JPS6142786B2 - - Google Patents

Info

Publication number
JPS6142786B2
JPS6142786B2 JP8785382A JP8785382A JPS6142786B2 JP S6142786 B2 JPS6142786 B2 JP S6142786B2 JP 8785382 A JP8785382 A JP 8785382A JP 8785382 A JP8785382 A JP 8785382A JP S6142786 B2 JPS6142786 B2 JP S6142786B2
Authority
JP
Japan
Prior art keywords
melting point
bonding
coating layer
diffusion
diffusion bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8785382A
Other languages
Japanese (ja)
Other versions
JPS58207368A (en
Inventor
Mitsuo Kato
Takao Funamoto
Mitsuo Chikazaki
Satoshi Ogura
Kosei Nagayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8785382A priority Critical patent/JPS58207368A/en
Publication of JPS58207368A publication Critical patent/JPS58207368A/en
Publication of JPS6142786B2 publication Critical patent/JPS6142786B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/004Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、新規な金属の拡散接合法に係り、特
にNi基耐熱合金の拡散接合法に関する。 耐熱合金の溶接は、溶接部が脆弱かつ割れやす
く、またろう接では接合強度が低く、接合部が低
融点であるなどの問題があり、適用するにはおの
ずと制限される。このような背景から、高品質の
継手を得るために拡散接合法が適用されている。 拡散接合法では、固相拡散接合法と液相拡散接
合法の2種類に分類される。固相拡散接合法は、
接合時に比較的高い圧力を加えなければならな
い。このため脆弱な部品や高精度な部品などの場
合、その高圧力のため変形を生じやすく使用範囲
が制限される。液相拡散接合は、被接合部材間に
低融点の薄い層(箔,粉末等)を介して接合する
方法である。しかるに箔や粉末のインサート方法
では、接合面が複雑形状になつた場合や大型化し
た場合、作業性が悪く、接合不良を起こしやすく
信頼性を悪くするなどの欠点がある。 また被接合部材の接合面に低融点合金層を設け
た後、液相拡散接合する接合方法では、低融点合
金層の形成状況が拡散接合性を大きく左右する。
それは、低融点合金層内に含有するガス(O2
N2,H2)によるボイド欠陥の生成,低融点合金層
の融点の不均一及び合金層の深さ不足による接合
不良,拡散接合部に生成する化合物の生成などの
悪影響を及ぼす。 本発明の目的は、混入ガスを極力抑え、融点の
均一な低融点合金層を得ることを可能にし、かつ
また拡散接合部に発生するボイド及び接合不良を
防止し、化合物の生成が少ない良好な拡散接合部
が得られる拡散接合法を提供することにある。 本発明は、被接合部材の接合面に好ましくは15
μm〜70μmの深さのボロン(以下Bという)を
浸透させた浸透層を形成した後、Bコーテイング
層の融点以上より被接合部材の固相線温度以下に
加熱,保持する加熱・溶融処理を施こし低融点合
金層を形成する。さらに前記した被接合部材の接
合面に形成した低融点合金層を用い拡散接合を行
なう拡散接合法である。 本発明の拡散接合法は従来法である箔や粉末を
インサートして行なう液相拡散接合法の欠点を補
うことができる。すなわちB浸透層では、融点降
下元素であるBを被接合部材の接合面内部に拡散
させてコーテイング層を形成するために、従来の
液相拡散接合法の欠点である接合面からの箔や粉
末のズレおよびハガレが生ぜず、複雑形状の部品
や大型部品による作業性も良好である。さらに、
融点降下元素であるBを含有するコーテイング層
は、低融点化が促進されているために少ない加圧
力で良いので固相拡散接合の際に発生する接合変
形を防止することができる。 本発明方法において、融点降下元素であるBを
含むコーテイング層の深さは、拡散接合部に発生
する低融点合金層の溶湯不足による接合不良(未
溶着部)を防止するために15μm以上の深さが好
ましい。拡散接合部に余分の金属間化合物を生成
させないようにするには70μm以下が好ましい。
特に拡散接合部の接合不良防止及び金属間化合物
の生成量を極力抑えるのに効果が大きい25μm〜
55μmのBコーテイング層の深さが好ましい。 本発明方法のBコーテイング層に加熱・溶融処
理を施こすことは、Bコーテイング層内に含まれ
る不純物ガスを加熱,溶融してガス抜き処理する
と同時にBコーテイング層の融点を均一にするの
に効果があり、良好な拡散接合部が得られる。B
コーテイング層形成中には不純物ガス(O2
N2,H2)も拡散され含有される。このため被接合
部材の接合面にBコーテイング層を設けた後、拡
散接合した接合部には、ボイド欠陥の発生が多く
好ましくない。しかしBコーテイング層に加熱・
溶融処理を行ない低融点合金層を形成した後、拡
散接合した接合部には、ボイド欠陥の発生がなく
高品質の拡散接合部が得られる。さらに他の元素
(Si,P)のコーテイング層を設けた場合でも加
熱・溶融処理を行うたとえばほう化処理によるも
のと同様の効果がある。 Bコーテイング層の融点は、コーテイング処理
温度により左右されるが、加熱・溶融処理を行な
うことにより低融点合金層の融点は、均一にな
る。このため拡散接合時に発生する接合不良を防
止できる。さらに加熱・溶融処理として、Bコー
テイング層の融点以下では、コーテイング層が溶
融されず、脱ガス作用及び融点の均一化にあまり
効果がない。たとえばNi基耐熱合金ではBコー
テイング層の脱ガス作用及び融点の均一化に効果
があり、拡散接合部のボイド欠陥の防止及び接合
不良の防止の効果が大きいのは、加熱温度1140℃
〜1180℃である。 本発明の拡散接合法を適用する被接合材はFe
基,Ni基,Co基耐熱合金に適し、特にNi基耐熱
合金に最も効果が大きい。 以下、本発明の実施例について説明する。 第1表は供試材の化学組成(W/O)を示す。
供試材は、Ni基耐熱合金を用いた。供試材の接
合面にBコーテイング層を形成する方法は、ほう
化処理で行なつた。まずほう化処理用容器にコー
テイング剤(1.0%B―2.5%NH4Cl―96.5%Al2O3
粉末)中に供試材を埋め込み、第2表に示す条件
で処理を行ない、供試材の接合面にBコーテイン
グ層を形成した。 第1図はBコーテイング層の深さ及び融点とコ
ーテイング処理温度との関係を示す。Bコーテイ
ング層の深さは、処理温度が上昇するに従い増加
しており、Bコーイング層の融点は、処理温度が
上昇すると低下する傾向にある。さらに、Bコー
テイング層内には不純物ガス(O2,N2)の混入量
が多いことがわかつた。 次に本発明の接合面にBコーテイング層を設け
た後、加熱・溶融処理を施こし低融点合金層を形
