JP2001320828A - Ground relay with failed-area determining function - Google Patents

Ground relay with failed-area determining function

Info

Publication number
JP2001320828A
JP2001320828A JP2000134554A JP2000134554A JP2001320828A JP 2001320828 A JP2001320828 A JP 2001320828A JP 2000134554 A JP2000134554 A JP 2000134554A JP 2000134554 A JP2000134554 A JP 2000134554A JP 2001320828 A JP2001320828 A JP 2001320828A
Authority
JP
Japan
Prior art keywords
private
accident
ground fault
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000134554A
Other languages
Japanese (ja)
Inventor
Hideki Osawa
秀樹 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU DENKI HOAN KYOKAI
Original Assignee
TOHOKU DENKI HOAN KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU DENKI HOAN KYOKAI filed Critical TOHOKU DENKI HOAN KYOKAI
Priority to JP2000134554A priority Critical patent/JP2001320828A/en
Publication of JP2001320828A publication Critical patent/JP2001320828A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To delay the operating time of a ground relay on the non-utility side in case of an accident-incurred by providing a means of determining whether an earth fault, if it occurs in non-utility power receiving equipment connected to a high-tension distribution line from a distribution substation, occurs on the non-utility side or not. SOLUTION: A controlling device 10 disposed in the ground relay on the non-utility side is so formed that, using the information of failed current obtained by detecting an input signal in a residual current transformer on the non-utility side, a signal of the failed current may be transmitted from an input circuit 12 to a filter circuit 13 and then a higher harmonic analysis circuit 14 and a level detection circuit 15, outputs from the former two circuits may be inputted, with a signal of a timer 17, into an operating time characteristics switching circuit 16 for processing, and a signal may be outputted into an operation circuit of the GR through an output circuit 18. Two pieces of information of waveform difference and analytic value of higher harmonies are used for determination and, in case of an accident-incurred, such a control as delays operating time of the GR is conducted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高圧電気設備の送
配電設備に接続し、自家用電気設備に設ける地絡継電器
において、地絡事故が発生した箇所が自家用側か否かを
判別し、配電系統での事故に対しては、自家用側の地絡
継電器が作動しないように保護する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground fault relay connected to a transmission / distribution facility of a high-voltage electrical facility and provided to a private electrical facility, and determines whether or not a place where a ground fault has occurred is on a private side. The present invention relates to a device for protecting a private-use ground fault relay from operating when an accident occurs in a power system.

【0002】[0002]

【従来の技術】一般に、高圧電気設備を含む送配電設備
においては、図8に示すように、供給変電所(配電用変
電所)1からの高圧配電線路2に自家用受電設備3、4
……を配置し、前記自家用受電設備3、4……において
は、各需要部に給電する給電経路を設けている。一般の
工場等においては、配電用変電所からの高圧配電線から
自家用受電設備に分岐して接続し、変圧器を通して低圧
電力をモータ等の自家用電気設備に供給するようにして
いる。前記自家用受電設備には、高圧受電用地絡継電器
(以下「GR」と呼ぶ)が広く用いられており、自家用
設備内で地絡事故が発生した時に、前記GRが動作して
自家用設備側の開閉器を遮断し高圧電線配電線から切り
離すようにしている。
2. Description of the Related Art In general, in a power transmission and distribution facility including a high-voltage electrical facility, private power receiving facilities 3, 4 are connected to a high-voltage distribution line 2 from a supply substation (distribution substation) 1 as shown in FIG.
Are provided, and a power supply path for supplying power to each demand unit is provided in the private power receiving equipment 3, 4,.... In a general factory or the like, a high-voltage distribution line from a distribution substation is branched and connected to a private power receiving facility, and low-voltage power is supplied to a private electric facility such as a motor through a transformer. In the private power receiving equipment, a ground fault relay for high-voltage power receiving (hereinafter referred to as "GR") is widely used. When a ground fault occurs in the private equipment, the GR operates to open and close the private equipment side. The vessel is cut off and disconnected from the high voltage power distribution line.

【0003】[0003]

【発明が解決しようとする課題】ところが、前記自家用
受電設備に設けているGRは、高圧配電線側の事故(も
らい事故)によっても作動するので、自家用受電設備側
に何等の異常がない場合にも停電するという問題があ
る。前記高圧配電線側で異常電流が流れた場合に、比較
的短時間(数秒)の停電の後に送電が再開されたとして
も、前記自家用側では開閉器が切られた状態が続くの
で、停電の回復のために長い時間を要するとともに、工
場等では停電による損失が大きく発生する。また、前記
GRとしては、一般に静止型機器が用いられており、外
部から供給する電源、またはGR付交流負荷開閉器内の
専用変圧器による制御電源を設けることが必要である。
ところが、専用の電源を用いてGRの制御を行う場合に
は、余分な給電系統を設ける必要があり、専用変圧器を
用いる場合には、開閉器全体が大型となるという問題が
ある。
However, since the GR provided in the private power receiving equipment also operates in the event of an accident on the high-voltage distribution line (received accident), the GR is used when there is no abnormality in the private power receiving equipment. Also has the problem of power outages. When an abnormal current flows on the high-voltage distribution line side, even if power transmission is restarted after a relatively short-time (several seconds) power failure, the state in which the switch is turned off continues on the private side. A long time is required for recovery, and a large loss occurs due to a power outage in factories and the like. In addition, a static device is generally used as the GR, and it is necessary to provide a power supply externally supplied or a control power supply by a dedicated transformer in an AC load switch with GR.
However, when performing GR control using a dedicated power supply, it is necessary to provide an extra power supply system, and when a dedicated transformer is used, there is a problem that the entire switch becomes large.

【0004】本発明は、前述したような従来のGRの不
必要な動作を解消しようとするもので、もらい事故に対
しては作動せずに、自己の地絡事故に対しては他の設備
に影響を与えないように早期に開閉器を作動させ得る装
置を提供することを第1の目的とし、GRに対して制御
電源の供給を容易に行い得る手段を提供することを第2
の目的としている。
[0004] The present invention is intended to eliminate the unnecessary operation of the conventional GR as described above, and does not operate for a received accident, but for other equipment for its own ground fault. It is a first object of the present invention to provide a device capable of operating a switch at an early stage so as not to affect power, and to provide a means capable of easily supplying control power to a GR.
The purpose is.

