JPS6253956B2 - - Google Patents

Info

Publication number
JPS6253956B2
JPS6253956B2 JP57224008A JP22400882A JPS6253956B2 JP S6253956 B2 JPS6253956 B2 JP S6253956B2 JP 57224008 A JP57224008 A JP 57224008A JP 22400882 A JP22400882 A JP 22400882A JP S6253956 B2 JPS6253956 B2 JP S6253956B2
Authority
JP
Japan
Prior art keywords
cds
sintered film
powder
content
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57224008A
Other languages
Japanese (ja)
Other versions
JPS59115577A (en
Inventor
Hitoshi Matsumoto
Hiroshi Uda
Yasumasa Komatsu
Akihiko Nakano
Kyoshi Kuribayashi
Seiji Ikegami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57224008A priority Critical patent/JPS59115577A/en
Publication of JPS59115577A publication Critical patent/JPS59115577A/en
Publication of JPS6253956B2 publication Critical patent/JPS6253956B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焼結膜型CdS/CdTe構造の太陽電池
に適した硫化カドミウム焼結膜の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a sintered cadmium sulfide film suitable for a solar cell having a sintered film type CdS/CdTe structure.

従来例の構成とその問題点 硫化カドミウム(CdS)膜を利用した太陽電池
は、CdSが多結晶であつてもかなり性能の良い太
陽電池が実現できるので、大面積化が可能である
だけでなく、製造技術的にも制約が少なく量産し
やすいため、今日広く研究されている。その中で
CdS/CdTe構造の太陽電池は性能が高く寿命も
安定であると言われている。また、このCdS/
CdTe構造の太陽電池を量産性に優れたスクリー
ン印刷,焼結という方法で製造しようという試み
もなされており、この方法で作製されたCdS焼結
膜/CdTe焼結膜構造の太陽電池(以下焼結膜型
CdS/CdTe太陽電池という)では変換効率8%
程度のものも得られている。
Conventional configurations and their problems Solar cells using cadmium sulfide (CdS) films can have fairly good performance even if the CdS is polycrystalline, so they are not only capable of increasing their area. , is widely studied today because it has few restrictions in terms of manufacturing technology and is easy to mass produce. among them
Solar cells with a CdS/CdTe structure are said to have high performance and a stable lifespan. Also, this CdS/
Attempts have also been made to manufacture solar cells with a CdTe structure using screen printing and sintering, which are excellent in mass production.
(CdS/CdTe solar cells) have a conversion efficiency of 8%.
Some have been obtained.

この焼結膜型CdS/CdTe太陽電池に使用され
るCdS焼結膜の出発原料は、従来は粒径0.1μm
程度のCdS生粉を700℃近傍で化焼して粒成長さ
せ、その後粉砕して2〜3μmの粒径に調製した
ものを用いていたが、この仮焼,粉砕工程は非常
に面倒なものであつた。
Conventionally, the starting material for the CdS sintered film used in this sintered film type CdS/CdTe solar cell has a particle size of 0.1 μm.
The calcination and pulverization processes used were made by calcining CdS raw powder at around 700°C to grow grains, and then crushing them to a particle size of 2 to 3 μm. It was hot.

発明の目的 本発明は上記の問題点に鑑みて成されたもので
面倒な仮焼,粉砕工程を省略しても十分低抵抗で
焼結性の良いCdS焼結膜の製造方法を提供するも
のである。
Purpose of the Invention The present invention was made in view of the above-mentioned problems, and provides a method for producing a CdS sintered film that has sufficiently low resistance and good sinterability even if the troublesome calcination and pulverization steps are omitted. be.