The present invention relates to a novel diffusion bonding method for metals, and particularly to a diffusion bonding method for Ni-based heat-resistant alloys. Welding of heat-resistant alloys has problems such as the welded part being brittle and prone to cracking, and brazing having low joint strength and low melting point, which naturally limits its applicability. Against this background, diffusion bonding has been applied to obtain high-quality joints. Diffusion bonding methods are classified into two types: solid phase diffusion bonding and liquid phase diffusion bonding. The solid phase diffusion bonding method is
Relatively high pressure must be applied during bonding. For this reason, in the case of fragile parts or high-precision parts, the high pressure tends to cause deformation, limiting the range of use. Liquid phase diffusion bonding is a method of bonding members to be bonded by interposing a thin layer (foil, powder, etc.) with a low melting point. However, the foil or powder insert method has drawbacks such as poor workability and poor reliability when the bonding surface has a complicated shape or increases in size. In addition, in a joining method in which a low melting point alloy layer is provided on the joining surfaces of the members to be joined and then liquid phase diffusion bonding is performed, the state of formation of the low melting point alloy layer greatly influences the diffusion bondability.
It is the gas (O 2 ,
N 2 , H 2 ) causes negative effects such as the formation of void defects, nonuniform melting points of the low melting point alloy layer and poor bonding due to insufficient depth of the alloy layer, and the formation of compounds in the diffusion bond. The purpose of the present invention is to suppress mixed gases as much as possible, make it possible to obtain a low melting point alloy layer with a uniform melting point, and also prevent voids and bonding defects that occur in the diffusion bonding part, and create a good layer with less compound formation. An object of the present invention is to provide a diffusion bonding method that allows a diffusion bond to be obtained. In the present invention, preferably 15
After forming a permeation layer in which boron (hereinafter referred to as B) is infiltrated to a depth of μm to 70 μm, heating and melting treatment is performed to heat and maintain the temperature from above the melting point of the B coating layer to below the solidus temperature of the parts to be joined. A low melting point alloy layer is formed. Furthermore, it is a diffusion bonding method in which diffusion bonding is performed using a low melting point alloy layer formed on the bonding surfaces of the members to be bonded. The diffusion bonding method of the present invention can compensate for the drawbacks of the conventional liquid phase diffusion bonding method, which is performed by inserting foil or powder. In other words, in the B permeation layer, B, which is an element that lowers the melting point, is diffused into the bonding surfaces of the parts to be bonded to form a coating layer. No shifting or peeling occurs, and workability with complex-shaped parts and large parts is also good. moreover,
The coating layer containing B, which is a melting point lowering element, promotes lowering of the melting point and requires less pressure, thereby preventing bonding deformation that occurs during solid phase diffusion bonding. In the method of the present invention, the depth of the coating layer containing B, which is a melting point depressing element, is set to a depth of 15 μm or more in order to prevent bonding defects (unwelded areas) due to insufficient molten metal in the low melting point alloy layer that occurs in the diffusion bonding area. is preferable. The thickness is preferably 70 μm or less in order to prevent excess intermetallic compounds from forming at the diffusion bonding portion.
