JPS623966B2 - - Google Patents

Info

Publication number
JPS623966B2
JPS623966B2 JP55123016A JP12301680A JPS623966B2 JP S623966 B2 JPS623966 B2 JP S623966B2 JP 55123016 A JP55123016 A JP 55123016A JP 12301680 A JP12301680 A JP 12301680A JP S623966 B2 JPS623966 B2 JP S623966B2
Authority
JP
Japan
Prior art keywords
superconducting
coil
spacer
inner tank
spacers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55123016A
Other languages
Japanese (ja)
Other versions
JPS5748206A (en
Inventor
Tooru Saima
Mutsuhiko Yamaji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP55123016A priority Critical patent/JPS5748206A/en
Publication of JPS5748206A publication Critical patent/JPS5748206A/en
Publication of JPS623966B2 publication Critical patent/JPS623966B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils

Description

【発明の詳細な説明】 本発明は超電導磁気浮上車等に使用される超電
導電磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting electromagnet used in superconducting magnetic levitation vehicles and the like.

近年、超電導磁気浮上車に関する研究開発は著
しい進歩を示し、それに使用される超電導電磁石
も強力、大容量、軽量小形化ときびしい要求を満
足すべく改良が続けられて来ている。しかし強
力、大容量化に伴い超電導電磁石のアンペアター
ンはどんどん増加し、その電磁力は想像を越える
大きな力となつて来ている。このために例えば
800KATのレーストラツク状(長円状)超電導コ
イルを使用したものでは、そのコイルの対向長辺
部間に26ton/mもの電磁反撥力が作用するよう
になり、この反撥力をいかにして受け止めてコイ
ルを安定的に固定させるかが超電導電磁石の製作
上大きな技術課題となつて来た。このコイルの安
定固定を失敗すると超電導電磁石は超電導状態を
維持できなくなつて、クエンチ現象に結びついて
行くようになつてしまうのである。
In recent years, research and development regarding superconducting magnetically levitated vehicles has shown remarkable progress, and the superconducting electromagnets used therein have continued to be improved to meet strict demands for greater strength, larger capacity, lighter weight, and smaller size. However, as superconducting electromagnets become more powerful and have a larger capacity, the ampere-turns of superconducting electromagnets are increasing rapidly, and the electromagnetic force is becoming more powerful than imagined. For this, for example
When using an 800 KAT racetrack-shaped (elliptic) superconducting coil, an electromagnetic repulsive force of 26 tons/m acts between the opposing long sides of the coil, and the question is how to absorb this repulsive force. Stably fixing the coil has become a major technical issue in the production of superconducting electromagnets. If this coil is not stably fixed, the superconducting electromagnet will no longer be able to maintain its superconducting state, leading to the quench phenomenon.