発明の構成 本発明の製造方法は、平均粒径が1〜10μmで
硫酸イオン(SO4 --)含有量が0.2wt%〜1.5wt%
の硫化ガドミウム(CdS)粉末に、塩化カドミウ
ム(CdCl2)を添加してペーストを作成し、この
ペーストをガラス基板に塗布した後焼成するもの
である。上記したように粒径1〜10μmで、
SO4 --含有量0.2wt%〜1.5wt%のCdS生粉を出発
原料として使用すれば、仮焼粉砕工程を省略して
も低抵抗で焼結性の良いCdS焼結膜を作製するこ
とができ、このCdS焼結膜を用いて高性能の焼結
膜型CdS/CdTe太陽電池の製造が可能となる。
SO4 --イオンを含有するCdS粉を用いるとなぜ低
抵抗で焼結性の良いCdS焼結膜が得られるかの理
由は下記のように考えられる。SO4 --はCdSO4
して存在しており、CdS焼成温度600℃〜700℃で
CdSと次のように反応し、Cdが化学量論比より
多い低抵抗のCd1+xSができる。
Structure of the Invention The production method of the present invention has an average particle size of 1 to 10 μm and a sulfate ion (SO 4 -- ) content of 0.2 wt% to 1.5 wt%.
Cadmium chloride (CdCl 2 ) is added to gadmium sulfide (CdS) powder to create a paste, which is applied to a glass substrate and then fired. As mentioned above, with a particle size of 1 to 10 μm,
SO 4 --If CdS raw powder with a content of 0.2wt% to 1.5wt% is used as a starting material, a CdS sintered film with low resistance and good sinterability can be produced even if the calcination and pulverization process is omitted. Using this CdS sintered film, it is possible to manufacture high-performance sintered film type CdS/CdTe solar cells.
The reason why a CdS sintered film with low resistance and good sinterability can be obtained by using CdS powder containing SO 4 -- ions is thought to be as follows. SO4 -- exists as CdSO4 , and at CdS calcination temperature of 600℃~700℃
It reacts with CdS as follows, producing Cd 1+x S with a lower resistance than the stoichiometric ratio of Cd.

CdS+CdSO4=2Cd+2SO2 CdS+xCd =Cd1+xS このCd1+xSの存在は格子欠陥が多いので、焼
結性を良くするのにも効果があるのであろう。し
かしながらSO4 --量が余り多くなると次の副次的
な反応により、CdOが大量にできて不純物とな
り、太陽電池の性能を低下すると考えられる。
CdS+CdSO 4 =2Cd+2SO 2 CdS+xCd =Cd 1+x S The presence of Cd 1+x S has many lattice defects, so it is probably effective in improving sinterability. However, if the amount of SO 4 -- increases too much, a large amount of CdO is produced as an impurity due to the following side reaction, which is thought to reduce the performance of the solar cell.

CdSO4=CdO+SO2+1/2O2 実施例の説明 以下本発明の実施例を図面を参照して具体的に
説明する。第1図は以下の各実施例で作製した焼
結膜型CdS/CdTe太陽電池の断面図であり、図
中1はガラス基板、2はCdS焼結膜、3はCdTe
焼結膜、4はCdTe焼結膜3上に形成したカーボ
ン電極、5はCdS焼結膜2上に設けたAg―In電
極、6はカーボン電極4上に設けたAg電極であ
る。
CdSO 4 =CdO+SO 2 +1/2O 2 Description of Examples Examples of the present invention will be specifically described below with reference to the drawings. Figure 1 is a cross-sectional view of a sintered film type CdS/CdTe solar cell produced in each of the following examples, in which 1 is a glass substrate, 2 is a CdS sintered film, and 3 is a CdTe solar cell.
4 is a carbon electrode formed on the CdTe sintered film 3; 5 is an Ag-In electrode provided on the CdS sintered film 2; and 6 is an Ag electrode provided on the carbon electrode 4.

