JPS6142218A - Directivity ground-fault indicator - Google Patents

Directivity ground-fault indicator

Info

Publication number
JPS6142218A
JPS6142218A JP16232684A JP16232684A JPS6142218A JP S6142218 A JPS6142218 A JP S6142218A JP 16232684 A JP16232684 A JP 16232684A JP 16232684 A JP16232684 A JP 16232684A JP S6142218 A JPS6142218 A JP S6142218A
Authority
JP
Japan
Prior art keywords
ground fault
phase
fault
power supply
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16232684A
Other languages
Japanese (ja)
Inventor
相田 光朗
康博 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takamatsu Electric Works Ltd
Original Assignee
Takamatsu Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takamatsu Electric Works Ltd filed Critical Takamatsu Electric Works Ltd
Priority to JP16232684A priority Critical patent/JPS6142218A/en
Publication of JPS6142218A publication Critical patent/JPS6142218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 発明の[1的 〈産業上の利用分野) この発明は配電線路に取着される方向性の地絡表示装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Part 1 of the Invention (Field of Industrial Application)] This invention relates to a directional ground fault indicating device attached to a power distribution line.

(従来技術) 現在、広く行なわれている地絡検出方法としては零相電
圧と零相電流を検出し、その零相電圧と零相電流の位相
比較を行なうことにより、地絡検出に方向性をもたせた
ものがある。
(Prior art) The currently widely used ground fault detection method is to detect zero-sequence voltage and zero-sequence current, and to compare the phases of the zero-sequence voltage and zero-sequence current. There is something that has this.

(発明が解決しようとする問題点) この種の地絡検出装置は接地変圧器や零相電圧検出用コ
ンデンサが必要となり、勢い機器全体が大形化し、高価
となる問題があった。
(Problems to be Solved by the Invention) This type of ground fault detection device requires a grounding transformer and a zero-sequence voltage detection capacitor, which increases the size and cost of the entire device.

ところぐ、地絡の各種、すなわち、抵抗完全地絡、碍子
による地絡及びケーブルによる地絡についてオシログラ
フをとると第6図に示す通りとなる。これらの結果から
電線及び碍子を介しての地絡においては地絡電圧及び地
絡電流には、常に高周波成分が含まれている。又、抵抗
完全地絡の場合にもアークをともなうのが普通であり、
このアーク地絡の場合には地絡電圧、地絡電流は常に高
周波成分を含む。
When an oscilloscope is taken for various types of ground faults, namely, a complete resistance ground fault, an insulator ground fault, and a cable ground fault, the results are as shown in FIG. From these results, in the case of a ground fault through an electric wire or an insulator, the ground fault voltage and ground fault current always contain high frequency components. Furthermore, even in the case of a complete resistance ground fault, arcing is usually accompanied.
In the case of this arc ground fault, the ground fault voltage and ground fault current always contain high frequency components.

発明の構成 (問題点を解決するための手段) この発明は前記アーク地絡等が生じた際にともなう高周
波を利用して前記問題点を解消しようとするものであり
、この発明の方向性地絡検出装置は各相部に設けた地絡
信号検出回路と、同地絡信号検出回路に接続した基本波
成分を除去し、高周波成分を残す高周波フィルタと、地
絡故障が電源側にて生じた場合には各相は負荷側から電
源側に互いに近似的に等しい故障電流が流れることから
前記各高周波フィルタを介しで得た各相の出力信号のレ
ベルを比較して地絡故障が電源側に発生したことを判定
し、一相の地絡故障が負荷側に生じた場合には地絡相の
みが電源側から負荷側へ故障電流が流れるとともに他の
二相には負荷側から電源側に故障電流が流れ、かつ、地
絡相の故障電流のレベルが他の二相よりも大きいことか
ら前記各高周波フィルタを介して得た各相の出力信号の
レベルを比較して地絡故障が負荷側に生じたことを判定
づるレベル判定回路とにより、方向性地絡表示が行なわ
れる表示器を設けたことをその要旨とづるものである。
Structure of the Invention (Means for Solving the Problems) This invention attempts to solve the above problems by using the high frequency that accompanies the occurrence of the above-mentioned arc ground fault, etc. The fault detection device includes a ground fault signal detection circuit installed in each phase, a high frequency filter connected to the ground fault signal detection circuit that removes the fundamental wave component and leaves the high frequency component, and detects when a ground fault occurs on the power supply side. In this case, approximately the same fault current flows from the load side to the power supply side in each phase, so the level of the output signal of each phase obtained through each high frequency filter is compared to determine if a ground fault is occurring on the power supply side. If a one-phase ground fault occurs on the load side, the fault current will flow from the power supply side to the load side only in the ground fault phase, and the fault current will flow from the load side to the power supply side in the other two phases. Since the fault current flows in the ground fault phase and the level of the fault current in the ground fault phase is higher than the other two phases, the levels of the output signals of each phase obtained through the respective high frequency filters are compared to detect the ground fault fault. The gist of the system is to provide an indicator that displays a directional ground fault using a level determination circuit that determines whether a ground fault has occurred on the load side.

