JPS6142915A - X-ray mask transfer apparatus - Google Patents

X-ray mask transfer apparatus

Info

Publication number
JPS6142915A
JPS6142915A JP59165381A JP16538184A JPS6142915A JP S6142915 A JPS6142915 A JP S6142915A JP 59165381 A JP59165381 A JP 59165381A JP 16538184 A JP16538184 A JP 16538184A JP S6142915 A JPS6142915 A JP S6142915A
Authority
JP
Japan
Prior art keywords
ray
substrate
semiconductor substrate
mask
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59165381A
Other languages
Japanese (ja)
Inventor
Akira Shirakawa
白川 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59165381A priority Critical patent/JPS6142915A/en
Publication of JPS6142915A publication Critical patent/JPS6142915A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform positioning in high accuracy by a method wherein a substrate stage is controlled so that the output of an X-ray sensor located at the back side of a substrate indicates max. when X-ray is exposed on only each mark part of an X-ray transfer mask and a semiconductor substrate by using an X-ray shutter. CONSTITUTION:X-ray from an X-ray generator 4 is given to a mark 10a of a mark 2 and a mark 8b of a semiconductor substrate 1 through an aperture 3a of a shutter 3, the X-ray beam of a small diameter is given to an X-ray sensor 5. A controller 7, using the sensor output signal, controls a substrate stage so that the max. sensor signal output is obtained. Thereby, positioning in high accuracy within a short time is enabled by using the X-ray from the X-ray generator to be used for transfer.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はX線転写用マスクのマスクパターンt−単導体
基板上のX線レジスト膜上に転写するX線マスク転写装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to an X-ray mask transfer device for transferring a mask pattern of an X-ray transfer mask onto an X-ray resist film on a T-single conductor substrate.

(0)  従来の技術 ゛ 半導体集積回路の最近の進歩はめざましく。(0) Conventional technology ゛゛Recent progress in semiconductor integrated circuits has been remarkable.

一層の高密度化1、高集積化の方向にあシ、テプミク6
ンパターンを用いる超LSIの研究が精力的に進められ
ている。パターン微細化の鍵を握るリングラフ、イ技術
では、縮小投影露光方式の開発と光学系の進歩によって
1μm近傍まで紫外線露光が使えるようになシつつある
が、サブミクaν領域では、焦点深度・フィールドサイ
ズなどの制約が厳しくなりでくる。
Further densification 1, direction towards higher integration, TEPMIC 6
Research on VLSIs that use the same pattern is being actively pursued. With the ring graph technology, which holds the key to pattern miniaturization, it is becoming possible to use ultraviolet light exposure down to around 1 μm due to the development of reduction projection exposure methods and advances in optical systems. Such restrictions will become stricter.

XJi1転写技術は、その高解像性から、0.5μm以
下のパターン領域に適用可能な唯一の転写、技術と考え
られて−る。X線転写法では単導体基板とX線転写用マ
スクを10μ肩程度の間隔で保持して露光するグロキシ
ミティ(proximity)法が採用されている。こ
の方式によって、α5μm以下のパターン形成は充分可
能であり、サブミクロンの解像性につbては実用に近い
レベルに到達している。ところが、0.5μmパターン
を有する素子製造に要求されるパターン位置合せ精度は
±0゜05μm程度であるのに、従来のX線転写法では
要求される位置合せ精度を実現出来ていない。この原因
は、パターン露光にはX線を使用しているのに、マスク
と半導体基板の位置合せは光を用いた方法を採用してい
るためと考えられる。現在光を用いた位置合せ精度は±
0.1μm程度が限界となっている。(1!子通信学会
技術研究報告13sDB2−178参照) (/9 発明が解決しようとする問題点従来装置では上
述の如く半導体基板とX線転写用マスクとの位置合せを
両者に付設のマークを光学的に読みとうて制御するよう
にしているので位置精度は±0.1μm程度が限界であ
シ、サブミクロンオーダのパターン露光に当たり困難が
伴なっていた0本発明はこの問題点に鑑みなされたもの
で、上記マークの位置合せt−X線を使りて更に精度良
く行なうことができるX線マスク転写製置を提供しよう
とするものである。
Due to its high resolution, the XJi1 transfer technology is considered to be the only transfer technology applicable to pattern areas of 0.5 μm or less. In the X-ray transfer method, a proximity method is employed in which a single conductor substrate and an X-ray transfer mask are held at an interval of about 10 μm and exposed. By this method, it is fully possible to form a pattern of α5 μm or less, and the submicron resolution has reached a level close to practical use. However, although the pattern alignment accuracy required for manufacturing elements having a 0.5 μm pattern is about ±0.05 μm, the conventional X-ray transfer method cannot achieve the required alignment accuracy. The reason for this is thought to be that although X-rays are used for pattern exposure, a method using light is used to align the mask and the semiconductor substrate. The current alignment accuracy using light is ±
The limit is about 0.1 μm. (Refer to 1! Child Communications Society Technical Research Report 13sDB2-178) (/9 Problems to be Solved by the Invention In the conventional device, as described above, the alignment of the semiconductor substrate and the X-ray transfer mask is done by marking attached to both. Since the positioning accuracy is optically read and controlled, the positional accuracy is limited to about ±0.1 μm, and the present invention was created in view of this problem, which was accompanied by difficulties in pattern exposure on the submicron order. It is an object of the present invention to provide an X-ray mask transfer device that can perform the above-mentioned mark positioning using t-X rays with even higher accuracy.