〔実施例 1〕 平均粒径2.0μmでSO4 --含有量0.01wt%のCdS
生粉(以下A生粉と言う)90grに粒径2.1μmで
SO4 --含有量5.0wt%のCdS生粉(以下B生粉と
言う)10grを加えることにより、SO4 --含有量
0.51wt%の混合粉末を作製した。この混合粉末に
融剤として働くCdCl2を10gr加え、粘度調節のた
めにプロピレングリコールを適当量入れCdSペー
ストを作製した。次に、このペーストをスクリー
ン印刷機を用いて縦100mm,横100mm,厚さ1.2mm
のガラス基板1上に印刷し、乾燥した後有孔蓋付
きアルミナ製焼成ボードに入れ、ベルト式連続焼
成炉を用いてN2雰囲気中で焼成した。焼成炉中
央部の温度は約690℃であり、この温度で約1.5時
間焼成することによりCdS焼結膜2が得られた。
焼成中,有孔蓋付きアルミナボートの中では、融
剤として加えたCdCl2が融解してCdCl2の蒸気が
充満する。CdS粉末はCdCl2に一部溶解しながら
再結晶が徐々に行なわれ、結晶成長が促進され
る。焼成が進むにつれて、ボード内に充満してい
たCdCl2の蒸気は、徐々にボートにあけられた孔
を通つて炉内に出ていく。このようにして作製し
たCdS焼結膜の膜厚は25μmで面抵抗は70Ω/□
であつた。
[Example 1] CdS with average particle size of 2.0 μm and SO 4 content of 0.01 wt%
Raw flour (hereinafter referred to as A raw flour) 90gr with a particle size of 2.1μm
By adding 10g of CdS raw powder (hereinafter referred to as B raw powder) with SO 4 -- content of 5.0wt % , SO 4 -- content
A 0.51wt% mixed powder was prepared. A CdS paste was prepared by adding 10 gr of CdCl 2 , which acts as a flux, to this mixed powder, and adding an appropriate amount of propylene glycol to adjust the viscosity. Next, this paste was printed using a screen printing machine to a thickness of 100 mm long, 100 mm wide, and 1.2 mm thick.
After it was dried, it was placed in an alumina firing board with a perforated lid and fired in an N 2 atmosphere using a belt-type continuous firing furnace. The temperature at the center of the firing furnace was about 690°C, and the CdS sintered film 2 was obtained by firing at this temperature for about 1.5 hours.
During firing, the CdCl 2 added as a flux melts in the alumina boat with a perforated lid, filling it with CdCl 2 vapor. The CdS powder is partially dissolved in CdCl 2 and recrystallized gradually, promoting crystal growth. As firing progresses, the CdCl 2 vapor that filled the board gradually escapes into the furnace through holes drilled in the boat. The thickness of the CdS sintered film prepared in this way is 25μm, and the sheet resistance is 70Ω/□
It was hot.

次にテルル化カドミウムの粉末100grに対し、
CdCl21grと適当量のプロピレングリコールを加
えてテルル化カドミウムペーストを作製した。こ
のペーストをスクリーン印刷機を用いて、CdS焼
結膜2上に印刷し、乾燥した後、有孔蓋付きアル
ミナボートに入れ、ベルト式連続焼成炉を用いて
N2雰囲気中620℃で約1時間焼成した。
Next, for 100 gr of cadmium telluride powder,
A cadmium telluride paste was prepared by adding 1gr of CdCl 2 and an appropriate amount of propylene glycol. This paste was printed on the CdS sintered film 2 using a screen printer, and after drying, it was placed in an alumina boat with a perforated lid, and then heated using a belt-type continuous firing furnace.
It was baked at 620° C. for about 1 hour in a N 2 atmosphere.

このようにして作製したCdTe焼結膜3上にカ
ーボンペーストをスクリーン印刷機を用いて印刷
し、乾燥後、350℃で30分間不活性ガス中で熱処
理し、カーボン電極4を形成した。カーボンペー
スト中には微量のアクセプタ不純物が含有されて
おり、熱処理中にこの不純物がCdTe中に拡散し
てp形のCdTeができ、n形のCdSとの間にp―
n接合が形成される。最後にCdS側にAg―In電
極5を、カーボン電極上にAg補助電極6を形成
して、太陽電池素子を完成した。図面は完成した
太陽電池素子の断面図である。この太陽電池素子
の変換効率は8.5%であつた。
Carbon paste was printed on the CdTe sintered film 3 thus produced using a screen printer, and after drying, it was heat-treated at 350° C. for 30 minutes in an inert gas to form a carbon electrode 4. The carbon paste contains a small amount of acceptor impurity, and during heat treatment, this impurity diffuses into CdTe to form p-type CdTe, which forms a p- type between it and n-type CdS.
An n-junction is formed. Finally, an Ag--In electrode 5 was formed on the CdS side and an Ag auxiliary electrode 6 was formed on the carbon electrode to complete the solar cell element. The drawing is a cross-sectional view of a completed solar cell element. The conversion efficiency of this solar cell element was 8.5%.

