JPS6142402B2 - - Google Patents

Info

Publication number
JPS6142402B2
JPS6142402B2 JP55123011A JP12301180A JPS6142402B2 JP S6142402 B2 JPS6142402 B2 JP S6142402B2 JP 55123011 A JP55123011 A JP 55123011A JP 12301180 A JP12301180 A JP 12301180A JP S6142402 B2 JPS6142402 B2 JP S6142402B2
Authority
JP
Japan
Prior art keywords
superconducting
coil
spacers
spacer
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55123011A
Other languages
Japanese (ja)
Other versions
JPS5748202A (en
Inventor
Tooru Saima
Mutsuhiko Yamaji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP55123011A priority Critical patent/JPS5748202A/en
Publication of JPS5748202A publication Critical patent/JPS5748202A/en
Publication of JPS6142402B2 publication Critical patent/JPS6142402B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils

Description

【発明の詳細な説明】 本発明は超電導電磁気浮上車等に使用される超
電導電磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting electromagnet used in superconducting electromagnetic levitation vehicles and the like.

近年、超電導磁気浮上車に関する研究開発は著
しい進歩を示し、それに使用される超電導電磁石
も強力・大容量・軽量小形化ときびしい要求を満
足すべく改良が続けられて来ている。しかし強
力・大容量化に伴い超電導電磁石のアンペアター
ンはどんどん増加し、その電磁力は想像を越える
大きな力となつて来ている。このために例えば
800KATのレーストラツク状(長円状)超電導コ
イルを使用したものでは、そのコイルの対向長辺
部間に26ton/mもの電磁反撥力が作用するよう
になり、この反撥力をいかにして受け止めてコイ
ルを安定的に固定させるかが超電導電磁石の製作
上大きな技術課題となつて来た。このコイルの安
定固定を失敗すると超電導電磁石は超電導状態を
維持できなくなつて、クエンチ現象に結びついて
行くようになつてしまうのである。
In recent years, research and development regarding superconducting magnetic levitation vehicles has shown remarkable progress, and the superconducting electromagnets used therein have continued to be improved in order to meet the strict requirements of greater strength, larger capacity, lighter weight, and smaller size. However, as superconducting electromagnets become more powerful and have a larger capacity, the ampere-turns of superconducting electromagnets are increasing rapidly, and the electromagnetic force is becoming more powerful than we can imagine. For this, for example
When using an 800 KAT racetrack-shaped (elliptic) superconducting coil, an electromagnetic repulsive force of 26 tons/m acts between the opposing long sides of the coil, and the question is how to absorb this repulsive force. Stably fixing the coil has become a major technical issue in the production of superconducting electromagnets. If this coil is not stably fixed, the superconducting electromagnet will no longer be able to maintain its superconducting state, leading to the quench phenomenon.

ここで、現在計画されている超電導電磁石の一
例を第1図及び第2図により述べると、図中1は
レーストラツク状に構成した断面稍々扁平形の内
槽で、これは図示していないが熱伝達の少ない荷
重支持材と真空及び特殊断熱材により外槽内部に
断熱支持して収納する。またその上下対向長辺部
相互は結合材2により結合して変形を阻止してい
る。3は上記内槽1内部にその長円状に亘つて収
納された超電導コイルで、これはモールド等の手
段で一体化成形して固化固定することで剛性を有
する構造とすることが普通であり、こうした超電
導コイル3にこの長手方向に適当間隔を存して
FRP等の絶縁板4を被嵌させて、その外周にス
ペーサ5を囲設し、このスペーサ5により該コイ
ル3を内槽1内に固定保持している。なお、内槽
1及びスペーサ5等は分割しないと超電導コイル
3の収納ができないことから、縦又は横にそれぞ
れ2分割して構成し、超電導コイル3にかぶせる
ようにして溶接等により結合して組立てることを
考えている。また、図示省略したが超電導電磁石
を構成する上で必要な各種機器・配管等が組込ま
れることは当然である。しかして上記内槽1を前
述の如く外槽内部に断熱支持して極めて低い熱侵
入量におさえた状態とすると共に、その内槽1内
部に液体ヘリウムを満たすことで、超電導コイル
3を極低温に冷却し、これにて超電導状態を保持
して、励磁により永久電流を得るようにしてい
る。なお、その励磁の際に液体ヘリウムが内槽1
内全域を満たすべく流動できるように、又熱侵入
により気化したヘリウムガスが上昇して行ける様
に、上記スペーサ5には孔6を形成しておく。
Here, an example of a superconducting electromagnet currently planned will be described with reference to Figs. 1 and 2. In the figure, 1 is an inner tank with a slightly flat cross section constructed in the shape of a racetrack, which is not shown. It is insulated and stored inside the outer tank using a load support material with low heat transfer, vacuum and special heat insulating material. Further, the upper and lower opposing long sides are connected to each other by a bonding material 2 to prevent deformation. Reference numeral 3 denotes a superconducting coil housed inside the inner tank 1 in an elliptical shape, and this is usually formed into a rigid structure by integrally molding and solidifying and fixing it by means such as molding. , such superconducting coils 3 are provided with appropriate intervals in the longitudinal direction.
An insulating plate 4 made of FRP or the like is fitted and a spacer 5 is placed around the outer periphery of the insulating plate 4, and the coil 3 is fixedly held within the inner tank 1 by the spacer 5. In addition, since the superconducting coil 3 cannot be stored in the inner tank 1 and the spacer 5 unless they are divided, they are constructed by dividing each into two vertically or horizontally, and are assembled by covering the superconducting coil 3 and joining them by welding or the like. I'm thinking about it. Further, although not shown in the drawings, it is a matter of course that various equipment, piping, etc. necessary for configuring the superconducting electromagnet are incorporated. As described above, the inner tank 1 is insulated and supported inside the outer tank to suppress the amount of heat intrusion to an extremely low level, and the inner tank 1 is filled with liquid helium to keep the superconducting coil 3 at an extremely low temperature. The superconductor is then cooled to maintain a superconducting state, and a persistent current is obtained by excitation. In addition, during the excitation, liquid helium flows into the inner tank 1.
Holes 6 are formed in the spacer 5 so that the helium gas can flow to fill the entire area inside the spacer, and so that helium gas vaporized by heat penetration can rise.