ここで、現在計画されている超電導電磁石の一
例を第1図及び第2図により述べると、図中1は
レーストラツク状に構成した断面稍々扁平形の内
槽で、これは図示していないが熱伝達の少ない荷
重支持材と真空及び特殊断熱材により外槽内部に
断熱支持して収納する。またその上下対向長辺部
相互は結合材2により結合して変形を阻止してい
る。3は上記内槽1内部にその長円状に亘つて収
納された超電導コイルで、これはモールド等の手
段で一体化成形して固定することで剛性を有する
構造とすることが普通であり、こうした超電導コ
イル3にこの長手方向に適当間隔を有してFRP
等の絶縁板4を被嵌させて、この外周にスペーサ
5を囲設し、このスペーサ5により該コイル3を
内槽1内に固定保持している。なお、内槽1及び
スペーサ5等は分割しないと超電導コイル3の収
納ができないことから、縦又は横にそれぞれ2分
割して構成し、超電導コイル3にかぶせるように
して溶接等により結合して組立てることを考えて
いる。また、図示省略したが超電導電磁石を構成
する上で必要な各種機器、配管等が組込まれるこ
とは当然である。しかして上記内槽1を前述の如
く外槽内部に断熱支持して極めて低い熱侵入量に
おさえた状態とすると共に、その内槽1内部に液
体ヘリウムを満たすことで、超電導コイル3を極
低温に冷却し、これにて超電導状態を保持して、
励磁により永久電流を得るようにしている。な
お、その励磁の際に液体ヘリウムが内槽1内全域
を満たすべく流動できるように、又熱侵入により
気化したヘリウムガスが上昇して行ける様に、上
記スペーサ5には孔6を形成しておく。
Here, an example of a superconducting electromagnet currently planned will be described with reference to Figs. 1 and 2. In the figure, 1 is an inner tank with a slightly flat cross section constructed in the shape of a racetrack, which is not shown. It is insulated and stored inside the outer tank using a load support material with low heat transfer, vacuum and special heat insulating material. Further, the upper and lower opposing long sides are connected to each other by a bonding material 2 to prevent deformation. 3 is a superconducting coil housed inside the inner tank 1 in an elliptical shape, and this is usually formed into a rigid structure by integrally molding and fixing it by means such as molding. The superconducting coil 3 is provided with an appropriate interval in the longitudinal direction of the FRP.
An insulating plate 4 such as the above is fitted, and a spacer 5 is placed around the outer periphery of the insulating plate 4, and the coil 3 is fixedly held within the inner tank 1 by the spacer 5. In addition, since the superconducting coil 3 cannot be stored in the inner tank 1 and the spacer 5 unless they are divided, they are constructed by dividing them into two vertically or horizontally, and are assembled by covering the superconducting coil 3 and joining them by welding or the like. I'm thinking about it. Further, although not shown in the drawings, it is a matter of course that various devices, piping, etc. necessary for configuring the superconducting electromagnet are incorporated. As described above, the inner tank 1 is thermally supported inside the outer tank to suppress the amount of heat intrusion to an extremely low level, and by filling the inner tank 1 with liquid helium, the superconducting coil 3 is heated to an extremely low temperature. The superconducting state is maintained by cooling to
Persistent current is obtained by excitation. Note that holes 6 are formed in the spacer 5 so that liquid helium can flow to fill the entire area inside the inner tank 1 during excitation, and so that helium gas vaporized by heat penetration can rise. put.

こうした上記構成の超電導磁石の場合、スペー
サ5による超電導コイル3の固定保持が十分でな
いと、該コイル3がガタを生じたり励磁による電
磁反撥力や何等かの加振などにより変形、移動し
たりして、超電導状態がくずれ、クエンチ現象に
進展してしまう問題が生じる。このため、超電導
電磁石の製作上コイルの安定固定が大きな技術課
題となるのである。
In the case of a superconducting magnet having the above structure, if the superconducting coil 3 is not sufficiently fixed and held by the spacer 5, the coil 3 may become loose, or may be deformed or moved due to electromagnetic repulsion due to excitation or some kind of vibration. This causes the problem that the superconducting state collapses and progresses to a quench phenomenon. For this reason, stably fixing the coil is a major technical challenge when manufacturing superconducting electromagnets.

本発明は上記事情に鑑みなされるもので、その
目的とする処は、超電導コイルを内槽内部に極め
て確実に安定固定できて、該コイルの変形移動を
完全に防止し、非常に安定した高励磁能力を保有
し得て超電導磁気浮上車等に最適となる超電導電
磁石を提供しようとすることにある。
The present invention has been made in view of the above circumstances, and its purpose is to fix a superconducting coil extremely reliably and stably inside the inner tank, completely prevent deformation and movement of the coil, and achieve a very stable high-speed The object of the present invention is to provide a superconducting electromagnet that has excitation ability and is optimal for superconducting magnetic levitation vehicles and the like.

以下この発明の一実施例を第3図及び第4図に
より説明する。なお、ここでは要部のみを図示
し、その他は第1図、第2図と同様であるので簡
略化のため図示省略する。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. Note that only the main parts are shown here, and the rest are the same as those in FIGS. 1 and 2, so illustrations are omitted for the sake of simplification.