比較のため、SO4 --含有量の少ないA生粉のみ
で作製したCdS焼結膜は、膜厚は25μmと変らな
いが、面抵抗が1KΩ/□を越えた。このCdS焼
結膜から上記と同様にCdTe焼結膜,カーボン電
極,Ag―In電極,Ag電極を形成して作製した太
陽電池素子の変換効率は2.1%と低いものであつ
た。又A生粉に添加するB生粉の量が少なく、混
合粉末中のSO4 --含有量が0.2wt%未満である場
合には、面抵抗100Ω/□以上のCdS焼結膜の生
じる割合が増加し、太陽電池素子の変換効率が低
下した。混合原料中のSO4 --含有量が0.2wt%以
上だと比較的安定して100Ω/□以下のCdS焼結
膜が得られた。
For comparison, a CdS sintered film made only with A raw powder with a low SO 4 -- content had a film thickness of 25 μm, which was the same, but a sheet resistance of over 1 KΩ/□. The conversion efficiency of a solar cell element fabricated by forming a CdTe sintered film, a carbon electrode, an Ag-In electrode, and an Ag electrode from this CdS sintered film in the same manner as above was as low as 2.1%. In addition, if the amount of raw powder B added to raw powder A is small and the SO 4 content in the mixed powder is less than 0.2wt%, the proportion of CdS sintered films with a sheet resistance of 100Ω/□ or more will increase. increased, and the conversion efficiency of the solar cell element decreased. When the SO 4 -- content in the mixed raw material was 0.2 wt% or more, a CdS sintered film with a resistance of 100 Ω/□ or less was obtained relatively stably.

一方、混合粉末中のSO4 --含有量が多くなると
100Ω/□以下のCdS焼結膜が安定して得られる
が、SO4 --含有量が1.5wt%をこえると太陽電池
素子の性能、特に開放端電圧が低下し変換効率が
悪化した。第2図に平均粒径2〜2.1μmのCdS
粉中のSO4 --含有量と太陽電池素子の変換効率と
の関係を示す。高性能の太陽電池素子を得るには
SO4 --含有量が0.2〜1.5wt%の混合原料を用いる
ことが必要である。
On the other hand, when the SO 4 content in the mixed powder increases,
Although a CdS sintered film of 100Ω/□ or less can be stably obtained, when the SO 4 -- content exceeds 1.5wt%, the performance of the solar cell element, especially the open circuit voltage, deteriorates and the conversion efficiency deteriorates. Figure 2 shows CdS with an average particle size of 2 to 2.1 μm.
The relationship between the SO 4 -- content in powder and the conversion efficiency of solar cell elements is shown. How to obtain high-performance solar cell elements
It is necessary to use a mixed raw material with SO 4 -- content of 0.2-1.5 wt%.

〔実施例 2〕 平均粒径3.5μmでSO4 --含有量0.05wt%のCdS
生粉100grにCdSO4を2.0gr加えることにより
SO4 --含有量0.97wt%の原料を作製した。この原
料にCdCl210grと適当量のプロピレングリコール
を加えてCdSペーストをつくり、実施例1と同様
の工程でCdS焼結膜を作製した。得られたCdS焼
結膜の膜厚は31μmで面抵抗は65Ω/□であつ
た。このCdS焼結膜を用いて、実施例1と同様の
方法で作製した焼結型CdS/CdTe太陽電池素子
の変換効率は8.1%であつた。
[Example 2] CdS with an average particle size of 3.5 μm and SO 4 content of 0.05 wt%
By adding 2.0gr of CdSO4 to 100gr of raw flour
A raw material containing SO 4 --0.97wt % was prepared. A CdS paste was prepared by adding 10 gr of CdCl 2 and an appropriate amount of propylene glycol to this raw material, and a CdS sintered film was prepared in the same process as in Example 1. The thickness of the obtained CdS sintered film was 31 μm, and the sheet resistance was 65Ω/□. A sintered CdS/CdTe solar cell element produced using this CdS sintered film in the same manner as in Example 1 had a conversion efficiency of 8.1%.