に)問題点を解決するための手段 本発明はX線転写用マスクにX線発生部からのX線を付
与して半導体基板上のX線レジストに露光パターンを転
写するに先立ち、X線転写用マスクと半導体基板との位
置合せを上記X線を使って制御することができるもので
ある。すなわち、本発明はX線発生部からのX線をシャ
ッタを使ってX線転写用マスクと半導体基板の各マーク
部分にのみ照射し、半導体基板裏面偶のX線センサ出力
を検出して該センサ出力が最大となるように半導体基板
を載量せる基板ステージを制御するように構成されてい
る。
B.) Means for Solving the Problems The present invention provides an X-ray transfer mask prior to transferring an exposure pattern to an X-ray resist on a semiconductor substrate by applying X-rays from an X-ray generating section to an X-ray transfer mask. The alignment of the mask and the semiconductor substrate can be controlled using the X-rays. That is, the present invention uses a shutter to irradiate X-rays from an X-ray generator only to each mark portion of an X-ray transfer mask and a semiconductor substrate, and detects the output of an X-ray sensor on the back side of the semiconductor substrate. It is configured to control the substrate stage on which the semiconductor substrate is placed so that the output is maximized.

(ホ)作 用 X線は光や電子ビームに比較して物質中を直線性良く進
行し、干渉、散乱の影響を受け難りため1シヤツタ、X
線転写用マスクの位置合せマーク、及び半導体基板の位
置合せマークを通してX線発生部からX線センナへ付与
されるX線は各位置合せマークの位置関係に応じて照射
量が決まり、照射量に基づくセンサ出力が最大になるよ
うに制御すれば両マークの位f関係′f:精度良く合わ
せることができる。
(e) Action X-rays travel through materials with better linearity than light or electron beams, and are less susceptible to interference and scattering.
The amount of X-rays applied from the X-ray generator to the X-ray sensor through the alignment marks of the radiation transfer mask and the alignment marks of the semiconductor substrate is determined according to the positional relationship of each alignment mark, and the amount of irradiation is By controlling so that the sensor output based on this value is maximized, it is possible to match the position relationship f of both marks with high precision.

(へ)実廁例 第1図は本発明装置の1実施例の概略構成図、第2図は
半導体基板の部分断面図、tx3図はセンナ出力の波形
図である。
(f) Practical Example FIG. 1 is a schematic configuration diagram of one embodiment of the device of the present invention, FIG. 2 is a partial sectional view of a semiconductor substrate, and FIG. tx3 is a waveform diagram of the senna output.

第1図におhて、(1)は半導体基板、(2)はX線転
写用マスク、(3)はシャッタ、(4)はX線発生部、
(5)はXiセンサ、(6)は基板ステージ、(71は
コン)0−ラである。
In Fig. 1 h, (1) is a semiconductor substrate, (2) is an X-ray transfer mask, (3) is a shutter, (4) is an X-ray generation part,
(5) is a Xi sensor, (6) is a substrate stage, and (71 is a controller) 0-ra.