しかして第3図は第2図と同じ様にスペーサと
超電導コイル断面の関係を示し、第4図は第3図
の側面図で内槽との関係も示しておる。ここに3
Aで示す超電導コイルは前記同様モールド等によ
り一体化成形により固化固定されてレーストラツ
ク状とされ、この超電導コイル3Aの長手方向に
間隔を有した断面部の周囲にFRP等の絶縁板4
A,4B,4C,4Dを配し、その外周に孔6A
付きの上下2分割構造のスペーサ5A,5Bを囲
設し、超電導コイル3Aに金属製のスペーサ5
A,5Bが直接当つて超電導線を傷付けシヨート
せしめるのを絶縁板4A乃至4Dで防止している
と共に、励磁やクエンチを生じた時に短絡を生じ
ないように絶縁機能を持たせるのに十分なクリー
ページをかせぐようにしている。
Similarly to FIG. 2, FIG. 3 shows the relationship between the spacer and the cross section of the superconducting coil, and FIG. 4 is a side view of FIG. 3, also showing the relationship with the inner tank. here 3
The superconducting coil indicated by A is solidified and fixed by integral molding or the like as described above to form a race track shape, and an insulating plate 4 such as FRP is placed around the cross-sectional portion having intervals in the longitudinal direction of the superconducting coil 3A.
A, 4B, 4C, 4D are arranged, and a hole 6A is placed on the outer periphery.
The superconducting coil 3A is surrounded by spacers 5A and 5B that are divided into upper and lower parts.
The insulating plates 4A to 4D prevent the superconducting wires from directly hitting the superconducting wires and causing them to shoot, and the insulation plates 4A to 4D have sufficient insulation to prevent short circuits when excitation or quenching occurs. I'm trying to earn pages.

ここで、上記上下2分割構造のスペーサ5A,
5Bは互の結合部にT形の接合フランジ7AA,
7AB,7BA,7BBが設けられ、ボルト8A,
8B、により相互に強く締付け結合されている。
これらフランジ7AA乃至7BBはスペーサ本体部
に対し9で示す大きな半径の付根部を有して応力
集中を生じることが防止されていると同時に、大
きな半径による切欠10が設けられて強い剛性で
あるが弾性変形可能な構造とされている。又この
様にT形のフランジ7AA,7AB,7BA,7BB
を巾広くとるので上記両側絶縁板4C,4Dは第
4図に示す様に該フランジを十分カバーして超電
導電磁石に対し十分なるクリーページを確保出来
る様に巾広に構成されている。そしてその結合状
態の両スペーサ5A,5Bの外周には内槽1Aが
2分割してかぶせられ溶接固定され、更にその内
槽1Aを図示しないが外槽内部に断熱支持して収
納保持することで超電導電磁石を構成している。
Here, the spacer 5A having the above-mentioned upper and lower two-divided structure,
5B has a T-shaped joint flange 7AA at the joint part,
7AB, 7BA, 7BB are provided, bolt 8A,
8B, and are strongly tightened and connected to each other.
These flanges 7AA to 7BB have a root portion with a large radius indicated by 9 relative to the spacer body to prevent stress concentration, and at the same time are provided with a notch 10 with a large radius to provide strong rigidity. It has an elastically deformable structure. Also, T-shaped flanges 7AA, 7AB, 7BA, 7BB like this
As shown in FIG. 4, the insulating plates 4C and 4D on both sides are made wide enough to sufficiently cover the flange and ensure sufficient creepage for the superconducting electromagnet. Then, the inner tank 1A is divided into two parts and is covered and welded to the outer periphery of both the spacers 5A and 5B in the combined state, and furthermore, the inner tank 1A is insulated and supported inside the outer tank to be stored and held, although it is not shown. It constitutes a superconducting electromagnet.

次に本発明の機能について説明すると、スペー
サ5A,5Bの上下絶縁板4A,4Bと接する本
体構造部は液体ヘリウム又はガスヘリウム通過用
の孔6Aを有しているが、全般的に強固に構成さ
れているのでほとんど変形する事が無く、上下絶
縁板4A,4Bと良好に密着固定可能である。こ
れに対しT形の接合フランジ7AA,7AB,7
BA,7BBは大きな半径の付根部9と切欠10に
より強い剛性をもつが弾性変形可能でばね作用を
有することから、ボルト8A,8Bで締上げるこ
とにより該フランジ7AA,7AB,7BA,7BB
が若干弾性変形して上記ボルト8A,8Bの締付
力に耐えるようになる。ここで接合フランジ7
AA,7AB,7BA,7BBの締付け強さを超電導
コイル3Aに作用する電磁力と相当又そそれ以上
に設定すれば、超電導コイル3Aに大きな電磁力
が作用してもスペーサ5A,5Bと絶縁板4A,
4Bとの間に間隙が発生する様な事は防止される
ようになり、更にこのスペーサ5A,5Bの外側
が内槽により密着固定されることで、超電導コイ
ル3Aは励磁した時に微動や変形、移動すること
が完全に阻止され、超電導コイル3Aの微動によ
り超電導状況が破られてクエンチする様な不安定
現象におちいるようなことが無くなる。
Next, to explain the function of the present invention, the main body structure portions of the spacers 5A, 5B that are in contact with the upper and lower insulating plates 4A, 4B have holes 6A for passage of liquid helium or gas helium, but are generally strongly constructed. Because of this, there is almost no deformation, and it can be fixed in close contact with the upper and lower insulating plates 4A and 4B. On the other hand, T-shaped joint flanges 7AA, 7AB, 7
BA, 7BB have strong rigidity due to the large radius root 9 and notch 10, but are elastically deformable and have a spring action.
is slightly elastically deformed to withstand the tightening force of the bolts 8A and 8B. Here, the joining flange 7
If the tightening strength of AA, 7AB, 7BA, and 7BB is set to be equivalent to or even higher than the electromagnetic force acting on the superconducting coil 3A, even if a large electromagnetic force acts on the superconducting coil 3A, the spacers 5A, 5B and the insulating plate will remain intact. 4A,
4B is now prevented from forming, and since the outer sides of the spacers 5A and 5B are closely fixed by the inner tank, the superconducting coil 3A will not move slightly or deform when it is excited. This movement is completely prevented, and there is no possibility of an unstable phenomenon in which the superconducting state is broken and quenched due to slight movement of the superconducting coil 3A.

