JPS6142435B2 - - Google Patents

Info

Publication number
JPS6142435B2
JPS6142435B2 JP55104289A JP10428980A JPS6142435B2 JP S6142435 B2 JPS6142435 B2 JP S6142435B2 JP 55104289 A JP55104289 A JP 55104289A JP 10428980 A JP10428980 A JP 10428980A JP S6142435 B2 JPS6142435 B2 JP S6142435B2
Authority
JP
Japan
Prior art keywords
film
cdte
cds
layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55104289A
Other languages
Japanese (ja)
Other versions
JPS5730379A (en
Inventor
Hiroshi Uda
Toshio Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10428980A priority Critical patent/JPS5730379A/en
Publication of JPS5730379A publication Critical patent/JPS5730379A/en
Publication of JPS6142435B2 publication Critical patent/JPS6142435B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は、薄膜太陽電池の製造方法にかかり、
光電変換特性の良好な素子構造の太陽電池を提供
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a thin film solar cell,
The present invention provides a solar cell having an element structure with good photoelectric conversion characteristics.

異種の半導体材料により接合を形成したヘテロ
接合太陽電池の光電変換特性を制限する要因の一
つに、二つの半導体層の厚みの問題がある。
One of the factors that limits the photoelectric conversion characteristics of a heterojunction solar cell in which junctions are formed using different semiconductor materials is the problem of the thickness of the two semiconductor layers.

薄膜形ヘテロ接合太陽電池では、その製造にど
のような薄膜形成技術を用いるかにより、各半導
体薄膜の膜厚に制限の生じる場合もある。本発明
は、このような薄膜形成技術により生じる膜厚の
制限による光電変換特性の制限を改善することを
目的とするものである。
In thin-film heterojunction solar cells, there may be restrictions on the thickness of each semiconductor thin film depending on what kind of thin-film formation technology is used in its manufacture. The present invention aims to improve the limitations on photoelectric conversion characteristics due to limitations on film thickness caused by such thin film formation techniques.

薄膜形成技術の一つとしてスクリーン印刷、ベ
ルトコンベア炉焼成による製造方法がある。この
方法の特長は、簡単に実施でき、かつ量産性に富
み、安価な太陽電池が得られることにある。しか
し、スクリーン印刷工程で半導体層の膜厚がほぼ
決まつてしまい、薄い膜を形成しにくいという欠
点がある。まず、従来例について図面を用いて説
明する。
One of the thin film forming techniques is screen printing and belt conveyor furnace firing. The advantage of this method is that it is easy to implement, has high mass productivity, and provides inexpensive solar cells. However, there is a drawback that the thickness of the semiconductor layer is almost determined by the screen printing process, making it difficult to form a thin film. First, a conventional example will be explained using the drawings.

第1図は、これまでの製造方法により得られて
いる薄膜太陽電池の断面図である。
FIG. 1 is a cross-sectional view of a thin film solar cell obtained by a conventional manufacturing method.