25 μm or more, which is particularly effective in preventing bonding defects in diffusion bonding parts and minimizing the amount of intermetallic compounds generated.
A B coating layer depth of 55 μm is preferred. Heating and melting the B coating layer in the method of the present invention is effective in heating and melting the impurity gas contained in the B coating layer to degas it, and at the same time making the melting point of the B coating layer uniform. , and a good diffusion bond can be obtained. B
During the coating layer formation, impurity gases (O 2 ,
N 2 , H 2 ) are also diffused and contained. For this reason, it is not preferable that many void defects occur in the bonded portion where the B coating layer is provided on the bonding surfaces of the members to be bonded and then diffusion bonded. However, the B coating layer is heated and
After performing melting treatment to form a low melting point alloy layer, a high-quality diffusion bonded portion is obtained without the occurrence of void defects in the bonded portion that is diffusion bonded. Furthermore, even when a coating layer of other elements (Si, P) is provided, the same effect as that obtained by heating and melting treatment, such as boriding treatment, can be obtained. Although the melting point of the B coating layer depends on the coating treatment temperature, the melting point of the low melting point alloy layer becomes uniform by performing the heating and melting treatment. Therefore, bonding defects that occur during diffusion bonding can be prevented. Furthermore, if the heating/melting treatment is performed at a temperature below the melting point of the B coating layer, the coating layer will not be melted and will not be very effective in degassing and making the melting point uniform. For example, in the case of Ni-based heat-resistant alloys, the heating temperature is 1140°C, which is effective in degassing the B coating layer and making the melting point uniform.
~1180℃. The materials to be joined to which the diffusion joining method of the present invention is applied are Fe
Suitable for Ni-base, Ni-base, and Co-base heat-resistant alloys, and is especially effective for Ni-base heat-resistant alloys. Examples of the present invention will be described below. Table 1 shows the chemical composition (W/O) of the sample materials.
The test material used was a Ni-based heat-resistant alloy. The B coating layer was formed on the joint surfaces of the test materials by boriding. First, a coating agent (1.0% B - 2.5% NH 4 Cl - 96.5% Al 2 O 3
The test material was embedded in powder) and treated under the conditions shown in Table 2 to form a B coating layer on the joint surface of the test material. FIG. 1 shows the relationship between the depth and melting point of the B coating layer and the coating treatment temperature. The depth of the B coating layer increases as the processing temperature increases, and the melting point of the B coating layer tends to decrease as the processing temperature increases. Furthermore, it was found that a large amount of impurity gas (O 2 , N 2 ) was mixed into the B coating layer. Next, after providing a B coating layer on the joint surface of the present invention, heating and melting treatment is performed to form a low melting point alloy layer.