半導体基板fi+は位置合せマークとして利用される貫
通孔(8)を複数個(図では21固)備えている。
The semiconductor substrate fi+ is provided with a plurality of through holes (8) (21 in the figure) used as alignment marks.

各貫通孔(8)は基板裏面側の開口(8a)の口径Ce
)に比べて基板表面側の開口(8b)の口径便)を極〈
小さくピンホール状に成形されている。この半導体基板
(1)の表面側にはその全面にX線レジスト膜(9)が
スピンコードされている。
Each through hole (8) has a diameter Ce of the opening (8a) on the back side of the board.
), the diameter of the opening (8b) on the board surface side is extremely
It is shaped like a small pinhole. An X-ray resist film (9) is spin-coded over the entire surface of the semiconductor substrate (1).

X線転写用マスク(2)は半導体基板(1)の上刃に所
定の間隔で配置され、上記貫通孔(8)に対応する位置
合せマーク(IQa)を含むマスクパターン(101を
有してhる。シャッタ(3)はX線発生部(4)からの
X線αDの一部を選択的に通過させるもので、マスクの
位置合せ作業のときだけX線発生部(4)とX線転写用
マスク〔2)の間に挿入しうるように構成されている。
The X-ray transfer mask (2) is arranged at predetermined intervals on the upper blade of the semiconductor substrate (1), and has a mask pattern (101) including alignment marks (IQa) corresponding to the through holes (8). h.The shutter (3) selectively allows a part of the X-ray αD from the X-ray generator (4) to pass through, and the shutter (3) selectively allows a portion of the X-ray αD from the X-ray generator (4) to pass through only when aligning the mask. It is configured so that it can be inserted between the transfer masks [2].

このシャッタ(3)の開口部(6a)にて選択されたX
線(1)a)はマスク(2)及び半導体基板(1]の各
マークに付与されるように構成されている。
X selected at the opening (6a) of this shutter (3)
The line (1)a) is configured to be applied to each mark on the mask (2) and the semiconductor substrate (1).

X線センサ(5)は単導体基板(1)の基板裏面側に上
記貫通孔(8)に対向するように配置されている。この
X線センナ(5)のセンナ出力はリード(5a)を通し
てコントローラ(7)に付与される。基板ステージ(6
)は半導体基板(1)とX線センナ(5)t−支持して
訃り、これら′f1:1つの平面内に任意に移送できる
ように構成されている。コントローラ(7)はX線セン
サ(5)からのセンナ出力を分析し、上起卒導体基板(
1)とX線転写用マスク(2)の各マークが一致するよ
うに基板ステージ(61の移動を制御する。
The X-ray sensor (5) is arranged on the back side of the single conductor substrate (1) so as to face the through hole (8). The sensor output of this X-ray sensor (5) is applied to the controller (7) through the lead (5a). Substrate stage (6
) are supported by the semiconductor substrate (1) and the X-ray sensor (5), and are constructed so that they can be moved arbitrarily within one plane. The controller (7) analyzes the senna output from the X-ray sensor (5) and sends the upper conductor board (
The movement of the substrate stage (61) is controlled so that the marks on the X-ray transfer mask (2) and the X-ray transfer mask (2) coincide with each other.

tなわち、X線発生部(4)からのX線はシャッタ(3
)の開口部(3a)を通してマスク(2)のマークCl
0a)及び半導体基板(1)のマーク(8b)に付与さ
れ、微小径のX線がX線セνす(5)に付与される−こ
のセンを出力は第3図に示す如くなる。横軸−は基板ス
テーv (6)の位fを、また縦軸(131は信号強度
を示して−る。コントローラ(7)はこのセンサ出力を
受けて基板ステージ(6)に対し信号強度が増大するよ
うに制御出力を呈するようにしている。
t, that is, the X-rays from the X-ray generator (4) pass through the shutter (3
) through the opening (3a) of the mask (2).
0a) and the mark (8b) on the semiconductor substrate (1), and a minute diameter X-ray is applied to the X-ray sensor (5) - the output of this sensor is as shown in FIG. The horizontal axis indicates the position f of the substrate stay V (6), and the vertical axis (131 indicates the signal strength).The controller (7) receives this sensor output and determines the signal strength for the substrate stage (6). The control output is made to increase.