【0005】[0005]

【課題を解決するための手段】本発明は、配電用変電所
からの高圧配電線路に接続される自家用高圧受電設備に
関する。本発明の請求項1の発明は、前記自家用高圧受
電設備に零相変流器を内蔵した開閉器を配置し、零相変
流器を介して地絡継電器を配置し、前記開閉器に設ける
地絡継電器には、零相変流器から入力される高圧電路の
零相電流データから、自家用高圧受電設備側での事故と
高圧配電線路側での事故とを判別する手段を設け、前記
事故の発生源が高圧配電線路側の場合に、自家用高圧受
電設備側での開閉器の動作時間を遅らせるよう制御する
ことを特徴とする。
SUMMARY OF THE INVENTION The present invention relates to a private high-voltage power receiving facility connected to a high-voltage distribution line from a distribution substation. In the invention of claim 1 of the present invention, a switch incorporating a zero-phase current transformer is arranged in the private high-voltage power receiving equipment, and a ground fault relay is arranged via the zero-phase current transformer, and provided in the switch. The ground fault relay is provided with means for discriminating between an accident on the private high-voltage power receiving facility side and an accident on the high-voltage distribution line side from zero-phase current data of the high-voltage path input from the zero-phase current transformer. When the generation source is on the high-voltage distribution line side, the operation time of the switch on the private high-voltage power receiving equipment side is controlled to be delayed.

【0006】請求項2の発明は、前記自家用高圧受電設
備に設ける事故判別手段においては、事故電流の波形を
解析した結果にもとづいて、高圧配電線路側の事故を判
別して、前記自家用高圧受電設備の開閉器の動作時間
を、自家用高圧受電設備側事故時の動作時間よりも所定
の時間遅らせる制御を行うことを特徴とする。請求項3
の発明は、前記自家用高圧受電設備に設ける事故判別手
段において、零相変流器から地絡継電器の制御回路に入
力される情報を、高調波解析する回路とレベル検出回路
とに並列に入力し、前記2つの回路の出力を動作時間特
性切換回路に伝達し、前記動作時間特性切換回路におい
ては、波形の歪率と偶数高調波成分の含有率を、あらか
じめ設定している値と比較し、自家用側か否かの判断を
行う手段を設けることを特徴とする。
According to a second aspect of the present invention, in the accident determining means provided in the private high-voltage power receiving facility, an accident on the high-voltage distribution line side is determined based on a result of analyzing a waveform of the fault current. It is characterized in that control for delaying the operation time of the switch of the equipment by a predetermined time from the operation time at the time of the accident at the private high-voltage power receiving equipment side is performed. Claim 3
In the accident determination means provided in the private high-voltage power receiving equipment, the information input from the zero-phase current transformer to the control circuit of the ground fault relay is input in parallel to a harmonic analysis circuit and a level detection circuit. Transmitting the outputs of the two circuits to an operating time characteristic switching circuit, wherein the operating time characteristic switching circuit compares the distortion rate of the waveform and the content of even harmonic components with a preset value, It is characterized in that a means for determining whether or not it is for private use is provided.

【0007】前述したように構成した制御装置を用いる
のであるから、異常電流が流れた場合に、自家用側での
地絡事故か、もらい事故かを容易に判別することができ
る。そして、前記自家用側での地絡事故ではない場合
に、その開閉器の動作を遅延させている間に、事故電流
が流れた原因側での電路が遮断されて、特定の自家用側
での開閉器が遮断されずに済むことになる。したがっ
て、前記制御装置により、従来のGRの場合のように、
異常電流が流れたことを検知した時に、直ちに開閉器を
遮断する処理を行わないので、開閉器の不必要遮断が少
なくなり、停電後の復旧処理を行う頻度が少なくなる。
また、特定の自家用側での地絡事故が、他の自家用側の
受電設備や変電所に影響を与えることがなくなる。
[0007] Since the control device configured as described above is used, when an abnormal current flows, it is possible to easily determine whether a ground fault has occurred on the private side or a fault has been received. If the fault is not a ground fault on the private side, while the operation of the switch is delayed, the electric circuit on the side on which the fault current flows is interrupted, and the switching on the specific private side is performed. The vessel will not have to be shut off. Therefore, by the control device, as in the case of the conventional GR,
When it is detected that an abnormal current has flown, the process of shutting off the switch is not performed immediately, so that unnecessary cutoff of the switch is reduced, and the frequency of performing the recovery process after a power failure is reduced.
Further, a ground fault on a specific private side does not affect power receiving facilities and substations on other private sides.

【0008】請求項4の発明は、配電用変電所からの高
圧配電線路に接続される自家用高圧電気設備において、
前記自家用高圧受電設備に設ける地絡継電器に対して、
制御電源としての自己電源回路を設け、前記自己電源回
路においては、一次導体の絶縁に用いる絶縁ブッシング
に対して、二次巻線を設けた磁心を配置して変流手段を
構成することを特徴とする。
A fourth aspect of the present invention is a private high-voltage electrical facility connected to a high-voltage distribution line from a distribution substation.
For a ground fault relay provided in the private high-voltage power receiving equipment,
A self-power supply circuit as a control power supply is provided, and in the self-power supply circuit, a current transformer is configured by arranging a magnetic core provided with a secondary winding with respect to an insulating bushing used for insulating a primary conductor. And

【0009】そして、GRの動作のために必要とされる
電源を、高圧コンデンサおよび負荷設備に流れる電流を
自己電源回路を介して給電する手段を設けることによ
り、従来のGRのような電源を別の変圧器等を用いて形
成する必要がない。そして、前記自己電源回路において
は、貫通ブッシングを用いたことで、変流器の磁心や二
次巻線を一次導体に対して絶縁する必要がなく、高圧電
路のサージングインピーダンスに不均衡が生じないた
め、高圧電路に過渡電圧の集中が発生しにくいという特
徴がある。
A power supply required for the operation of the GR is provided by means for supplying a current flowing through the high-voltage capacitor and the load equipment through a self-power supply circuit, so that a power supply such as a conventional GR can be separated. It is not necessary to form using a transformer or the like. In the self-power supply circuit, since the through bushing is used, it is not necessary to insulate the magnetic core and the secondary winding of the current transformer from the primary conductor, and no imbalance occurs in the surging impedance of the high-voltage path. Therefore, there is a feature that the concentration of the transient voltage hardly occurs on the high piezoelectric path.