こうした上記構成の超電導電磁石の場合、スペ
ーサ5による超電導コイル3の固定保持が十分で
ないと、該コイル3がガタを生じたり励磁による
電磁反撥力や何等かの加振などにより変形・移動
したりして、超電導状態がくずれ、クエンチ現象
に進展してしまう問題が生じる。このため、超電
導電磁石の製作上コイルの安定固定が大きな技術
課題となるのである。
In the case of a superconducting electromagnet having the above structure, if the spacer 5 does not sufficiently hold the superconducting coil 3 fixedly, the coil 3 may become loose or deformed or moved due to electromagnetic repulsion due to excitation or some kind of vibration. This causes the problem that the superconducting state collapses and progresses to a quench phenomenon. For this reason, stably fixing the coil is a major technical challenge when manufacturing superconducting electromagnets.

本発明は上記事情に鑑みなされたもので、その
目的とする処は、超電導コイルを内槽内部に極め
確実に安定固定できて、該コイルの変形移動を完
全に防止し、非常に安定した高励磁能力を保有し
得て超電導磁気浮上車等に最適となる超電導電磁
石を提供しようとすることにある。
The present invention has been made in view of the above circumstances, and its purpose is to fix a superconducting coil extremely reliably and stably inside the inner tank, completely prevent deformation and movement of the coil, and achieve a very stable high-speed The object of the present invention is to provide a superconducting electromagnet that has excitation ability and is optimal for superconducting magnetic levitation vehicles and the like.

以下この発明の一実施例を第3図及び第4図に
より説明する。なお、ここでは要部のみを図示
し、その他は第1図・第2図と同様であるので簡
略化のため図示省略する。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. Note that only the main parts are shown here, and the rest are the same as those in FIGS. 1 and 2, so illustrations are omitted for the sake of simplification.

ここで、第3図は第2図と同じ様にスペーサと
超電導コイル断面を示し、第4図はスペーサを組
付ける際に予圧縮力を与える工具の使用例を示し
ており、3Aで示す超電導コイルは前記同様モー
ルド等により一体化成形により固化固定されてレ
ーストラツク状とされており、この超電導コイル
3Aの長手方向に間隔を存した断面部の周囲に
FRP等の絶縁板4A・4B・4C・4Dを配
し、その外周に孔6A付きの上下2分割構造のス
ペーサ5A・5Bを囲設し、超電導コイル3Aに
金属製のスペーサ5A・5Bが直接当つて超電導
線を傷付けたり短絡したりするのを絶縁板4A乃
至4Dで防止していると共に、その絶縁板4A乃
至4Dで励磁時に生じる電位にて絶縁不良からリ
ークを生じないような十分なクリーページをかせ
ぐようにしている。
Here, Figure 3 shows the cross section of the spacer and the superconducting coil in the same way as Figure 2, and Figure 4 shows an example of the use of a tool that applies precompression force when assembling the spacer. The coil is solidified and fixed by integral molding etc. in the same way as described above to form a racetrack shape, and around the cross-sectional part with intervals in the longitudinal direction of this superconducting coil 3A.
Insulating plates 4A, 4B, 4C, and 4D such as FRP are arranged, and spacers 5A and 5B of upper and lower halves with holes 6A are surrounded on the outer periphery, and metal spacers 5A and 5B are directly attached to the superconducting coil 3A. The insulating plates 4A to 4D prevent the superconducting wires from being damaged or short-circuited by contact with each other, and the insulating plates 4A to 4D have sufficient clearance to prevent leakage from poor insulation due to the potential generated during excitation. I'm trying to earn pages.