次に本実施例の数値例等を含めさらに′#9細に説明す
る。半導体基板(1)は3インチψのシリコンウニへで
あシ、この’is=ノ1上に20u間隔で貫通孔(8)
を2個所にわたって聞役している。各貫通孔(81は縞
2図に示す断面形状を示しておシ、開口(8a)の内径
(e)が100pm、円錐部(8c )(D+iさ−1
が150pm、ピンホール(8d)の深さくn)が5μ
宿、開口(8b)の内径(p)が0.25μmに設定さ
れて−る。X線レジスト膜(9)は0M8(ネガ)レジ
ストを使用し%膜厚5000 AK塗布されている。マ
スク(2)とシャッタ(31は同一材料で形成し・マス
ク支持膜は電化シリ5)、 Xla吸収体は金で構成さ
れている。尚マスク【2)上のマーク(10a)の径は
半導体基板(1)の貫通孔(81の開口(sb)oo径
と同じ<0.25μm(ある、又、X線発生部(4)は
シ1)コンのX線スペクトルのに系列(波長7.131
)t−使用する。半導体基板(1)とマスク(2)の間
隔を10μmに保持して位置合せの操作を行なったとこ
ろわずか1秒間で、X線検出強度は7倍とな、Ijその
時点でマスクアライメントを終了した。その後、シャッ
タ(3)を露光系から外して、601)J/−の露光量
でパターン露光を行い。
Next, the present embodiment will be explained in further detail including numerical examples and the like. The semiconductor substrate (1) is attached to a 3-inch ψ silicon plate, and through holes (8) are formed on this 'is=no1 at 20u intervals.
I am observing at two locations. Each through hole (81 has the cross-sectional shape shown in Figure 2), the inner diameter (e) of the opening (8a) is 100 pm, and the conical part (8c) (D+i-1
is 150pm, and the depth of the pinhole (8d) is 5μ.
The inner diameter (p) of the opening (8b) is set to 0.25 μm. The X-ray resist film (9) uses a 0M8 (negative) resist and is coated with a 5000% film thickness of AK. The mask (2) and the shutter (31 are made of the same material; the mask support film is made of electrified silicon 5), and the Xla absorber is made of gold. The diameter of the mark (10a) on the mask (2) is <0.25 μm (which is the same as the diameter of the opening (sb) of the through hole (81) of the semiconductor substrate (1), and the X-ray generating part (4) is 1) The series of X-ray spectra (wavelength 7.131)
)t-use. When alignment was performed while maintaining the distance between the semiconductor substrate (1) and the mask (2) at 10 μm, the X-ray detection intensity increased by 7 times in just 1 second, and the mask alignment was completed at that point. . Thereafter, the shutter (3) was removed from the exposure system, and pattern exposure was performed with an exposure amount of 601) J/-.

現像後のレジストパターンを光波干渉式座標測定機で測
定したところ1位置合せ精度は±0.05μm以下であ
った。
When the resist pattern after development was measured using a light wave interference type coordinate measuring machine, the one position alignment accuracy was ±0.05 μm or less.

(ト1 発明の効果 本発明はX線転写法に訃けるマスク合せを。(G1. Effects of the invention The present invention provides mask matching that is superior to the X-ray transfer method.

転写のためのX線発生部からのX線を使りで行なうこと
ができるので、短時間に高精度な位置合せが可能である
。又1位置合せのために複雑な光学系を配備する必要が
なく装置の簡略化が因れる。
Since the transfer can be performed using X-rays from the X-ray generating section, highly accurate positioning is possible in a short time. Furthermore, there is no need to provide a complicated optical system for alignment, resulting in a simpler apparatus.

【図面の簡単な説明】 第1図は本発明装置の1実施例の概略構成図、第2図は
半導体基板の部分断面図、第3因はセンナ出力の波形図
である。 (1)・・・半導体基板、 (2)−X線転写用マスク
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of one embodiment of the device of the present invention, FIG. 2 is a partial cross-sectional view of a semiconductor substrate, and the third factor is a waveform diagram of the senna output. (1)...Semiconductor substrate, (2)-X-ray transfer mask.