ガラス基板1上にスクリーン印刷法でCdS層を
塗布し、ベルトコンベア炉にて焼成することによ
りCdS焼結膜2を製造する。このCdS層上に同じ
くスクリーン印刷法でCdTe層を塗布し、ベルト
コンベア炉でこれを焼成することにより平坦で気
孔の少ないCdTe焼結膜3を得CdS/CdTeヘテロ
接合を形成する。この上にCdTe膜とオーミツク
接触をする電極層4、およびCdS膜とオーミツク
接触をする電極層5をそれぞれ形成し、それらに
リード線6を取りつけて、薄膜太陽電池を得てい
る。このようにして作られたCdS/CdTe太陽電
池の出力特性を制限する要因の一つとしてCdS層
とCdTe層の膜厚がある。この膜厚のコントロー
ルは、(1)ステンレススクリーンのメツシ数とエマ
ルジヨン膜厚(感光性乳剤)、(2)印刷ペーストの
粘度、(3)印刷スクリーンと被印刷基板との間隔、
(4)スキージにかける圧力(印圧)などを変化させ
ることにより行なつていた。印刷パターンを精度
よく、多量に印刷する場合に、印刷膜厚のコント
ロールに影響を与える因子の大きなものは上述の
(1),(2)である。例えば、粒径約1μmのCdS粉末
をプロピレングリコール(粘結剤)を加えて混練
し、粘度約1000ポイズのペーストを作り、これを
用いて、165メツシユ、250メツシユ、400メツシ
ユのステンレスクリーンに25μm厚のエマルジヨ
ン層をコートしたスクリーンマスクでガラス板上
にCdS膜を塗布し、乾燥後の膜厚を調べると、そ
れぞれ約70μm、約55μm、約40μmであつた。
ところが、CdS膜の焼結のために融剤として
CdCl2を適量添加している。このCdCl2添加量に
より焼結後のCdS膜の膜厚も変化する。例えば、
CdCl2量をCdSに対して5wt%、10wt%、15wt%
添加すると、焼成後の膜厚は焼成前のその値の約
65%、約55%、約50%にそれぞれ減少する。しか
し、CdCl2融剤量は焼成後の結晶粒径やCdSの比
抵抗に影響を与えるため、任意に選ぶことができ
ず、太陽電池素子として必要なCdS膜の特性から
融剤添加量は制限され、融剤量によるCdS焼結膜
の減少割合も制限される。一方、印刷ペーストの
粘度を変化させることにより印刷後の膜厚も変化
させることができるが、この値は前述のステンレ
ススクリーンのメツシユ数を変えた場合よりも少
なく大な変化は期待できない。また、粘度を低く
して膜厚を薄くしようとすると、印刷パターンの
端がだれたりにじんだりし、正確なパターンを印
刷することがむずかしくなる。以上のことより、
これまでは印刷後のCdS膜の膜厚のコントロール
は一般的には、ステンレススクリーンのメツシユ
数とエマルジヨン厚を変えることにより行われて
いた。
A CdS sintered film 2 is manufactured by applying a CdS layer onto a glass substrate 1 by screen printing and firing it in a belt conveyor furnace. A CdTe layer is applied on this CdS layer by the same screen printing method, and is fired in a belt conveyor furnace to obtain a CdTe sintered film 3 that is flat and has few pores, forming a CdS/CdTe heterojunction. An electrode layer 4 making ohmic contact with the CdTe film and an electrode layer 5 making ohmic contact with the CdS film are formed thereon, and lead wires 6 are attached to them to obtain a thin film solar cell. One of the factors that limits the output characteristics of CdS/CdTe solar cells made in this way is the thickness of the CdS and CdTe layers. This film thickness is controlled by (1) the mesh number of the stainless steel screen and the emulsion film thickness (photosensitive emulsion), (2) the viscosity of the printing paste, (3) the distance between the printing screen and the printed substrate,
(4) This was done by changing the pressure (printing pressure) applied to the squeegee. When printing large quantities of printed patterns with high precision, the major factors that affect the control of printing film thickness are the above-mentioned factors.
(1) and (2). For example, CdS powder with a particle size of about 1 μm is kneaded with propylene glycol (binder) to make a paste with a viscosity of about 1000 poise, and this is used to coat 165 mesh, 250 mesh, and 400 mesh stainless steel cleans with a diameter of 25 μm. A CdS film was applied onto a glass plate using a screen mask coated with a thick emulsion layer, and the film thicknesses after drying were examined to find that they were approximately 70 μm, approximately 55 μm, and approximately 40 μm, respectively.
However, it is used as a flux for sintering CdS films.
Appropriate amount of CdCl 2 is added. The thickness of the CdS film after sintering also changes depending on the amount of CdCl 2 added. for example,
CdCl2 amount is 5wt%, 10wt%, 15wt% relative to CdS
When added, the film thickness after firing is approximately that value before firing.
This decreases to 65%, approximately 55%, and approximately 50%, respectively. However, since the amount of CdCl 2 flux affects the crystal grain size and specific resistance of CdS after firing, it cannot be selected arbitrarily, and the amount of flux added is limited due to the characteristics of the CdS film required for solar cell elements. Therefore, the reduction rate of the CdS sintered film depending on the amount of flux is also limited. On the other hand, by changing the viscosity of the printing paste, it is possible to change the film thickness after printing, but this value is smaller than the case where the number of meshes of the stainless steel screen described above is changed, and a large change cannot be expected. Furthermore, if an attempt is made to reduce the film thickness by lowering the viscosity, the edges of the printed pattern will sag or bleed, making it difficult to print an accurate pattern. From the above,
Until now, the thickness of the CdS film after printing was generally controlled by changing the mesh number of the stainless steel screen and the emulsion thickness.