また、上記スペーサ5A,5Bを適正な力で締
付ける際、ボルト8A,8B自身が予圧締付力を
あたえる能力を有している事で、特にスペーサ5
A,5Bを締付けるのに別途特殊な工具を必要と
しない。
In addition, when tightening the spacers 5A and 5B with an appropriate force, the bolts 8A and 8B themselves have the ability to apply a preload tightening force, so that the spacers 5A and 5B can be tightened with an appropriate force.
No special tools are required to tighten A and 5B.

特にT形の接合フランジ7AA,7AB,7
BA,7BBは共に適当な強さの弾性を有している
ので、ボルト8A,8Bを締上げてゆくと、或る
程度の範囲で変形を生じることになり、この変形
はボルト8A,8Bの締付力にかなりの巾をもた
せても不都合が無く、このためにボルト8A,8
Bの締付トルク管理を十分に行えば適正な締付力
をあたえることが可能で、その締付トルク管理さ
え適正にすれば正しいスペーサ取付が行なわれ、
安定した超電導電磁石を提供する事が可能とな
る。
Especially T-shaped joint flanges 7AA, 7AB, 7
Both BA and 7BB have elasticity of appropriate strength, so as bolts 8A and 8B are tightened, they will deform to a certain extent, and this deformation will cause bolts 8A and 8B to deform to a certain extent. There is no problem even if the tightening force has a considerable range, and for this purpose bolts 8A, 8
If the tightening torque of B is properly controlled, it is possible to apply the appropriate tightening force, and if the tightening torque is properly controlled, the spacer will be installed correctly.
It becomes possible to provide a stable superconducting electromagnet.

本発明は以上詳述した如くなしたから、超電導
コイルを内槽内部にスペーサにより極めて確実に
安定固定することができ、超電導状況を阻害する
ようなコイルの変形、移動を完全に防止できて、
非常に安定した高励磁能力を保有し得て超電導磁
気浮上車等に最適となるものである。
Since the present invention is made as detailed above, the superconducting coil can be fixed very reliably and stably inside the inner tank with the spacer, and the deformation and movement of the coil that would impede the superconducting state can be completely prevented.
It has extremely stable and high excitation ability, making it ideal for superconducting magnetic levitation vehicles and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は現在計画されている超電導電磁石のレ
ーストラツク状内槽主要構造を示す一部断面した
側面図、第2図は第1図の−線に沿う拡大断
面図、第3図は本発明の一実施例を示すスペーサ
と超電導コイル断面との関係説明図、第4図は同
実施例における内槽を断面した一部側面図であ
る。 1,1A……内槽、2……結合材、3,3A…
…超電導コイル、4,4A,4B,4C,4D…
…絶縁材、5,5A,5B……スペーサ、6,6
A……孔、7AA,7AB,7BA,7BB……接合
フランジ、8A,8B……ボルト、9……大径付
根部、10……切欠。
Fig. 1 is a partially sectional side view showing the main structure of a racetrack-shaped inner tank of a superconducting electromagnet currently planned, Fig. 2 is an enlarged sectional view taken along the - line in Fig. 1, and Fig. 3 is an inventive invention of the present invention. FIG. 4 is a diagram illustrating the relationship between a spacer and a cross section of a superconducting coil showing one embodiment, and FIG. 4 is a partially sectional side view of an inner tank in the same embodiment. 1,1A...Inner tank, 2...Binding material, 3,3A...
...Superconducting coil, 4, 4A, 4B, 4C, 4D...
...Insulating material, 5,5A,5B...Spacer, 6,6
A...hole, 7AA, 7AB, 7BA, 7BB...joining flange, 8A, 8B...bolt, 9...large diameter root, 10...notch.