Claims (1)

【特許請求の範囲】[Claims] (1)位置合せマークとして利用される、基板裏面側の
開口が基板表面側に比べて大なる貫通孔を複数個有し、
基板表面にX線レジスト膜を付設してなる半導体基板と
、該半導体基板の上方に配備され前記貫通孔に対応する
位置合せマークを含むマスクパターンを有するX線転写
用マスクと、該位置合せマークの部分のみにX線が照射
されるように該当部分に開口部を有するシヤツタと、該
シャッタの上方に配備され該シヤツタ上にX線を照射す
るX線発生部と、前記半導体基板の基板裏面側に前記貫
通孔に対向するように配備されるX線センサと、前記半
導体基板を載置し該半導体基板を面方向に移動させる基
板ステージと、前記X線センサ出力を受け該X線センサ
出力に基づき前記基板ステージの位置を制御するコント
ローラとを備えてなるX線マスク転写装置。
(1) The opening on the back side of the substrate, which is used as an alignment mark, has a plurality of through holes that are larger than those on the front side of the substrate,
A semiconductor substrate having an X-ray resist film attached to the surface of the substrate, an X-ray transfer mask having a mask pattern disposed above the semiconductor substrate and including an alignment mark corresponding to the through hole, and the alignment mark. a shutter having an opening in a corresponding part so that only the part is irradiated with X-rays; an X-ray generating part disposed above the shutter and irradiating X-rays onto the shutter; and a back surface of the substrate of the semiconductor substrate. an X-ray sensor disposed on a side facing the through hole; a substrate stage on which the semiconductor substrate is placed and moves the semiconductor substrate in a surface direction; and an X-ray sensor output that receives the X-ray sensor output. An X-ray mask transfer apparatus comprising: a controller that controls the position of the substrate stage based on the above.
JP59165381A 1984-08-06 1984-08-06 X-ray mask transfer apparatus Pending JPS6142915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59165381A JPS6142915A (en) 1984-08-06 1984-08-06 X-ray mask transfer apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59165381A JPS6142915A (en) 1984-08-06 1984-08-06 X-ray mask transfer apparatus

Publications (1)

Publication Number Publication Date
JPS6142915A true JPS6142915A (en) 1986-03-01

Family

ID=15811297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59165381A Pending JPS6142915A (en) 1984-08-06 1984-08-06 X-ray mask transfer apparatus

Country Status (1)

Country Link
JP (1) JPS6142915A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218924A (en) * 1988-05-13 1990-01-23 Mrs Technol Inc Optical aligner with low reflection error for photolithography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218924A (en) * 1988-05-13 1990-01-23 Mrs Technol Inc Optical aligner with low reflection error for photolithography

Similar Documents

Publication Publication Date Title
JPH025010B2 (en)
US4513203A (en) Mask and system for mutually aligning objects in ray exposure systems
JPH021241B2 (en)
JPH02125609A (en) Semiconductor manufacturing equipment
JPS5811744B2 (en) Method for manufacturing a photocathode source and apparatus for selectively irradiating accurately positioned areas on the main surface of a substrate
JPS6275442A (en) Deciding method for exposure amount of photosensitive lacquer layer
JP2843249B2 (en) Method and apparatus for manufacturing a device
JPH0689847A (en) X-ray mask structure and its manufacture, x-ray exposure using the structure, and device manufactured by using the structure
JPS6142915A (en) X-ray mask transfer apparatus
JPS6258621A (en) Fine pattern forming method
JPH0689839A (en) Fine pattern formation and fine pattern aligner
JP3051099B2 (en) Mark substrate, method of manufacturing mark substrate, electron beam writing apparatus, and method of adjusting optical system of electron beam writing apparatus
JPS62175739A (en) Pattern forming method
JPH07105322B2 (en) Alignment device
JPH02165616A (en) Aligner
JPS5832420A (en) Electron beam lithography
US6821693B2 (en) Method for adjusting a multilevel phase-shifting mask or reticle
JPS6151824A (en) X-ray exposure method and apparatus thereof
JPS60208834A (en) Formation of pattern
JPS6041223A (en) Electron beam exposure
JPS59107515A (en) Gap control type exposure method
JPH03232217A (en) Exposure condition detecting and investigating method in charged particle exposing device
JP3083428B2 (en) Charged particle beam drawing method
JPS5638475A (en) Fabrication of photomask
JPS59225521A (en) Wafer mark detection