【表】【table】

【表】 成した場合について述べる。第3表は加熱・溶融
処理条件を示す。第1図に示す如く、接合面に形
成したBコーテイング層の融点は、最低1130℃で
あるため加熱温度1175℃、保持時間5min一定で
行ない、接合面に合金層を形成した。 第2図は合金層の厚さ及び融点とコーテイング
処理温度との関係、第3図は合金層の金属組織を
示す。合金層の厚さは、Bコーテイング層に加
熱・溶融処理を施こすことにより、Bコーテイン
グ層の厚さの約1.2〜1.3倍程増加する。また合金
層の融点は全て1115℃〜1120℃一定となり、合金
層の融点の均一化に効果がある。さらに合金層内
には、不純物ガス量が減少し脱ガス作用もある。 次に上記したBコーテイング層と加熱・溶融処
理後の合金層を用い、拡散接合実験を行ない比較
した。第4表は拡散接合条件を示す。拡散接合は
接合温度1200℃,接合時間1hr,加圧力0.15Kg/
cm2一定で行なつた。 第4図は拡散接合部の接合率に及ぼす加熱・溶
[Table] Describes the cases in which this has been achieved. Table 3 shows the heating/melting treatment conditions. As shown in FIG. 1, since the melting point of the B coating layer formed on the joint surface is at least 1130°C, the heating temperature was 1175°C and the holding time was constant for 5 minutes to form an alloy layer on the joint surface. FIG. 2 shows the relationship between the thickness and melting point of the alloy layer and the coating treatment temperature, and FIG. 3 shows the metal structure of the alloy layer. The thickness of the alloy layer increases by approximately 1.2 to 1.3 times the thickness of the B coating layer by subjecting the B coating layer to heating and melting treatment. Further, the melting points of all the alloy layers are constant at 1115°C to 1120°C, which is effective in making the melting points of the alloy layers uniform. Furthermore, the amount of impurity gas in the alloy layer is reduced and there is also a degassing effect. Next, a diffusion bonding experiment was conducted using the B coating layer described above and the alloy layer after heating and melting treatment, and a comparison was made. Table 4 shows the diffusion bonding conditions. Diffusion bonding has a bonding temperature of 1200℃, bonding time of 1hr, and a pressure of 0.15Kg/
This was done at a constant cm2 . Figure 4 shows the effects of heating and melting on the bonding rate of diffusion bonding.

【表】【table】

【表】 融処理の影響を、第5図はBコーテイング層によ
る拡散接合部と本発明方法による拡散接合部の比
較を示す。接合面にBコーテイング層を形成して
拡散接合した接合部では、不純物ガスによりボイ
ド欠陥が発生し、接合率62〜95%である。これに
対し接合面にBコーテイングを形成し加熱・溶融
処理した低融点合金層を用い拡散接合した接合部
では、ボイド欠陥の発生もなく高品質の拡散接合
が得られた。これはBコーテイング層に加熱・溶
融処理により脱ガスの効果があり、拡散接合部に
発生するボイド欠陥の防止に大きく役立つ。しか
し、Bコーテイング層の深さが15μm以下になる
と拡散接合部には、接合不良(未溶着部)が発生
する。またBコーテイング層の深さが90μm以上
になると拡散接合部には、金属間化合物の生成量
が増加してくる。このため拡散接合部に発生する
接合不良を防止し、かつまた金属間化合物の生成
を抑えるには、Bコーテイング層の深さを15〜70
μmにすることが好ましい。 本発明によれば、Bコーテイング層内の混入ガ
スを脱出させ、融点の均一な低融点合金層を形成
できるとともに拡散接合部に発生するボイド及び
接合不良を防止でき、金属間化合物の生成量を少
なくできるのに効果がある。
[Table] Fig. 5 shows a comparison between the diffusion bonded portion made by the B coating layer and the diffusion bonded portion made by the method of the present invention. In the bonded portion where a B coating layer is formed on the bonding surface and diffusion bonding is performed, void defects occur due to impurity gas, and the bonding rate is 62 to 95%. On the other hand, in the joint where B coating was formed on the joint surface and the low melting point alloy layer was heated and melted, a high quality diffusion joint was obtained without any void defects. This has the effect of degassing the B coating layer through heating and melting treatment, which greatly helps to prevent void defects occurring in the diffusion bonding portion. However, when the depth of the B coating layer is less than 15 μm, bonding defects (unwelded portions) occur in the diffusion bonded portion. Further, when the depth of the B coating layer becomes 90 μm or more, the amount of intermetallic compounds generated at the diffusion bond increases. Therefore, in order to prevent bonding defects that occur at the diffusion bonding part and also to suppress the formation of intermetallic compounds, the depth of the B coating layer should be 15 to 70 mm.
It is preferable to set it to μm. According to the present invention, a mixed gas in the B coating layer can escape, a low melting point alloy layer with a uniform melting point can be formed, and voids and bonding defects occurring in the diffusion bonding part can be prevented, and the amount of intermetallic compounds generated can be reduced. It is effective even though it can be done in small quantities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はBコーテイング層の深さ及び融点とコ
ーテイング処理温度との関係を示す線図、第2図
は低融点合金層の深さ及び融点とコーテイング処
理温度との関係を示す線図、第3図は低融点合金
層断面の顕微鏡写真、第4図は拡散接合部の接合
率に及ぼす加熱・溶融処理の影響を示す線図、第
5図は拡散接合後の断面の顕微鏡写真である。
FIG. 1 is a diagram showing the relationship between the depth and melting point of the B coating layer and the coating treatment temperature, FIG. 2 is a diagram showing the relationship between the depth and melting point of the low melting point alloy layer and the coating treatment temperature, and FIG. Figure 3 is a micrograph of a cross section of a low melting point alloy layer, Figure 4 is a diagram showing the influence of heating and melting treatment on the bonding rate of the diffusion bonded portion, and Figure 5 is a microscope photo of the cross section after diffusion bonding.