(作用〉 前記構成により、配電線のうちいずれか一相に地絡が生
じると、各相に設けた地絡信号検出回路を介して地絡信
号が高周波フィルタに入力され、同高周波フィルタにて
基本波が除去される。地絡相において高周波フィルタに
より基本波が除去された信号と、他相の出力信号のレベ
ルをレベル判定回路により比較し、その結果を表示器に
て方向性地絡表示を行なう。
(Function) With the above configuration, when a ground fault occurs in any one phase of the distribution line, the ground fault signal is input to the high frequency filter via the ground fault signal detection circuit provided for each phase, and the high frequency filter The fundamental wave is removed.The signal from which the fundamental wave has been removed by the high-frequency filter in the ground fault phase is compared with the level of the output signal of the other phase using a level judgment circuit, and the result is displayed on the display to display the directional ground fault. Do the following.

づなわら、地絡故障が電源側にて生じた場合には各相は
θ前側から電源側に互いに近似的に等しい故障電流が流
れる。
In other words, when a ground fault occurs on the power supply side, approximately equal fault currents flow in each phase from the θ front side to the power supply side.

従って、同レベル判定回路は各相のレベルが近似的に等
しいことから地絡故障が電源側に生じたことを判定し、
表示器にて方向性を備えた地絡表示を行なう。
Therefore, since the levels of each phase are approximately equal, the same level determination circuit determines that a ground fault has occurred on the power supply side,
Directional ground fault indication is provided on the display.

反対に、配電線に地絡故障が負荷側にて生じた場合には
地絡相のみが電源側から負荷側へ故障電流が流れるとと
もに、他の二相は負荷側からN源側に流れ、前記地絡相
は他の二相よりも大きな故障電流が流れる。従って、レ
ベル判定回路は各相の信号のレベルを判定し、地絡相の
レベルが他の二相よりも大きいことから地絡が負荷側に
生じたことを判定し、表示器にて方向性を備えた地絡表
示を行なう。
On the other hand, if a ground fault occurs on the load side of the distribution line, the fault current will flow from the power supply side to the load side only in the ground fault phase, and the other two phases will flow from the load side to the N source side. A larger fault current flows through the ground fault phase than the other two phases. Therefore, the level judgment circuit judges the signal level of each phase, and since the level of the ground fault phase is higher than the other two phases, it judges that a ground fault has occurred on the load side. Provides ground fault indication with

(実施例) 以下、この発明を具体化した一実施例を第1図〜第5図
に従って説明する。
(Embodiment) An embodiment embodying the present invention will be described below with reference to FIGS. 1 to 5.

各相の絶縁電線U、V、Wには地絡信号検出回路として
の変流M1が取着されている。各変流器1には基本波を
吸収する高周波フィルタ2が接続され、同高周波フィル
タ2には整流回路3が接続きれている。同整流回路3に
より入力信号を交流から直流に変換する。
A current transformer M1 as a ground fault signal detection circuit is attached to the insulated wires U, V, and W of each phase. A high frequency filter 2 for absorbing fundamental waves is connected to each current transformer 1, and a rectifier circuit 3 is connected to the high frequency filter 2. The rectifier circuit 3 converts the input signal from alternating current to direct current.