【0010】[0010]

【発明の実施の形態】最初に、本発明の装置の動作原理
と、背景技術を説明する。一般に、GRのもらい事故
は、前記図8に示したように、配電用変電所からの高圧
配電線路に対して、多数の自家用受電設備を接続して配
置した場合に、高圧配電線路での事故や、他の自家用受
電設備での事故により発生する。そして、その高圧配電
線路に接続される各自家用受電設備のGRが、前記事故
により流れる異常電流を検知して、高圧配電線路から遮
断する動作を行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the principle of operation of the device of the present invention and the background art will be described. Generally, as shown in FIG. 8, a GR accident involves an accident in a high-voltage distribution line when a large number of private power receiving facilities are connected to the high-voltage distribution line from the distribution substation. And accidents at other private power receiving facilities. Then, the GR of each private power receiving facility connected to the high-voltage distribution line detects an abnormal current flowing due to the accident and performs an operation of disconnecting from the high-voltage distribution line.

【0011】前記もらい事故の際に流れる電流は、図1
2の配電線側地絡時の非接地配電系統の等価回路図に示
すように、配電系統に零相電圧Voが発生する。この系
統に発生したVoにより、自家用側対地静電容量C2を
通して電流Ig2が流れるもので、このIg2が流れる
状態をもらい事故という。なお、この等価回路図におい
て、R:配電用変電所等価中性点抵抗、Vo:零相電
圧、E:配電線対地電圧、Rg:地絡点抵抗、C1・C
2:配電線側および自家用側対地静電容量、ZCT1:
配電用変電所零相変流器、ZCT2:自家用側零相変流
器、を各々示している。
The current flowing in the event of the accident described above is shown in FIG.
As shown in the equivalent circuit diagram of the ungrounded distribution system at the time of the ground fault on the distribution line 2, a zero-phase voltage Vo is generated in the distribution system. The current Ig2 flows through the private-use-side ground capacitance C2 due to Vo generated in this system. The state in which the current Ig2 flows is called an accident. In this equivalent circuit diagram, R: equivalent neutral point resistance for distribution substation, Vo: zero-phase voltage, E: distribution line-to-ground voltage, Rg: ground-fault point resistance, C1 · C
2: Capacitance to ground on distribution line side and private side, ZCT1:
Distribution substation zero-phase current transformer, ZCT2: private-use zero-phase current transformer.

【0012】*もらい事故の動作:例えば、前記図8に
おいて、自家用電気設備3に地絡が発生した場合に、前
記設備3のみのGRが動作し、配電線2から遮断される
ことが望ましい。ところが、前記設備3に地絡事故が発
生した場合に、その際に流れる電流Ig2により、他の
設備4等でもGRが動作して、不要な停電に至るという
問題かある。つまり、設備3の事故が他の設備4等にも
影響を与えて、地絡事故が発生した設備3の保護範囲外
にも影響が発生する原因となっている。 *もらい事故の電流の大きさ:もらい事故電流の大きさ
Ig2[A]は、系統の地絡事故により発生する零相電
圧Vo[V]と、自家用側対地静電容量C2[F]およ
び、系統の周波数f[Hz]によって、式1で定められ
る。 Ig2=2πfC2Vo…………… 式1 *高圧受電用地絡継電器(GR)の動作:GRは零相変
流器(以下「ZCT」という)設置点に流れる定格周波
数(商用周波数)電流(以下「Ig」という)の大きさ
のみを判断し、動作する継電器である。高圧受電設備用
GRは、一般に静止型で動作電流タップ(0.2A、
0.4Aなど)が設けられ、図2の例のように、動作時
間は、定限時動作(Igがタップ値からある値を越えた
場合一定時間で動作)である。また、Igと零相電流I
oの関係は、Ig=3Ioで表される。
* Operation of receiving accident: For example, in FIG. 8, when a ground fault occurs in the private electric equipment 3, it is desirable that only the GR of the electric equipment 3 operates and is disconnected from the distribution line 2. However, when a ground fault occurs in the facility 3, the current Ig2 flowing at that time causes the GR to operate in other facilities 4 and the like, resulting in an unnecessary power failure. In other words, the accident of the facility 3 also affects other facilities 4 and the like, causing an influence to occur outside the protection range of the facility 3 where the ground fault has occurred. * The magnitude of the current of the fault accident: The magnitude of the fault current Ig2 [A] is the zero-phase voltage Vo [V] generated by the ground fault of the system, the private-use side ground capacitance C2 [F], and Equation 1 defines the frequency f [Hz] of the system. Ig2 = 2πfC2Vo Equation 1 * Operation of ground fault relay (GR) for high-voltage power receiving: GR is a rated frequency (commercial frequency) current (hereinafter referred to as “commercial frequency”) flowing at a zero-phase current transformer (hereinafter “ZCT”) installation point. Ig ”) and operates only by determining the size of the relay. The GR for high-voltage power receiving equipment is generally a stationary type and has an operating current tap (0.2 A,
0.4A), and the operation time is a fixed time operation (operates in a fixed time when Ig exceeds a certain value from the tap value) as in the example of FIG. Further, Ig and zero-phase current I
The relationship of o is represented by Ig = 3Io.

【0013】*もらい事故によるGRの不必要動作:高
圧配電系統に接続された多数の高圧受電設備3、4……
のうちの1か所に地絡が生じると、前記図12の等価回
路図に示したように、高圧配電系統にVoが発生する。
このVoにより、各自家用電気設備の対地静電容量に応
じたもらい事故電流Ig2が、ZCT2に流れる。この
Ig2の大きさは、前記式1に示す大きさとなる。前記
もらい事故電流の大きさが、GRの整定タップ値(0.
2A、0.4Aなど)を超え、図4に示すような慣性不
動作時間と余裕時間の和を超える電流が連続して流れた
場合、GRが動作して電路を遮断する動作を行う。前記
Ig2の大きさは、Voが一定の場合には、自家用電気
設備の対地静電容量C2に比例する。したがって、対地
静電容量の大きい(高圧ケーブル旦長の長い)電気設備
程、GRが不必要動作しやすくなる。これらの点から、
同一の配電系統に接続された多数の自家用電気設備のう
ち、1か所で地絡事故が発生した場合、対地静電容量の
大きい電気設備等がもらい事故電流によりGRが不必要
動作し、多数の自家用電気設備が不要な停電に至るとい
う問題がある。
* Unnecessary operation of GR due to accidents received: A number of high-voltage power receiving facilities 3, 4, ... connected to the high-voltage distribution system
When a ground fault occurs in one of the above, Vo is generated in the high-voltage distribution system as shown in the equivalent circuit diagram of FIG.
Due to this Vo, a fault current Ig2 received from ZCT2 according to the ground capacitance of each private electric facility flows. The magnitude of the Ig2 is the magnitude shown in the above equation 1. The magnitude of the received fault current is determined by the settling tap value of GR (0.
2A, 0.4A, etc.) and the current continuously exceeds the sum of the inertial inactivity time and the margin time as shown in FIG. 4, the GR operates to cut off the electric circuit. The magnitude of Ig2 is proportional to the ground capacitance C2 of the private electric equipment when Vo is constant. Accordingly, the unnecessary operation of the GR becomes easier as the electrical equipment has a larger ground capacitance (the longer the high voltage cable length). From these points,
If a ground fault occurs in one of many private electrical facilities connected to the same distribution system, the electrical equipment with a large capacitance to ground will receive the GR and unnecessary operation will occur due to the fault current. However, there is a problem that the private electrical equipment of the company leads to unnecessary power outages.