Claims (1)

【特許請求の範囲】 1 被接合部材の接合面にボロン浸透層を形成さ
せた後、前記ボロン浸透層を加熱溶融し、その溶
融した合金層を接合面として拡散接合することを
特徴とする金属の拡散接合法。 2 前記浸透層の厚さが15〜17μmである特許請
求の範囲第1項記載の金属の拡散接合法。
[Scope of Claims] 1. A metal characterized by forming a boron permeation layer on the joint surfaces of members to be joined, heating and melting the boron permeation layer, and performing diffusion bonding using the molten alloy layer as the joint surface. diffusion bonding method. 2. The metal diffusion bonding method according to claim 1, wherein the thickness of the permeation layer is 15 to 17 μm.
JP8785382A 1982-05-26 1982-05-26 Diffusion joining method of metal Granted JPS58207368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8785382A JPS58207368A (en) 1982-05-26 1982-05-26 Diffusion joining method of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8785382A JPS58207368A (en) 1982-05-26 1982-05-26 Diffusion joining method of metal

Publications (2)

Publication Number Publication Date
JPS58207368A JPS58207368A (en) 1983-12-02
JPS6142786B2 true JPS6142786B2 (en) 1986-09-24

Family

ID=13926439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8785382A Granted JPS58207368A (en) 1982-05-26 1982-05-26 Diffusion joining method of metal

Country Status (1)

Country Link
JP (1) JPS58207368A (en)

Also Published As

Publication number Publication date
JPS58207368A (en) 1983-12-02

Similar Documents

Publication Publication Date Title
US3957194A (en) Liquid interface diffusion method of bonding titanium and/or titanium alloy structure
EP0070177A1 (en) Diffusion bonding
US3854194A (en) Liquid interface diffusion method of bonding titanium and/or titanium alloy structure and product using nickel-copper, silver bridging material
US3581382A (en) Diffusion brazing of aluminum and aluminum base alloys
US3553825A (en) Method of bonding aluminum
WO2018186385A1 (en) Cylindrical sputtering target, and production method therefor
JPS6142786B2 (en)
JPH0520392B2 (en)
JPS6349382A (en) Insert material for diffused joining
US4724120A (en) Method for the assembly of and the interconnection by diffusion of bodies of metal alloys
JPS6090879A (en) Ceramic and metal bonding method
JPS58188561A (en) Production of sintered hard alloy tool
US3660891A (en) Filler metal alloy for titanium brazing
JPS6349381A (en) Insert material for diffused joining
JPS5893584A (en) Joining method for heat resisting alloy
JPS63180377A (en) Manufacture of welding joint
JPS60152382A (en) Diffusion joining method of copper and stainless steel
JPH0450107B2 (en)
US3138862A (en) Method of joining ferrous metal parts
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JPS5868489A (en) Bodies to be joined and joining method for said bodies
JPH04294884A (en) Method of liquid phase diffusion joining of stainless steel
JPS58167086A (en) Diffusion joining method
JPS61103685A (en) Method for diffused junction
JP2000117427A (en) Joining method of target plate for sputtering