整流回路3には各相共通のレベル判定回路4が接続され
、同レベル判定回路4により整流回路3を介して入力さ
れた各相の直流信号のレベルを判定する。
A level determination circuit 4 common to each phase is connected to the rectifier circuit 3, and the same level determination circuit 4 determines the level of the DC signal of each phase inputted via the rectifier circuit 3.

前記レベル判定回路4にて出力された判定信号により、
表示器5を表示動作する。すなわち、地絡故障が電源側
にて生じた場合(第4図及び第5図参照)には各相は負
荷側から電源側に互いに近似的に賀しい故障電流が流れ
ることから前記レベル判定回路4は地絡故障が電源側に
生じたことを判定し、判定信号を表示器5に出力する。
Based on the determination signal outputted from the level determination circuit 4,
The display 5 operates to display. In other words, when a ground fault occurs on the power supply side (see Figures 4 and 5), fault currents approximately equal to each other flow in each phase from the load side to the power supply side, so the level judgment circuit 4 determines that a ground fault has occurred on the power supply side, and outputs a determination signal to the display 5.

なJ3、図中6は配電変電所の主変圧器である。J3, 6 in the figure is the main transformer of the distribution substation.

地絡故障が負荷側にて生じた場合(第2図及び第3図参
照)には地絡相のみが電源側から負荷側へ故11’1l
fff流が流れるとともに、他の二相は負荷側から電源
側に故障電流が流れ、前記地絡相は他の二相よりも大き
な故障電流が流れることから前記レベル判定回路4は地
絡が負荷側に生じたことを判定し、判定信号を表示器5
に出力する。
If a ground fault occurs on the load side (see Figures 2 and 3), only the ground fault phase will be transferred from the power supply side to the load side.
fff current flows, a fault current flows in the other two phases from the load side to the power supply side, and a larger fault current flows in the ground fault phase than in the other two phases. Therefore, the level determination circuit 4 determines that the ground fault is the load. The judgment signal is sent to the display 5.
Output to.

前記のように構成された方向性地絡検出装置についてそ
の作用を説明する。
The operation of the directional ground fault detection device configured as described above will be explained.

さて、地絡故障がM源側にて生じた場合には各相は負荷
側から電源側に互いに近似的に等しい故障電流(Iu=
lv=1w)が流れる(第4図及び第5図参照)。各相
の絶縁電線U、V、Wの変流器1はそのとき流れる故p
i電流を検出し、そのときの2次電流は高周波フィルタ
2により基本波が除去される。基本波が除去された高周
波成分は整流回路3により交流から直流に変換される。
Now, if a ground fault occurs on the M source side, each phase will flow from the load side to the power source side with a fault current that is approximately equal to each other (Iu =
lv=1w) flows (see FIGS. 4 and 5). The current transformer 1 of the insulated wires U, V, and W of each phase is
The i current is detected, and the fundamental wave of the secondary current at that time is removed by the high frequency filter 2. The high frequency component from which the fundamental wave has been removed is converted from alternating current to direct current by the rectifier circuit 3.

そして、レベル判定回路4は整流回路3を介して入力さ
れた各相の直流信号のレベルを判定し、各相のレベルが
近似的に等しいことから地絡が電源側に生じたことを判
定し、表示器5により方向性を備えた地絡表示を行なう
Then, the level determination circuit 4 determines the level of the DC signal of each phase input through the rectifier circuit 3, and determines that a ground fault has occurred on the power supply side since the levels of each phase are approximately equal. , the display 5 displays a ground fault with directionality.

反対に、例えば配電線Wに地絡故障が負荷側にて生じた
場合(第2図及び第3図参照)には地絡相Wのみが電源
側から負荷側へ故Ill電流が流れるとともに、他の二
相は負荷側から電源側に故障電流が流れ、前記地絡相は
他の二相よりも大きな故障電流が流れる(IW>lu 
、IV )。各相の絶縁電線t、t、 v、 wの変流
器1はそのとき流れる故障電流を検出し、そのときの2
次1電流は高周波フィルタ2により基本波が除去される
。基本波が除去された凸周波成分は整流回路3により交
流から直流に変換される。
On the other hand, if, for example, a ground fault occurs on the load side of the distribution line W (see Figures 2 and 3), only the ground fault phase W will cause the fault Ill current to flow from the power supply side to the load side. In the other two phases, a fault current flows from the load side to the power supply side, and in the ground fault phase, a larger fault current flows than in the other two phases (IW>lu
, IV). The current transformers 1 of the insulated wires t, t, v, and w of each phase detect the fault current flowing at that time, and
The fundamental wave of the first current is removed by the high frequency filter 2. The convex frequency component from which the fundamental wave has been removed is converted from alternating current to direct current by the rectifier circuit 3.