【0014】自家用側地絡時の特徴:地絡電流波形と高
調波成分分析例:自家用側地絡時には、図9の等価回路
図に示すような地絡電流Igが流れる。前記Ig波形例
は図10に示すようなものであり、高調波成分分析例は
図11に示すようになる。その波形と高調波成分の特徴
は、以下の通りとなる。 (a)地絡電流波形は、放電を原因とするものが多いた
めに、図10に示すように、基本波成分が少なく、高調
波成分を多く含む。 (b)間欠放電等が発生した場合、正極側と負極側の波
形が非対称のいわゆる非対称波が多く発生する。 (c)非対称波が発生した場合には、高調波成分には図
11に示すような2次、4次等の偶数次数の高調波成分
を多く含む。 (d)変圧器等の油入機器の場合は、絶縁油の消弧能力
が高いため、放電の発生がランダムで高い次数の高調波
が発生する。
Characteristics at the time of ground fault at the private side: ground fault current waveform and harmonic component analysis example: At the time of ground fault at the private side, a ground fault current Ig as shown in the equivalent circuit diagram of FIG. 9 flows. An example of the Ig waveform is as shown in FIG. 10, and an example of the harmonic component analysis is as shown in FIG. The characteristics of the waveform and harmonic components are as follows. (A) Since the ground fault current waveform is often caused by discharge, as shown in FIG. 10, the fundamental wave component is small and the harmonic component is large. (B) When an intermittent discharge or the like occurs, a large number of so-called asymmetric waves, in which the waveforms on the positive electrode side and the negative electrode side are asymmetric, are generated. (C) When an asymmetric wave is generated, the harmonic components include many even-order harmonic components such as the second and fourth harmonics as shown in FIG. (D) In the case of an oil-filled device such as a transformer, since the arc extinguishing ability of the insulating oil is high, high-order harmonics are generated with random discharge.

【0015】自家用地絡時の地絡電流値変化の特徴:自
家用側地絡時の等価回路は前記図9に示したようにな
り、ZCT2に流れる電流Ig2′は、図のとの合
成電流となり、第2式で表される。
Features of ground fault current value change at private ground fault: The equivalent circuit at the private ground fault is as shown in FIG. 9, and the current Ig2 'flowing through ZCT2 is a composite current as shown in FIG. , The second expression.

【0016】 計算例1(地絡点抵抗がRgの場合) ……式2 但し 2πf=ω 計算例2(完全地絡し、地絡抵抗Rgが「0」の場合) Rg2′={(1/R)+jωC1}E ……式3 前記式2および式3からRg2′は、系統の対地静電容
量C1と、変電所の等価中性点抵抗R、対地電圧Eおよ
び地絡抵抗Rgから定まる。一般に自家用地絡時に流れ
る電流値はC1の値が数μFから十数μF程度と大きい
ため、もらい事故電流に比較して変化が大きく、地絡点
抵抗の変化により、0(Rg=∞)から、数十A程度
(Rg=0)まで変化する。また、地絡抵抗はアーク地
絡に発展することが多く、アークの特性から極めて短時
間に小電流領域から最大値まで変化することがある。な
お、最大電流は系統の対地静電容量C1によりほぼ定ま
り、10〜30A程度の場合が多い。
Calculation Example 1 (when the ground fault point resistance is Rg) Equation 2 However, 2πf = ω Calculation example 2 (complete ground fault, ground fault resistance Rg is “0”) Rg2 ′ = {(1 / R) + jωC1ωE (3) From the above equations (2) and (3), Rg2 ′ is , The earth capacitance C1 of the system, the equivalent neutral point resistance R of the substation, the earth voltage E and the ground fault resistance Rg. In general, the value of the current flowing at the time of a private ground fault is large as compared with the fault current received because the value of C1 is as large as several μF to several tens μF, and changes from 0 (Rg = ∞) due to the change of the ground fault point resistance. , To several tens A (Rg = 0). Further, the ground fault resistance often develops into an arc ground fault, and may change from a small current region to a maximum value in a very short time due to the characteristics of the arc. Note that the maximum current is substantially determined by the ground capacitance C1 of the system, and is often about 10 to 30 A.

【0017】もらい事故時の特徴:前記図12の等価回
路図に示したような地絡事故が発生した場合に、そのZ
CT設置点のIg波形例は図13に示されるようにな
り、前記Igの高調波成分分析結果例は図14に示され
るように得られる。 *地絡電流波形と高調波成分分析:もらい事故電流がG
Rのタップ値(0.2A、0.4Aなど)に近くなる場
合は、配電系統が完全地絡に近い状態の場合である。そ
して、この時の波形と高調波成分の特徴と以下のように
なる。 (a)地絡電流波形は、高調波成分を殆ど含まず、基本
波成分が多い。 (b)波形の正極側と負極側が対称の対称波が多く発生
する。 (c)高調波成分は奇数波成分が多く、偶数波成分をほ
とんど含まない。
Features at the time of the accident: If a ground fault occurs as shown in the equivalent circuit diagram of FIG.
An example of an Ig waveform at the CT installation point is as shown in FIG. 13, and an example of the result of the harmonic component analysis of the Ig is obtained as shown in FIG. * Ground fault current waveform and harmonic component analysis: The fault current received is G
The case where the tap value of R is close to the tap value (0.2 A, 0.4 A, etc.) is a case where the distribution system is close to a complete ground fault. The characteristics of the waveform and harmonic components at this time are as follows. (A) The ground fault current waveform hardly contains harmonic components and has many fundamental wave components. (B) Many symmetric waves are generated in which the positive and negative sides of the waveform are symmetric. (C) The harmonic component has many odd-numbered wave components and hardly contains even-numbered wave components.