Claims (1)

【特許請求の範囲】[Claims] 1 超電導磁気浮上車等に使用される超電導電磁
石において、モールド等により固定した超電導コ
イルの周囲に絶縁板を配し、その絶縁板の外周に
2分割構造のスペーサを囲設し、且つその両分割
スペーサの互いの結合部に強い剛性を有するが弾
性変形可能なT字形の接合フランジを設け、その
接合フランジ相互をボルトで締上げることにより
超電導コイルに作用する電磁力相当又はそれ以上
の力の締付力をもつて両分割スペーサを結合して
該コイルを固持して構成したことを特徴とする超
電導電磁石。
1. In a superconducting electromagnet used in a superconducting magnetic levitation vehicle, etc., an insulating plate is arranged around a superconducting coil fixed by a mold etc., and a spacer with a two-part structure is placed around the outer periphery of the insulating plate, and the two parts are separated. T-shaped joining flanges that have strong rigidity but can be elastically deformed are provided at the joints of the spacers, and by tightening the joining flanges together with bolts, a force equivalent to or greater than the electromagnetic force acting on the superconducting coil can be applied. A superconducting electromagnet characterized in that the coil is firmly held by combining both split spacers with a biasing force.
JP55123016A 1980-09-05 1980-09-05 Superconductive electromagnet Granted JPS5748206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55123016A JPS5748206A (en) 1980-09-05 1980-09-05 Superconductive electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55123016A JPS5748206A (en) 1980-09-05 1980-09-05 Superconductive electromagnet

Publications (2)

Publication Number Publication Date
JPS5748206A JPS5748206A (en) 1982-03-19
JPS623966B2 true JPS623966B2 (en) 1987-01-28

Family

ID=14850137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55123016A Granted JPS5748206A (en) 1980-09-05 1980-09-05 Superconductive electromagnet

Country Status (1)

Country Link
JP (1) JPS5748206A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2547952B1 (en) * 1983-06-21 1986-01-31 Videocolor METHOD FOR ALIGNING AN ASSEMBLY OF ELECTRON CANONS FOR A COLORED TELEVISION TUBE AND DEVICE IMPLEMENTING THE METHOD
JPH085227B2 (en) * 1984-11-29 1996-01-24 株式会社サト− Thermal printing cassette and thermal printer
US5349565A (en) * 1991-09-05 1994-09-20 Mos Electronics Corporation SRAM with transparent address latch and unlatched chip enable

Also Published As

Publication number Publication date
JPS5748206A (en) 1982-03-19

Similar Documents

Publication Publication Date Title
US4640005A (en) Superconducting magnet and method of manufacture thereof
JPS623966B2 (en)
JPS6142402B2 (en)
CN109887701B (en) Superconducting magnet cooling device for superconducting magnetic suspension train and use method
JPS6142403B2 (en)
JP3493274B2 (en) Maglev train
US20220392695A1 (en) Transformer coil block design for seismic application
JP2848820B2 (en) Superconducting magnet device
JP3103445B2 (en) Bush for ground coil and ground coil of superconducting maglev railway
JPH0297004A (en) Superconductive magnet device
JP3275798B2 (en) Superconducting magnet device for magnetic levitation train
JPS63244601A (en) Superconducting coil
JP3306619B2 (en) Superconducting magnet for magnetic levitation train with induction current collecting coil
JP4202575B2 (en) Superconducting magnet for magnetic levitation train
JPH104221A (en) Cryogenic temperature tank
JPH07169997A (en) Inner casing holding device of superconductive magnet
JP3242572B2 (en) Superconducting magnetic levitation type superconducting magnet device for vehicles
JP3305730B2 (en) Superconducting coil device
JPH0738329B2 (en) Support structure for power supply line for superconducting conductor
JPS59217314A (en) Core type reactor with gap
JPS6156851B2 (en)
JPS62229905A (en) Superconducting magnet
JPH08148182A (en) Sodium-sulfur battery
JP2584518Y2 (en) Superconducting coil device
JP2002110415A (en) Superconductive magnet device