そして、レベル判定回路4は整流回路3を介して入力さ
れた各相の直流信号のレベルを判定し、地絡相のレベル
が他の二相よりも大ぎいことから地絡故障が負荷側に生
じたことを判定し、表示器5により方向性を備えた地絡
表示を行なう。
Then, the level judgment circuit 4 judges the level of the DC signal of each phase input through the rectifier circuit 3, and since the level of the ground fault phase is higher than the other two phases, the ground fault fault has occurred on the load side. It is determined that a ground fault has occurred, and the display 5 displays a ground fault with directionality.

なお、この発明は前記実施例に限定されるものではなく
、この発明の趣旨から逸脱しない範囲で任意に変更する
ことも可能である。
Note that the present invention is not limited to the above-mentioned embodiments, and can be arbitrarily modified without departing from the spirit of the present invention.

発明の効果 以上訂述したようにこの発明は接地変圧器や零相電圧検
出用コンデンサを必要とせず、地絡信号検出回路及びレ
ベル判定回路だけで良いため、機器全体を小形化、軽量
化及び低コスト化を図ることができ、さらには地絡相の
判定もでき、この結果、この方向性地絡検出装置を配電
線路の要所に取付()ることにより、故障点探査時間の
短縮ひいては〒期拶旧に効果が大きいという優れた効果
を奏づる。
Effects of the Invention As detailed above, this invention does not require a grounding transformer or a zero-phase voltage detection capacitor, and only requires a ground fault signal detection circuit and a level judgment circuit, making the entire device smaller, lighter, and lighter. It is possible to reduce costs, and it is also possible to determine the ground fault phase.As a result, by installing this directional ground fault detection device at key points on the distribution line, the time required to locate the fault point can be shortened. 〒It has an excellent effect that is very effective in the old days.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を具体化した一実施例の電気回路図、
第2図は地絡が負荷側に生じた場合の説明図、第3図は
第2図において各配電線を流れる故障電流の開を示づ”
説明図、第4図は地絡が電源側に生じた場合の説明図、
第5図は第4図において同じく各配電線を流れる故障電
流の量を示す説明図、第6図は配電線に各種地絡が生じ
た場合と、i]−常時の場合を示づ各相の電圧、地絡点
の電圧。 地絡電流、地絡電圧のオシログラフである。 1・・・変流器、2・・・高周波フィルタ、3・・・整
流回路、4・・・レベル判定回路、5・・・表示器。
FIG. 1 is an electrical circuit diagram of an embodiment embodying this invention.
Figure 2 is an explanatory diagram when a ground fault occurs on the load side, and Figure 3 shows the fault current flowing through each distribution line in Figure 2.
Explanatory diagram, Figure 4 is an explanatory diagram when a ground fault occurs on the power supply side,
Figure 5 is an explanatory diagram showing the amount of fault current flowing through each distribution line in the same way as in Figure 4, and Figure 6 shows each phase when various ground faults occur in the distribution line, and when it is normal. voltage, the voltage at the ground fault point. This is an oscilloscope of ground fault current and ground fault voltage. DESCRIPTION OF SYMBOLS 1... Current transformer, 2... High frequency filter, 3... Rectifier circuit, 4... Level determination circuit, 5... Display device.