【0018】*もらい事故時のIg変化の特徴:前記図
12の等価回路からZCT2に流れる電流は、自家用電
気設備の対地静電容量C2と、Voにより決定され、前
記式1の電流値となる。なお、6,6kV系統では、V
oは最大で3810Vで、静電容量C2は一般にC1に
比較して1/10以下であるため、もらい事故の電流は
一般に1A以下である。また、Voの最大値をVomと
すると、最大電流Ig2mは、次の式4のようになる。 Ig2m=2πfC2Vom……… 式4 したがって、C2をあらかじめ測定してある場合は、最
大電流値Ig2mは既知となり、Ig2の値は、Ig2
mに収束する。
* Characteristics of Ig change at the time of accident: The current flowing from the equivalent circuit of FIG. 12 to ZCT2 is determined by the ground capacitance C2 of the private electric equipment and Vo, and becomes the current value of the above equation (1). . In the 6,6 kV system, V
Since o is 3810 V at the maximum and the capacitance C2 is generally 1/10 or less as compared with C1, the current of the accident to be received is generally 1A or less. When the maximum value of Vo is Vom, the maximum current Ig2m is expressed by the following equation 4. Ig2m = 2πfC2Vom Equation 4 Therefore, when C2 is measured in advance, the maximum current value Ig2m is known, and the value of Ig2 is Ig2
converge to m.

【0019】もらい事故電流によるGR動作を防止する
ための手段 *原理:前述の例のように、自家用設備ZCT設置点に
流れる地絡電流波形は、自家用側地絡時ともらい事故時
では、地絡電流波形に顕著な差異がある。また、自家用
側完全地絡時と、もらい事故時のZCT2設置点のIg
の大きさには10倍以上の開きがある。この性質を利用
して、自家用側地絡と判断される場合ともらい事故と判
断される場合に、継電器の動作時間特性を変化させ、も
らい事故電流による継電器の不必要動作を低減させるも
のである。
Means for Preventing GR Operation Due to Receiving Fault Current * Principle: As in the above example, the ground fault current waveform flowing to the private equipment ZCT installation point is the same as the fault on the private side ground fault. There is a remarkable difference in the fault current waveform. Also, at the time of a complete ground fault on the private side and the Ig of the ZCT2
The size has a difference of 10 times or more. By utilizing this property, when it is determined that an accident is caused by a private side ground fault or when an accident is determined, the operation time characteristic of the relay is changed, and unnecessary operation of the relay due to the received fault current is reduced. .

【0020】*配電用変電所の動作時間特性:配電用変
電所の地絡保護動作は、地絡方向継電器(DGR)と地
絡過電圧継電器(OVG)のAND条件で動作し、一般
に6kΩで系統に地絡があった場合に、1秒以内(一般
に0.7秒程度)の定限時動作となるように整定されて
いる。
* Operation time characteristics of distribution substation: The ground fault protection operation of the distribution substation operates under the AND condition of a ground fault directional relay (DGR) and a ground fault overvoltage relay (OVG). If a ground fault occurs, the operation is set to perform a timed operation within 1 second (generally about 0.7 seconds).

【0021】*継電器の動作特性上重要な事項:自家用
設備用保護継電器を設計または整定する場合、継電装置
の動作時間を配電用変電所より自家用側が早くなるよう
に整定する。そして、自家用側に地絡事故があった場合
に、速やかに自家用側地絡継電器を動作させて事故を除
去し、配電用変電所の継電装置が先に動作することがな
いようにする。
* Important points on the operating characteristics of the relay: When designing or setting a protection relay for private facilities, set the operating time of the relay device so that the private side is earlier than the distribution substation. Then, when there is a ground fault on the private side, the private side ground fault relay is immediately operated to eliminate the accident and prevent the relay device of the distribution substation from operating first.

【0022】*自家用側地絡時ともらい事故の相違:保
護範囲判別機能は、自家用側地絡事故時ともらい事故の
それぞれに対して、ZCT一次電流の地絡電流波形と地
絡電流値の変化の違いに着目し、自家用側地絡時、配電
系統の地絡によるもらい事故を判別する。そして、前記
地絡が自家用側地絡と判断される場合には、GRを動作
させて速やかに開閉器を遮断する。また、もらい事故と
判別される場合は、GRの動作時間特性を変化させ、G
Rの不必要動作を防ぐように制御するものである。前述
したように、もらい事故の場合と自家用側での事故の場
合との間で、波形と電流の大きさの2つの要素に明らか
な差異があることを前提として、本発明においては、以
下に説明するような装置を構成することができる。
* Differences between accidents caused by ground faults on the private side: The protection range discriminating function provides a ground fault current waveform of ZCT primary current and a ground fault current value for each of the faults caused by the ground fault on the private side. Attention is paid to the difference in the change, and at the time of the private side ground fault, the accidents caused by the ground fault of the power distribution system are determined. If the ground fault is determined to be a private side ground fault, the GR is operated to quickly shut off the switch. If it is determined that the accident has occurred, the operating time characteristic of the GR is changed to
Control is performed to prevent unnecessary operation of R. As described above, in the present invention, it is assumed that there is a clear difference between the waveform and the magnitude of the current between the case of the accident and the case of the accident on the private side. An apparatus as described can be configured.

【0023】次に、前記動作原理を利用した本発明の装
置の構成を説明する。図1に示す制御装置10において
は、入力信号に自家用側零相変流器(以下「ZCT」と
呼ぶ)で検知した事故電流の情報を用い、前記事故電流
の信号を入力端子11から入力回路12に入力する。前
記入力回路12の出力はフィルタ回路13に伝達され、
その出力を高調波解析回路14とレベル検出回路15に
伝達する。そして、前記高調波解析回路とレベル検出回
路の出力を動作時間特性切替回路16に伝達して処理す
るが、前記動作時間特性切替回路16にはタイマー17
の信号をも入力して処理し、信号を出力回路18を介し
てGRのトリップ回路に出力する。
Next, the configuration of the device of the present invention utilizing the above-described operation principle will be described. In the control device 10 shown in FIG. 1, information of a fault current detected by a private zero-phase current transformer (hereinafter referred to as “ZCT”) is used as an input signal, and the fault current signal is input from an input terminal 11 to an input circuit. Input to 12. The output of the input circuit 12 is transmitted to the filter circuit 13,
The output is transmitted to the harmonic analysis circuit 14 and the level detection circuit 15. The outputs of the harmonic analysis circuit and the level detection circuit are transmitted to an operation time characteristic switching circuit 16 for processing.
Is also input and processed, and the signal is output to the GR trip circuit via the output circuit 18.