ここで、上記2分割構造のスペーサ5A・5B
は上下から超電導コイル3Aを絶縁板4A乃至4
Dを介して挾み込むように溶接ビード8A・8B
により結合されるが、その上下分割スペーサ5
A・5Bは冷却用液体ヘリウム又は気化したヘリ
ウムガスの通路用の孔6Aの外に、超電導コイル
3Aの断面四隅角部に当る所、即ち上下各々の内
周隅角部に円弧状の逃げ溝7A・7B及び7C・
7Dを有して、その逃げ溝のところで適当に弾性
変形可能な構造とされていて、互に第4図に示す
如く締付け工具9により外周から予圧縮力を与え
られた状態にして溶接結合されている。この締付
け工具9はそれぞれ弓形の上下部材9A・9Bを
ボルト9C・9Dで連結した構成で、そのボルト
9C・9Dの締め上げにより上下部材9A・9B
が分割スペース5A・5Bの外周隅角部に接して
押圧するようになるものである。なお、結合した
スペーサ5A・5Bの外側には図示しないが2分
割構造の内槽をかぶせて溶接接合し、更にはその
内槽を外槽内部に断熱支持して収納することで超
電導電磁石を組立構成している。
Here, the spacers 5A and 5B of the above-mentioned two-part structure
The superconducting coil 3A is connected to the insulating plates 4A to 4 from above and below.
Weld beads 8A and 8B are sandwiched through D.
The upper and lower dividing spacers 5
In addition to the hole 6A for passage of cooling liquid helium or vaporized helium gas, A.5B has arcuate escape grooves at the four corners of the cross section of the superconducting coil 3A, that is, at the inner corners of the upper and lower sides. 7A, 7B and 7C.
7D, and have a structure that can be appropriately elastically deformed at the clearance groove, and are welded together with a pre-compression force applied from the outer periphery by a tightening tool 9 as shown in FIG. ing. This tightening tool 9 has a configuration in which arch-shaped upper and lower members 9A and 9B are connected by bolts 9C and 9D, respectively, and when the bolts 9C and 9D are tightened, the upper and lower members 9A and 9B are
is pressed against the outer peripheral corners of the divided spaces 5A and 5B. Although not shown, an inner tank with a two-part structure is placed over the outside of the combined spacers 5A and 5B and welded together, and the inner tank is further heat-insulated and housed inside the outer tank to assemble a superconducting electromagnet. It consists of