以上のことはCdTe層の膜厚コントロールの場
合にも同様である。
The above also applies to controlling the thickness of the CdTe layer.

本発明は印刷後の膜厚は同じであつても、焼成
後の膜厚を実質減少させた構造とすることによ
り、上述の問題点を解決したものである。
The present invention solves the above-mentioned problems by creating a structure in which the film thickness after firing is substantially reduced even though the film thickness after printing is the same.

以下、本発明の実施例について、第2図を用い
て説明する。
Examples of the present invention will be described below with reference to FIG. 2.

ガラス基板7上に250メツシユのステンレスス
クリーンでエマルジヨン層厚25μmの印刷スクリ
ーンを用いCdCl2量10wt%添加のCdS層を塗布
し、均熱長が50cmあるベルトコンベア炉で焼成温
度690℃、ベルトスピード10mm/分にてアルミナ
製の焼成ボートを用いて焼成する。このようにし
て得られたCdS膜8は結晶粒径約15μm、比抵抗
が約0.5Ωcm、膜厚が約25μmである。この表面
は比較的平坦である。このCdS膜上に400メツシ
ユのステンレススクリーンでエマルジヨン厚12μ
mの印刷スクリーンを用いCdCl2量1wt%以下の
量を添加したCdTe層を塗布形成する。この
CdTe層を焼成ボートを用い、焼成温度620〜680
℃、ベルトスピード80〜120mm/分にて焼成す
る。このようにして得られたCdTe膜9は比抵抗
は約103Ωcmであるが非常に多孔質な膜になつて
いる。しかし、このCdSとCdTeの二つの層の接
合断面を調べると、第2図のごとくなつており、
接合部付近は良好に異種接合を形成している。こ
のCdTe膜9の多孔質でない部分の厚みは約10μ
m以下であり、その上部に多孔質なCdTe層が形
成され、全体で約15〜20μmの厚さとなつてい
る。このような多孔質層を含むCdTe膜9が形成
された理由は、CdTeに添加するCdCl2量を従来
の添加量に比べ約1/10に減少させたことと、焼成
スピードを従来の約3倍以上速くしたことによ
り、CdTe膜の結晶成長や平坦な膜成長が阻害さ
れたためではないかと考えられる。しかし、表面
部分の多孔質CdTe層の下の気孔のない均質な
CdTe層でCdS/CdTe接合の接合特性が決まるた
め、この多孔質層を表面にもつCdTe膜9を用い
ても接合特性が悪くなることはなく、逆に有効に
働くCdTe層の厚みが減少した効果をもたらし、
素子の直列抵抗を減少させている。このCdTe膜
9の上にカーボンを印刷で塗布し、350℃、N2
囲気中20分間熱処理をすることによりオーミツク
電極10を形成する。この電極10は印刷時に
CdTe膜9の多孔質の表面層へ入り込み実質上
CdTe層との接触面積を増やす働きをする。また
多孔質を含まないCdTe層の近傍まで入り込むこ
ともあり、実質的にCdTe層が薄くなつた働きを
し、キヤリアの集収効率の向上に役立つ。一方
CdS膜8上にオーミツク電極としてIn―Sn電極1
1あるいはAg―In電極11を形成し、太陽電池
素子とする。 このように同じ印刷条件下で作製
したCdTe膜でも、融剤添加量を減少させた
CdTe膜は表面に多孔層をもつCdTe層を形成さ
せやすく、この多孔質層が実質的にCdTe層を薄
くさせた効果を発揮し、CdS/CdTeヘテロ接合
太陽電池の効率向上をもたらす。
A CdS layer containing 10 wt% of CdCl2 was applied onto the glass substrate 7 using a printing screen with a 250-mesh stainless steel screen and an emulsion layer thickness of 25 μm, and a belt conveyor furnace with a soaking length of 50 cm was used to bake at a temperature of 690°C and a belt speed. Firing is performed using an alumina firing boat at 10 mm/min. The CdS film 8 thus obtained has a crystal grain size of about 15 μm, a specific resistance of about 0.5 Ωcm, and a film thickness of about 25 μm. This surface is relatively flat. The emulsion thickness is 12μ with a 400 mesh stainless steel screen on this CdS film.
A CdTe layer containing 1 wt % or less of CdCl 2 was applied using a printing screen of 1.0 m. this
CdTe layer is fired using a boat, firing temperature 620-680
℃, belt speed 80-120 mm/min. The CdTe film 9 thus obtained has a specific resistance of approximately 10 3 Ωcm, but is a very porous film. However, when we examine the junction cross section of these two layers of CdS and CdTe, we find that it looks like Figure 2.
A good heterojunction is formed near the junction. The thickness of the non-porous part of this CdTe film 9 is approximately 10μ
A porous CdTe layer is formed on top of the CdTe layer, and the total thickness is about 15 to 20 μm. The reason why the CdTe film 9 containing such a porous layer was formed is that the amount of CdCl 2 added to CdTe was reduced to about 1/10 compared to the conventional amount, and the firing speed was reduced to about 3 times the conventional amount. It is thought that this is because crystal growth and flat film growth of the CdTe film were inhibited by increasing the speed by more than twice as fast. However, the homogeneous structure without pores under the porous CdTe layer in the surface area