【0024】前記制御装置10に配置する各回路におい
て、入力回路12では、ZCT2次端子からの入力され
る2次電流をGR内部で処理しやすい電圧に変換する。
また、フィルタ回路13はローパスフィルタであり、系
統周波数から針状波形の周波数成分までの、周波数帯域
を通過させることができる。
In each circuit arranged in the control device 10, the input circuit 12 converts a secondary current input from the ZCT secondary terminal into a voltage which can be easily processed inside the GR.
The filter circuit 13 is a low-pass filter, and can pass a frequency band from a system frequency to a frequency component of a needle waveform.

【0025】高調波解析回路14においては、Ig波形
を高調波解析し、波形の歪率(高調波成分の実効値/基
本波の実効値)がある一定の割合を超過した場合、また
は偶数高調波成分の含有率(偶数波成分の実効値/波形
の実効値)がある一定の割合を超過した場合は、自家用
側と判断した信号を動作時間特性切替回路16に向けて
出力する。また、波形の歪率、または偶数高調波成分の
含有率が一定の割合以下の場合は、もらい事故電流と判
断する信号を、動作時間特性切替回路16に向けて出力
する。前記レベル検出回路15は、入力されたIg電流
の大きさを実効値または平均値で検出し、動作時間特性
切替回路16に向けて信号を出力する。
The harmonic analysis circuit 14 performs a harmonic analysis on the Ig waveform, and when the waveform distortion rate (effective value of the harmonic component / effective value of the fundamental wave) exceeds a certain ratio, or an even harmonic. When the content of the wave component (the effective value of the even wave component / the effective value of the waveform) exceeds a certain ratio, a signal determined to be a private side is output to the operation time characteristic switching circuit 16. If the waveform distortion or the content of the even harmonic components is equal to or less than a certain ratio, a signal for determining a fault current to be received is output to the operation time characteristic switching circuit 16. The level detection circuit 15 detects the magnitude of the input Ig current as an effective value or an average value, and outputs a signal to the operation time characteristic switching circuit 16.

【0026】動作時間特性切替回路16における動作時
間特性を、定限時特性と反限時特性(Igが大きくなる
にしたがって動作時間が短くなる)の2つの特性をIg
波形の高調波解析結果により切替える処理を行う。 (a)定限時動作時:自家用設備で地絡があった場合
に、Igが大きいので、動作時間が早くなり、速やかに
地絡事故を除去することが必要である。そこで、従来の
GRの場合と同様に、動作時間特性切替回路16では、
高調波解析により、自家用側地絡と判断した場合は、図
2の定限時動作特性とし、Igの値が制定タップ値
(0.2A、0.4Aなど)を超過した場合は、速やか
にGRを動作させる。なお、前記自家用側地絡と判断し
た場合に、GRを動作させる時間は0.2秒程度に設定
される。
The operating time characteristic of the operating time characteristic switching circuit 16 is expressed by two characteristics, ie, a fixed time characteristic and an inverse time characteristic (the operating time becomes shorter as Ig becomes larger).
The switching process is performed according to the result of the harmonic analysis of the waveform. (A) Periodic operation: When a ground fault occurs in a private facility, since the Ig is large, the operation time is shortened, and it is necessary to eliminate the ground fault accident promptly. Therefore, as in the case of the conventional GR, the operating time characteristic switching circuit 16
When it is determined by the harmonic analysis that the ground fault is for the private use, the operation is performed in a fixed-time operation characteristic shown in FIG. 2. To work. In addition, when it is determined that the private ground fault occurs, the time for operating the GR is set to about 0.2 seconds.

【0027】(b)反限時動作時:高調波解析の結果、
もらい事故と判断される場合には、図3の反限時特性と
して処理する。つまり、配電系統に接続されている他の
自家用設備で地絡事故が発生した場合に、そのもらい事
故の事故電流(Ig)は小さい値となるので、動作時間
は一般のGRの動作時間よりも遅くなるような、反限時
特性とすることにより、不必要なGRの動作を防止す
る。タイマー回路17は、一定の時間信号を出力するも
ので、前記図9、図10の動作時間の設定に用いる。ま
た、出力回路18は、GRに動作信号(トリップ信号
等)を出力する回路で、前記動作時間特性切替回路16
の出力を、GRに向けて出力する。
(B) During the time limit operation: As a result of the harmonic analysis,
If it is determined that the accident has occurred, it is processed as the time limit characteristic shown in FIG. In other words, when a ground fault occurs in another private facility connected to the distribution system, the fault current (Ig) of the fault is small, so the operating time is longer than the operating time of a general GR. Unnecessary GR operation is prevented by using a time limit characteristic that causes a delay. The timer circuit 17 outputs a signal for a fixed time, and is used for setting the operation time in FIGS. The output circuit 18 outputs an operation signal (trip signal or the like) to the GR.
Is output to GR.

【0028】前述したように構成した制御装置10で
は、高調波解析回路14において前記図10、図13に
示すような波形の解析を行い、レベル検出回路15にお
いて図11、図14に示すような解析を行って、その解
析の結果の情報を動作時間特性切替回路16に伝達す
る。前記動作時間特性切替回路16においては、GRに
つながる自家用側受電設備での地絡と、もらい事故の判
別を行い、レベル検出回路15でのIg波形からの電流
の大きさの検出結果から、図2、3の入力電流(Ig)
のデータとして用いる。
In the control device 10 configured as described above, the waveform analysis as shown in FIGS. 10 and 13 is performed in the harmonic analysis circuit 14, and the level detection circuit 15 performs the analysis as shown in FIGS. The analysis is performed, and information on the result of the analysis is transmitted to the operation time characteristic switching circuit 16. The operation time characteristic switching circuit 16 determines a ground fault at the private power receiving equipment connected to the GR and a received accident, and the level detection circuit 15 detects the magnitude of the current from the Ig waveform. A few input currents (Ig)
Used as data for

【0029】そして、前記動作時間特性切替回路16に
入力された情報にもとづいて、自家用設備で地絡があっ
たと判別された時には、開閉器を遮断する動作を迅速に
行って、配電用変電所や配電線に接続されている他の自
家用設備に影響を与えないような処理を行う。また、前
記検知された電流が、もらい事故であると判別された場
合には、タイマー17の信号を加味して信号の処理を行
い、図4に示すような余裕時間を設定し、自家用側での
開閉器の動作時間を遅らせる処理を行うことで、そのG
Rを設置している自家用側受電設備での開閉器が遮断さ
れないようにする。
When it is determined that a ground fault has occurred in the private facility based on the information input to the operation time characteristic switching circuit 16, the operation of shutting off the switch is quickly performed, and the distribution substation is operated. And do not affect other private facilities connected to the distribution line. If the detected current is determined to be an accident, the signal processing is performed by taking into account the signal of the timer 17, a margin time is set as shown in FIG. By performing the process of delaying the operation time of the switch of
The switch at the private power receiving equipment where R is installed is not interrupted.