比較のため、平均粒径0.5μmでSO4 --含有量
0.02wt%のCdS生粉にCdSO4を加え、SO4 --含有
量を0.97wt%に調製した原料を用いて作製した
CdS焼結膜の膜厚は15μmで、面抵抗は150Ω/
□であつた。このCdS焼結膜を用いて作製した太
陽電池素子の変換効率は4.6%と低いものであつ
た。このようにCdS粒子の粒径が1μm未満だと
焼結膜の膜厚は20μmをこえず、変換効率の低い
太陽電池素子ができやすい。
For comparison, SO 4 --content with an average particle size of 0.5 μm
CdSO 4 was added to 0.02wt% CdS raw powder to adjust the SO 4 content to 0.97wt%.
The thickness of the CdS sintered film is 15μm, and the sheet resistance is 150Ω/
It was □. The conversion efficiency of the solar cell element fabricated using this CdS sintered film was as low as 4.6%. As described above, when the particle size of the CdS particles is less than 1 μm, the thickness of the sintered film does not exceed 20 μm, which tends to result in a solar cell element with low conversion efficiency.

一方、平均粒径10μmをこえるCdS生粉に
CdSO4を添加し、SO4 --含有量を0.97wt%に調製
した原料を用いると、膜厚は大きくなるが焼結性
が悪くなり、面抵抗の低いCdS焼結膜を得るのが
難かしかつた。第3図にSO4 --含有量0.97wt%の
CdS粉の平均粒径と太陽電池素子の変換効率との
関係を示す。粉末の平均粒径が1μm〜10μmだ
と6%以上の性能を安定に得ることができる。
On the other hand, CdS raw powder with an average particle size of over 10 μm
If a raw material containing CdSO 4 is added and the SO 4 -- content is adjusted to 0.97wt%, the film thickness will increase, but the sinterability will deteriorate, making it difficult to obtain a CdS sintered film with low sheet resistance. I did it. Figure 3 shows SO 4 --content 0.97wt%.
The relationship between the average particle size of CdS powder and the conversion efficiency of solar cell elements is shown. When the average particle size of the powder is 1 μm to 10 μm, performance of 6% or more can be stably obtained.