Since the bonding characteristics of the CdS/CdTe bond are determined by the CdTe layer, the bonding characteristics do not deteriorate even when a CdTe film 9 with this porous layer on the surface is used; on the contrary, the thickness of the effective CdTe layer is reduced. bring about the effect,
This reduces the series resistance of the element. Carbon is coated on this CdTe film 9 by printing, and an ohmic electrode 10 is formed by heat treatment at 350° C. in an N 2 atmosphere for 20 minutes. This electrode 10 is
Penetrates into the porous surface layer of the CdTe film 9 and virtually
It works to increase the contact area with the CdTe layer. In addition, it may penetrate into the vicinity of the CdTe layer, which does not contain porous material, so that the CdTe layer essentially becomes thinner, which helps improve the carrier collection efficiency. on the other hand
In-Sn electrode 1 as an ohmic electrode on CdS film 8
1 or an Ag-In electrode 11 is formed to form a solar cell element. Even with CdTe films produced under the same printing conditions, the amount of fluxing agent added was reduced.
The CdTe film is easy to form a CdTe layer with a porous layer on its surface, and this porous layer essentially makes the CdTe layer thinner, improving the efficiency of the CdS/CdTe heterojunction solar cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の薄膜太陽電池の構造の一例を示
す断面図、第2図は本発明の薄膜太陽電池の一実
施例の構造を示す断面図である。 7……ガラス基板、8……CdS膜、9……
CdTe膜、10,11……電極。
FIG. 1 is a sectional view showing an example of the structure of a conventional thin film solar cell, and FIG. 2 is a sectional view showing the structure of an embodiment of the thin film solar cell of the present invention. 7...Glass substrate, 8...CdS film, 9...
CdTe film, 10, 11... electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラス基板上に、一導電型の第1の半導体層
を塗布焼成し、前記第1の半導体層上にCdCl2
1重量%以下の量添加した前記第1の半導体層と
ヘテロ接合をなすCdTe層を塗布し、焼成ボート
を用いて焼成することにより、表面部分が多孔質
で、前記第1の半導体層との接合部が多孔質でな
い他方の導電型のCdTe膜を形成し、前記CdTe
膜の多孔質表面部に電極を形成することを特徴と
する薄膜太陽電池の製造方法。
1. A first semiconductor layer of one conductivity type is coated and fired on a glass substrate, and a heterojunction is formed with the first semiconductor layer in which CdCl 2 is added in an amount of 1% by weight or less on the first semiconductor layer. By applying a CdTe layer and firing it using a firing boat, a CdTe film of the other conductivity type, which has a porous surface and a non-porous joint with the first semiconductor layer, is formed.
A method for producing a thin film solar cell, comprising forming an electrode on a porous surface of the film.
JP10428980A 1980-07-31 1980-07-31 Thin film solar battery Granted JPS5730379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10428980A JPS5730379A (en) 1980-07-31 1980-07-31 Thin film solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10428980A JPS5730379A (en) 1980-07-31 1980-07-31 Thin film solar battery