【0030】前述したような構成の制御装置10を設け
て、異常電流が流れた場合に、自家用側での地絡事故
か、もらい事故かを容易に判別することができる。そし
て、前記自家用側での地絡事故ではない場合に、その開
閉器の動作を遅延させている間に、事故電流が流れた原
因側での電路が遮断されて、特定の自家用側での開閉器
が遮断されずに済むことになる。したがって、前記制御
装置により、従来のGRの場合のように、異常電流が流
れたことを検知した時に、直ちに開閉器を遮断する処理
を行わないので、開閉器の不必要遮断が少なくなり、復
旧作業を行う頻度が少なくなる。また、特定の自家用側
での地絡事故が、他の自家用側の受電設備や変電所に影
響を与えることがなくなる。
By providing the control device 10 having the above-described configuration, when an abnormal current flows, it is possible to easily determine whether a ground fault has occurred on the private side or an accident has been received. If the fault is not a ground fault on the private side, while the operation of the switch is delayed, the electric circuit on the side on which the fault current flows is interrupted, and the switching on the specific private side is performed. The vessel will not have to be shut off. Therefore, when the control device detects that an abnormal current has flowed as in the case of the conventional GR, it does not immediately perform the process of shutting off the switch, so that unnecessary shutoff of the switch is reduced, and recovery is reduced. Work is performed less frequently. Further, a ground fault on a specific private side does not affect power receiving facilities and substations on other private sides.

【0031】[0031]

【GRの電源】一般に従来の交流負荷開閉器において
は、専用の変圧器を内蔵しており、高圧電路と負荷側の
間に設けている開閉器の負荷側に変圧器を配置し、GR
用の交流低圧電源に変換して、110V程度の電源電圧
をGRに供給している。ところが、前記専用の変圧器を
用いた電源装置の場合には、変圧器の2次側配線に異常
が生じた場合等に、GRの動作を正常に行わせることが
できなくなるという問題がある。また、前記GRの電源
として外部電源を配線する場合には、電気室等にGR電
源専用の回路を設け、電源の配線を行う必要があるが、
その専用線の配線や保守に問題がある。
[GR Power Supply] In general, a conventional AC load switch includes a dedicated transformer, and a transformer is arranged on the load side of a switch provided between the high-voltage path and the load side.
To a low-voltage AC low-voltage power supply, and supplies a power supply voltage of about 110 V to the GR. However, in the case of the power supply device using the dedicated transformer, there is a problem that the GR operation cannot be performed normally when an abnormality occurs in the secondary wiring of the transformer. When an external power supply is wired as a power supply for the GR, it is necessary to provide a circuit dedicated to the GR power supply in an electric room or the like and to perform wiring of the power supply.
There is a problem with the wiring and maintenance of the dedicated line.

【0032】そこで、前記GRへの給電の問題に対処さ
せるために、例えば、図5に示すような機器の外箱等を
貫通するブッシング変流器(以下「BCT」と呼ぶ)を
用いた自己電源回路30を設けることができる。前記自
己電源回路30は、開閉器の外箱の金属部に一次導体2
1を貫通させる部分で、一次導体21の絶縁に用いる碍
子製貫通ブッシング22に対して、二次巻線24を設け
た磁心23を配置し、前記一次導体21に流れている電
流に対して二次巻線24の巻線比率に応じた電流を自己
電源回路30へ供給する。BCT20は一次導体21に
一次電流I1 が流れると、二次巻線には変流比に応じた
二次電流I2 が流れるため、この電流を自己電源回路3
0に供給することにより、外部電源を設けない自己電源
型GR付交流負荷開閉器を構成することが可能になる。
Therefore, in order to cope with the problem of power supply to the GR, for example, as shown in FIG. A power supply circuit 30 can be provided. The self-power supply circuit 30 includes a primary conductor 2 on a metal part of an outer case of the switch.
1 is disposed at a portion through which the primary conductor 21 passes, and a magnetic core 23 provided with a secondary winding 24 is disposed with respect to an insulator through bushing 22 used for insulating the primary conductor 21. A current corresponding to the winding ratio of the next winding 24 is supplied to the self-power supply circuit 30. BCT20 is when the primary conductor 21 is the primary current I 1 flows, to flow the secondary current I 2 corresponding to the current transformer ratio in the secondary winding, self-powered circuit 3 this current
By supplying to 0, it becomes possible to configure a self-powered AC load switch with GR without an external power supply.

【0033】前記自己電源機能をGRに設けるために、
図6に示すような自家用高圧受電設備の特性を利用する
ことができる。前記高圧受電設備においては、開閉器2
5の設置箇所に流れる電流I1 は、高圧進相コンデンサ
27に流れる電流Icと、負荷26に流れる電流ILの
ベクトル和となる。前記負荷電流は常に変動し、0から
最大値まで変動するが、前記負荷電流ILが0となって
も、コンデンサ27は常に一定電流が流れるので、この
開閉器25の一次導体に流れる電流が0にならないこと
を利用してGRの電源とすることが可能である。
In order to provide the self-power function to the GR,
The characteristics of the private high-voltage power receiving equipment as shown in FIG. 6 can be used. In the high-voltage power receiving equipment, the switch 2
The current I 1 flowing through the installation location of the reference numeral 5 is the vector sum of the current Ic flowing through the high-voltage advance capacitor 27 and the current IL flowing through the load 26. The load current always fluctuates, and fluctuates from 0 to the maximum value. However, even if the load current IL becomes 0, a constant current always flows through the capacitor 27. It can be used as a power source for the GR by utilizing the fact that the power does not change.

