |
FR3138913A1 (en) | Process for the preparation and use of a cobalt carbonate doped with crystal transition aluminum | |
US4073706A (en) | Brine treatment for trace metal removal | |
CN114592125B (en) | Mineralization and fluorine removal method for fluorine-containing acid system | |
JP5533770B2 (en) | Separation method of selenium | |
FI107801B (en) | Process for producing nickel hydroxide from elemental nickel | |
RU2410329C1 (en) | Method of producing highly pure hexahydrate of manganese nitrate | |
JP2019112366A (en) | Method of purifying dihydroxynaphthalene | |
FR2564084A1 (en) | PROCESS FOR THE PREPARATION OF BASIC COPPER CARBONATE | |
JPS58151437A (en) | Treatment of manganese ore | |
JP4448286B2 (en) | Manufacturing method of iron oxide for ferrite raw material | |
JP2994405B2 (en) | Purification method of alkali hydroxide |