Publications (2)

Publication Number Publication Date
JPS5730379A JPS5730379A (en) 1982-02-18
JPS6142435B2 true JPS6142435B2 (en) 1986-09-20

Family

ID=14376764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10428980A Granted JPS5730379A (en) 1980-07-31 1980-07-31 Thin film solar battery

Country Status (1)

Country Link
JP (1) JPS5730379A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393170A (en) * 1986-10-08 1988-04-23 Matsushita Electric Ind Co Ltd Photovoltaic element and manufacture thereof
JPH0332823A (en) * 1989-06-29 1991-02-13 Toyoda Gosei Co Ltd Connecting method for weather strip
JPWO2012115267A1 (en) * 2011-02-25 2014-07-07 京セラ株式会社 Photoelectric conversion element and photoelectric conversion device
JPWO2012115265A1 (en) * 2011-02-25 2014-07-07 京セラ株式会社 Photoelectric conversion element and photoelectric conversion device
JP2013222762A (en) * 2012-04-13 2013-10-28 Sharp Corp Compound semiconductor layer and manufacturing method of the same, and compound thin film solar cell and manufacturing method of the same

Also Published As

Publication number Publication date
JPS5730379A (en) 1982-02-18

Similar Documents

Publication Publication Date Title
EP0743686A3 (en) Precursor for semiconductor thin films and method for producing semiconductor thin films
JPS5818961B2 (en) Method of forming refractory metallurgy on ceramic substrate
JPS6142435B2 (en)
JPS6396809A (en) Conducting paste
JP2004063572A (en) Negative characteristic thermistor and manufacture therefor
JPH104206A (en) Compound semiconductor thin film forming method and optoelectric transducer using the thin film
JP2006066748A (en) Semiconductor device, solar battery, and manufacturing methods thereof
JPS58118169A (en) Manufacture of photovoltaic element
JP2588217B2 (en) Gas sensor manufacturing method
JP3465852B2 (en) Method for producing chalcopyrite thin film
JP4111567B2 (en) Resistance element manufacturing method
JPH01179743A (en) Production of sintered cds film
JPH05167090A (en) Fabrication of solar cell
JPH0818078A (en) Manufacture of group ii-vi compound semiconductor solar cell
JPS6393170A (en) Photovoltaic element and manufacture thereof
JPS59168669A (en) Paste material for semiconductor device
JPH03293779A (en) Manufacture of photoelectric conversion element
JPS6159552B2 (en)
JPH03102896A (en) Multilayer wiring ceramic board
CN116334554A (en) Production process of platinum resistance temperature sensor chip
JPS6253956B2 (en)
JPH0730138A (en) Manufacture of cds sintered film
JPH0794769A (en) Manufacture of solar cell
JPH0579192B2 (en)
JPH02177575A (en) Photovoltaic element