発明の効果 以上説明したように本発明の方法によれば、1
〜10μmの粒径のCdS生粉を用いることにより、
SO4 --含有量を調製するだけで、仮焼,粉砕工程
を用いなくても膜厚が大きく、かつ焼結性の良い
低抵抗のCdS焼結膜を得ることができ、このCdS
焼結膜を用いれば高性能の焼結膜型CdS/CdTe
太陽電池を製造することが可能となる。
Effects of the Invention As explained above, according to the method of the present invention, 1
By using CdS raw powder with a particle size of ~10μm,
By simply adjusting the SO 4 --content , it is possible to obtain a CdS sintered film with a large thickness, good sinterability, and low resistance without using any calcination or pulverization process.
High performance sintered film type CdS/CdTe using sintered film
It becomes possible to manufacture solar cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を用いて得られる焼結膜
型CdS/CdTe太陽電池の一例の断面図である。
第2図はCdS粉中のSO4 --含有量と変換効率との
関係を、又第3図はCdS粉中の平均粒径と変換効
率との関係を示すグラフである。 1……ガラス基板、2……CdS焼結膜、3…テ
ルル化カドミウム焼結膜、4……カーボン電極、
5……Ag―In電極、6……Ag電極。
FIG. 1 is a cross-sectional view of an example of a sintered film type CdS/CdTe solar cell obtained using the method of the present invention.
FIG. 2 is a graph showing the relationship between SO 4 -- content in CdS powder and conversion efficiency, and FIG. 3 is a graph showing the relationship between average particle size in CdS powder and conversion efficiency. 1... Glass substrate, 2... CdS sintered film, 3... Cadmium telluride sintered film, 4... Carbon electrode,
5...Ag-In electrode, 6...Ag electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒径が1〜10μmで硫酸イオン含有量が
0.2wt%〜1.5wt%の硫化カドミウム粉末に塩化カ
ドミウムを添加してペーストを作製し、このペー
ストを耐熱性基板に塗布した後、焼成することを
特徴とする硫化カドミウム焼結膜の製造方法。
1 Average particle size is 1 to 10 μm and sulfate ion content is
A method for producing a sintered cadmium sulfide film, which comprises adding cadmium chloride to 0.2wt% to 1.5wt% cadmium sulfide powder to prepare a paste, applying this paste to a heat-resistant substrate, and then firing it.
JP57224008A 1982-12-22 1982-12-22 Manufacture of cadmium sulfide sintered film Granted JPS59115577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57224008A JPS59115577A (en) 1982-12-22 1982-12-22 Manufacture of cadmium sulfide sintered film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57224008A JPS59115577A (en) 1982-12-22 1982-12-22 Manufacture of cadmium sulfide sintered film

Publications (2)

Publication Number Publication Date
JPS59115577A JPS59115577A (en) 1984-07-04
JPS6253956B2 true JPS6253956B2 (en) 1987-11-12

Family

ID=16807139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57224008A Granted JPS59115577A (en) 1982-12-22 1982-12-22 Manufacture of cadmium sulfide sintered film

Country Status (1)

Country Link
JP (1) JPS59115577A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187281A (en) * 1985-02-14 1986-08-20 Matsushita Electric Ind Co Ltd Manufacture of solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159194A (en) * 1978-06-07 1979-12-15 Agency Of Ind Science & Technol Manufacture for cadmium sulfide sintering film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159194A (en) * 1978-06-07 1979-12-15 Agency Of Ind Science & Technol Manufacture for cadmium sulfide sintering film

Also Published As

Publication number Publication date
JPS59115577A (en) 1984-07-04

Similar Documents

Publication Publication Date Title
EP0955680B1 (en) p-TYPE SEMICONDUCTOR, METHOD FOR MANUFACTURING THE SAME, SEMICONDUCTOR DEVICE, PHOTOVOLTAIC ELEMENT, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JPS6253956B2 (en)
JP2000174306A (en) Manufacture of compound semiconductor thin film
JP2006066748A (en) Semiconductor device, solar battery, and manufacturing methods thereof
JPH07147421A (en) Manufacture of sintered film
JPH0212973A (en) Manufacture of photovoltaic element
US9911519B2 (en) Paste for contacts and solar cell using the same
JPH0256819B2 (en)
JPS61107775A (en) Solar cell
JPS6257269B2 (en)
JPH11195658A (en) Method and device for manufacturing cadmium sulfide film and solar battery using the same
KR920003323B1 (en) MANUFACTURING METHOD OF CD1-xZnxS SINTERING THIN FILM USING CdCl2 SINTERING ACCELERATOR
JPH0818081A (en) Manufacture of sintered film of cds/cdte solar cell
JPH07147422A (en) Cadmium telluride solar cell
JPH04309237A (en) Manufacturing method of chalcopyrite thin film and solar cell
JPH05218473A (en) Manufacture of cds film of cds/cdte solar cell
JPH01181477A (en) Manufacture of transparent electrode for cdte solar battery
JPH03293779A (en) Manufacture of photoelectric conversion element
JPH01179743A (en) Production of sintered cds film
JPS61202482A (en) Manufacture of solar battery cell
JPH02177575A (en) Photovoltaic element
JPH02177377A (en) Manufacture of photovoltaic element
JPH054823B2 (en)
JPS629236B2 (en)
JPH02177574A (en) Manufacture of photovoltaic element