而して、上述した構成の超電導電磁石において
は、断面扁平形の超電導コイル3Aの周囲に絶縁
板3A・3B・3C・3Dを配して、コイル表面
の損傷による短絡防止と共に、励磁時に生じる電
位により絶縁不良からリークを生じない様に十分
なクリーページをあたえ、こうした絶縁板3A・
3B・3C・3Dの外周に上下2分割のスペーサ
5A・5Bを囲設して溶接結合するが、この分割
スペーサ5A・5Bはそれぞれ上記絶縁板4A・
4B及び4C・4Dに対向して当接する部分が固
く強いが、内周隅角部に逃げ溝7A・7B及び7
C・7Dを有することで弾性変形可能でばね作用
をもつことになり、こうした分割スペーサ5A・
5Bを締付け工具9で強く押して弾性変形させ
て、その絶縁板4A・4B及び4C・4Dと対向
する部分が超電導コイル3Aに生じる電磁力とほ
とんど近似の力以上の作用力を働くように、予圧
縮力もたせた状態にして溶接ビード8A・8Bに
より結合することで、そのスペーサ5A・5Bが
電磁力より大きい弾性力でもつて絶縁板4A・4
B・4C・4Dを介し超電導コイル3Aを締め上
げて固定保持することが可能となる。この際上記
逃げ溝7A・7B・7C・7Dが絶縁板4A・4
B・4C・4Dの不整を吸収する機能も発揮す
る。しかしてスペーサ5A・5Bに予圧縮力を与
えて結合した状態にした後、そのスペーサ5A・
5Bの外側を覆うべく2分割した内槽を締付固定
して溶接組立てることで、スペーサと内槽は強固
に固定され、超電導コイル3Aに大きな電磁力が
作用しても、その超電導コイル3Aはスペーサ5
A・5Bにより強固に固定締付けされており、又
スペーサ5A・5Bも内槽により強固に固定され
ているので変位する事が不可能で、励磁された時
に超電導コイル3Aが不用意に変形したり移動し
たりしてクエンチに発展するようなことが完全に
防止されるようになつて、極めて高い励磁能力を
保有することが可能となる。
In the superconducting electromagnet configured as described above, insulating plates 3A, 3B, 3C, and 3D are arranged around the superconducting coil 3A having a flat cross section to prevent short circuits due to damage to the coil surface and to reduce the potential generated during excitation. Provide sufficient creepage to prevent leakage from poor insulation.
3B, 3C, and 3D are surrounded by spacers 5A and 5B divided into upper and lower halves and welded together, and these divided spacers 5A and 5B are connected to the insulating plates 4A and 3D, respectively.
The parts facing and contacting 4B, 4C, and 4D are hard and strong, but there are relief grooves 7A, 7B, and 7 at the inner corners.
By having C.7D, it can be elastically deformed and has a spring action, and such a divided spacer 5A.
5B is strongly pressed with the tightening tool 9 to elastically deform it, and the parts facing the insulating plates 4A, 4B and 4C, 4D are pre-deformed so that the acting force is greater than or equal to the electromagnetic force generated in the superconducting coil 3A. By applying compressive force and joining the weld beads 8A and 8B, the spacers 5A and 5B are able to connect the insulating plates 4A and 4 even with an elastic force greater than the electromagnetic force.
It becomes possible to tighten and hold the superconducting coil 3A fixed via B, 4C, and 4D. At this time, the relief grooves 7A, 7B, 7C, and 7D are connected to the insulating plates 4A and 4.
It also has the ability to absorb irregularities in B, 4C, and 4D. After applying a precompression force to the spacers 5A and 5B and making them into a connected state, the spacers 5A and 5B are
By tightening and welding the inner tank divided into two to cover the outside of the superconducting coil 5B, the spacer and the inner tank are firmly fixed, and even if a large electromagnetic force acts on the superconducting coil 3A, the superconducting coil 3A Spacer 5
A and 5B are firmly fixed and tightened, and the spacers 5A and 5B are also firmly fixed by the inner tank, so they cannot be displaced, and the superconducting coil 3A may be inadvertently deformed when excited. This completely prevents the magnet from moving and causing quenching, making it possible to maintain an extremely high excitation ability.

なお、本発明の別の実施例としては2分割のス
ペーサ5A・5Bの互の結合を溶接ビート8A・
8Bで行う代りに、該スペーサ5A・5Bを図示
しないが重ね合せ構造とし締付力をあたえた状態
で合せリーマ通しを行いノツクピン固定を行うよ
うにしてもよく、同様の効果を得ることが可能と
なる。
In addition, as another embodiment of the present invention, the two-split spacers 5A and 5B are connected to each other by welding beets 8A and 5B.
Although not shown, instead of using the spacers 8B, the spacers 5A and 5B may have an overlapping structure, and a tightening force may be applied to the spacers, and then the dowel pins are fixed by passing the joint reamer through, and the same effect can be obtained. becomes.

本発明は以上詳述した如くなしたから、超電導
コイルを内槽内部にスペーサにより極めて確実に
安定固定することができ、超電導状況を阻害する
ようなコイルの変形・移動を完全に防止できて、
非常に安定した高励磁能力を保有し得て超電導磁
気浮上車等に最適となるものである。
Since the present invention is made as described in detail above, the superconducting coil can be very reliably and stably fixed inside the inner tank with the spacer, and the deformation and movement of the coil that would impede the superconducting state can be completely prevented.
It has extremely stable and high excitation ability, making it ideal for superconducting magnetic levitation vehicles and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は現在計画されている超電導電磁石のレ
ーストラツク状内槽主要構造を示す一部断面した
側面図、第2図は第1図の―線に沿う拡大断
面図、第3図は本発明の一実施例を示すスペーサ
と超電導コイル断面との関係説明図、第4図はス
ペーサを組付ける際に予圧縮力を与える工具の使
用例を示す説明図である。 1……内槽、2……結合材、3,3A……超電
導コイル、4,4A,4B,4C,4D……絶縁
材、5,5A,5B……スペーサ、6,6A……
孔、7A,7B,7C,7D……逃げ溝、8A,
8B……溶接ビード、9……締付け工具、9A,
9B……上下部材、9C,9D……ボルト。
Fig. 1 is a partially sectional side view showing the main structure of a racetrack-shaped inner tank of a superconducting electromagnet currently planned, Fig. 2 is an enlarged sectional view taken along the line - in Fig. 1, and Fig. 3 is an inventive concept of the present invention. FIG. 4 is an explanatory diagram showing the relationship between a spacer and a cross section of a superconducting coil, showing one embodiment of the present invention. FIG. 1... Inner tank, 2... Binding material, 3, 3A... Superconducting coil, 4, 4A, 4B, 4C, 4D... Insulating material, 5, 5A, 5B... Spacer, 6, 6A...
Hole, 7A, 7B, 7C, 7D... Relief groove, 8A,
8B...Welding bead, 9...Tightening tool, 9A,
9B...Upper and lower members, 9C, 9D...Bolts.