Claims (1)

【特許請求の範囲】 1、各相毎に設けた地絡信号検出回路と、 同地絡信号検出回路に接続した基本波成分を除去し、高
周波成分を残す高周波フィルタと、地絡故障が電源側に
て生じた場合には各相は負荷側から電源側に互いに近似
的に等しい故障電流が流れることから前記各高周波フィ
ルタを介して得た各相の出力信号のレベルを比較して地
絡故障が電源側に発生したことを判定し、一相の地絡故
障が負荷側に生じた場合には地絡相のみが電源側から負
荷側へ故障電流が流れるとともに他の二相には負荷側か
ら電源側に故障電流が流れ、かつ、地絡相の故障電流の
レベルが他の二相よりも大きいことから前記各高周波フ
ィルタを介して得た各相の出力信号のレベルを比較して
地絡故障が負荷側に生じたことを判定するレベル判定回
路とにより、方向性地絡表示が行なわれる表示器を設け
たことを特徴とする方向性地絡表示装置。
[Claims] 1. A ground fault signal detection circuit provided for each phase, a high frequency filter connected to the ground fault signal detection circuit that removes a fundamental wave component and leaves a high frequency component, and a ground fault signal detection circuit that removes a fundamental wave component and leaves a high frequency component. If a fault occurs on the power supply side, approximately the same fault current will flow in each phase from the load side to the power supply side. Therefore, the level of the output signal of each phase obtained through each high frequency filter is compared to detect a ground fault. It is determined that a fault has occurred on the power supply side, and if a ground fault in one phase occurs on the load side, the fault current flows from the power supply side to the load side only in the ground fault phase, and the load does not flow in the other two phases. Since the fault current flows from the side to the power supply side and the level of the fault current in the ground fault phase is higher than the other two phases, the levels of the output signals of each phase obtained through each of the high frequency filters are compared. What is claimed is: 1. A directional ground fault display device comprising: a level determination circuit that determines whether a ground fault has occurred on the load side; and a directional ground fault display.
JP16232684A 1984-07-31 1984-07-31 Directivity ground-fault indicator Pending JPS6142218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16232684A JPS6142218A (en) 1984-07-31 1984-07-31 Directivity ground-fault indicator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16232684A JPS6142218A (en) 1984-07-31 1984-07-31 Directivity ground-fault indicator

Publications (1)

Publication Number Publication Date
JPS6142218A true JPS6142218A (en) 1986-02-28

Family

ID=15752408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16232684A Pending JPS6142218A (en) 1984-07-31 1984-07-31 Directivity ground-fault indicator

Country Status (1)

Country Link
JP (1) JPS6142218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965567A (en) * 1995-08-22 1997-03-07 Nippon Kouatsu Electric Co Earth discriminant device in high-voltage distribution system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965567A (en) * 1995-08-22 1997-03-07 Nippon Kouatsu Electric Co Earth discriminant device in high-voltage distribution system

Similar Documents

Publication Publication Date Title
CN103840437A (en) Quick diagnostic and processing method of power distribution network ferromagnetic resonance and one-phase earth faults
GB1060643A (en) Electrical fault detection arrangement
JPS60255012A (en) Protecting relay
KR101490770B1 (en) Ground fault detecting apparatus
Kaufmann Some fundamentals of equipment-grounding circuit design
Gillies et al. Methods for reducing induced voltages in secondary circuits
JPS6142218A (en) Directivity ground-fault indicator
JPH0670665B2 (en) Non-contact electric field magnetic field sensor
Druml et al. New adaptive algorithm for detecting low-and high ohmic faults in meshed networks
US4198628A (en) Circuit arrangement for detecting grounds in a static converter
JP2001116792A (en) Method and apparatus for locating fault direction of power distribution line, and electric field and magnetic field sensors
JP2001320828A (en) Ground relay with failed-area determining function
JP2013113632A (en) Ground fault detecting method
JPH06313780A (en) Detecting device of ground fault
JP2728422B2 (en) Abnormal location system for gas insulation equipment
CN216560835U (en) Simulation circuit for detecting looped network fault
JP3378418B2 (en) Leakage protection method
JP2002122628A (en) Specifying method for fault point
TW552756B (en) Insulation diagnosis device
JPH1118278A (en) Bipolar direct current transmission system
JP2006140172A (en) Transformer
Roguski Laboratory Test Circuits for Predicting Overvoltages When Interrupting Small Inductive Currents with an SF6 Circuity Breaker
JPH09219912A (en) Gas-insulated equipment fitted with current detecting electrode
JPS5846824A (en) Protective relay unit
Regotti et al. Changing concepts and equipment applied on grounded low-voltage systems