Claims (1)

【特許請求の範囲】[Claims] 1 超電導磁気浮上車等に使用される超電導電磁
石において、モールド等により固化固定した超電
導コイルの周囲に絶縁板を配し、その絶縁板の外
周に各々内周隅角部に逃げ溝を有して弾性変形可
能とした2分割構造のスペーサを囲設し、且つそ
の両分割スペーサに予圧縮力をもたせて相互に溶
接又はピン等で結合して上記超電導コイルの変
形・移動を阻止して構成したことを特徴とする超
電導電磁石。
1. In superconducting electromagnets used in superconducting magnetic levitation vehicles, etc., an insulating plate is arranged around a superconducting coil solidified and fixed by molding, etc., and each insulating plate has relief grooves at the inner corners on the outer periphery of the insulating plate. A spacer having a two-part structure that can be elastically deformed is enclosed, and both spacers are given a pre-compression force and connected to each other by welding or pins to prevent deformation and movement of the superconducting coil. A superconducting electromagnet characterized by:
JP55123011A 1980-09-05 1980-09-05 Superconductive electromagnet Granted JPS5748202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55123011A JPS5748202A (en) 1980-09-05 1980-09-05 Superconductive electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55123011A JPS5748202A (en) 1980-09-05 1980-09-05 Superconductive electromagnet

Publications (2)

Publication Number Publication Date
JPS5748202A JPS5748202A (en) 1982-03-19
JPS6142402B2 true JPS6142402B2 (en) 1986-09-20

Family

ID=14850027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55123011A Granted JPS5748202A (en) 1980-09-05 1980-09-05 Superconductive electromagnet

Country Status (1)

Country Link
JP (1) JPS5748202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025005U (en) * 1988-06-23 1990-01-12

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106702A (en) * 1985-11-06 1987-05-18 アキレス株式会社 Upper material for shoes
US4854825A (en) * 1987-02-27 1989-08-08 Commonwealth Scientific And Industrial Research Organization Multi-stage vacuum pump
US4780068A (en) * 1987-06-15 1988-10-25 Allied-Signal, Inc. Folded channel radial pump
JP2539121B2 (en) * 1991-09-19 1996-10-02 株式会社日立製作所 Superconducting magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025005U (en) * 1988-06-23 1990-01-12

Also Published As

Publication number Publication date
JPS5748202A (en) 1982-03-19

Similar Documents

Publication Publication Date Title
JPS6142402B2 (en)
US4055826A (en) Resiliently supported windings in an electrical reactor
JPS6142403B2 (en)
JPS58105532A (en) Reactor
JPS623966B2 (en)
JP2848820B2 (en) Superconducting magnet device
US4176333A (en) Magnetic core for single phase electrical inductive apparatus
DE3027605A1 (en) DEVICE FOR TRANSMITTING LARGE FORCES
JPS6112647Y2 (en)
US3614695A (en) Inductive apparatus with magnetic locking plates
JP3167847B2 (en) Superconducting magnet device and its assembly method
JPH0738329B2 (en) Support structure for power supply line for superconducting conductor
JPH0715809A (en) Superconducting magnet apparatus
DE1060556B (en) Electric stirring winding
JPS59208811A (en) Superconductive coil
JPS59217314A (en) Core type reactor with gap
JPS6094712A (en) Manufacture of cooling duct of foil-wound transformer
JPS63184089A (en) Tokamak type nuclear fusion reactor
JPH0443617A (en) Compound insulated reactor
JPH01313794A (en) Structure of tritium breeding blanket
Powell et al. Niobium--tin deals toroidal magnet system for a high field ignition test reactor
JPS6351524B2 (en)
JPS623967B2 (en)
JPH0690505A (en) Superconductive magnet device
JPS63165795A (en) Nuclear fusion device