【0034】前述したように、開閉器25の一次導体に
常に流れる電流を利用するために、図7に示すような自
己電源回路を構成することができる。前記図7に示す例
では、BCT(図5のBCT20と同様な部材)により
得られる自己電源回路二次電流を、自己電源回路30の
昇圧トランス32により必要な電圧まで昇圧する。そし
て、前記トランス32の出力電圧を整流・安定化回路3
3を通して、整流、安定化し。GR動作に必要な直流電
源として用いる。なお、装置の使用初期段階等で必要な
電源が得られない場合があるために、バッテリー34を
付設して、地絡検出部35の電源として用いる。なお、
前記バッテリーとしては、ニッケル水素電池等の二次電
池、または、超大容量コンデンサ(スーパーキャパシ
タ)等を利用することができる。
As described above, in order to utilize the current that always flows through the primary conductor of the switch 25, a self-power supply circuit as shown in FIG. 7 can be constructed. In the example shown in FIG. 7, the secondary current of the self-power supply circuit obtained by the BCT (the same member as the BCT 20 of FIG. 5) is boosted to a required voltage by the boosting transformer 32 of the self-power supply circuit 30. The output voltage of the transformer 32 is rectified and stabilized by the rectifying / stabilizing circuit 3.
Rectify and stabilize through 3. Used as a DC power supply required for GR operation. Since a necessary power supply may not be obtained in an initial stage of use of the apparatus, a battery 34 is provided and used as a power supply for the ground fault detection unit 35. In addition,
As the battery, a secondary battery such as a nickel-metal hydride battery or an ultra-large capacity capacitor (super capacitor) can be used.

【0035】したがって、前記GRの動作のために必要
とされる電源を、開閉器25の一次導体に流れる電流を
BCT20を介して利用することにより、従来のGRの
ように、電源を別の変圧器等を用いて形成する必要がな
い。そして、前記自己電源回路においては、貫通ブッシ
ングを用いたことで、変流器の磁心や二次巻線を一次導
体に対して絶縁する必要がなく、高圧電路のサージング
インピーダンスに不均衡が生じないため、高圧電路に過
渡電圧の集中が発生しにくいという特徴がある。また、
前記BCTを用いることで、一次導体から二次側への移
行電圧値が一般に小さい。さらに、前記二次側電流は、
開閉器の過電流検知用としても併用が可能である。
Therefore, by using the power supply required for the operation of the GR through the current flowing through the primary conductor of the switch 25 through the BCT 20, the power supply is converted to another transformer as in the conventional GR. It is not necessary to form using a container or the like. In the self-power supply circuit, since the through bushing is used, it is not necessary to insulate the magnetic core and the secondary winding of the current transformer from the primary conductor, and no imbalance occurs in the surging impedance of the high-voltage path. Therefore, there is a feature that the concentration of the transient voltage hardly occurs on the high piezoelectric path. Also,
By using the BCT, the transition voltage value from the primary conductor to the secondary side is generally small. Further, the secondary current is
It can also be used for detecting overcurrent of a switch.

【0036】[0036]

【発明の効果】本発明の装置は、前述したように構成し
た制御装置を用いるのであるから、異常電流が流れた場
合に、自家用側での短絡事故か、もらい事故かを容易に
判別することができる。そして、前記自家用側での地絡
事故ではない場合に、その開閉器の動作を遅延させてい
る間に、事故電流が流れた原因側での電路が遮断され
て、特定の自家用側での開閉器が遮断されずに済むこと
になる。したがって、前記制御装置により、従来のGR
の場合のように、異常電流が流れたことを検知した時
に、直ちに開閉器を遮断する処理を行わないので、開閉
器の不要な遮断が少なくなり、停電後の復旧処理を行う
頻度が少なくなる。また、特定の自家用側での地絡事故
が、他の自家用側の受電設備や変電所に影響を与えるこ
とがなくなる。
The device of the present invention uses the control device configured as described above. Therefore, when an abnormal current flows, it is easy to determine whether a short-circuit accident has occurred on the private side or an accident has occurred. Can be. If the fault is not a ground fault on the private side, while the operation of the switch is delayed, the electric circuit on the side on which the fault current flows is interrupted, and the switching on the specific private side is performed. The vessel will not have to be shut off. Therefore, the conventional GR
As in the case of (1), when it is detected that an abnormal current has flowed, the process of shutting off the switch is not performed immediately, so that unnecessary shutoff of the switch is reduced, and the frequency of the recovery process after a power failure is reduced. . Further, a ground fault on a specific private side does not affect power receiving facilities and substations on other private sides.

【0037】さらに、本発明においては、GRの動作の
ために必要とされる電源を、高圧電路の一次導体に流れ
る電流をBCTを介して給電する手段を設けることによ
り、従来のGRのように、電源を別の変圧器等を用いて
形成する必要がない。そして、前記自己電源回路におい
ては、貫通ブッシングを用いたことで、変流器の磁心や
二次巻線を一次導体に対して絶縁する必要がなく、高圧
電路のサージングインピーダンスに不均衡が生じないた
め、高圧電路に過渡電圧の集中が発生しにくいという特
徴がある。また、前記自己電源回路を用いることで、一
次導体側から二次側への移行電圧値が一般に小さく、前
記二次側電流は、開閉器の過電流検出用としても併用が
可能である。
Further, in the present invention, a power supply required for the operation of the GR is provided with means for supplying a current flowing through the primary conductor of the high-voltage path through the BCT, thereby providing a power supply similar to the conventional GR. In addition, there is no need to form the power supply using another transformer or the like. In the self-power supply circuit, since the through bushing is used, it is not necessary to insulate the magnetic core and the secondary winding of the current transformer from the primary conductor, and no imbalance occurs in the surging impedance of the high-voltage path. Therefore, there is a feature that the concentration of the transient voltage hardly occurs on the high piezoelectric path. Further, by using the self-power supply circuit, a transition voltage value from the primary conductor side to the secondary side is generally small, and the secondary side current can be used also for overcurrent detection of a switch.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の制御装置の構成を示す回路図であ
る。
FIG. 1 is a circuit diagram showing a configuration of a control device of the present invention.

【図2】 定限時動作での動作時間と入力電流の関係の
説明図である。
FIG. 2 is an explanatory diagram of a relationship between an operation time and an input current in a timed operation.

【図3】 反限時動作での動作時間と入力電流の関係の
説明図である。
FIG. 3 is an explanatory diagram of a relationship between an operation time and an input current in a time limit operation.

【図4】 動作時間の説明図である。FIG. 4 is an explanatory diagram of an operation time.

【図5】 BCTの構成を示す説明図である。FIG. 5 is an explanatory diagram showing a configuration of a BCT.

【図6】 自家用高圧受電設備の説明図である。FIG. 6 is an explanatory diagram of a private high-voltage power receiving facility.

【図7】 自己電源回路の構成を示す説明図である。FIG. 7 is an explanatory diagram showing a configuration of a self-power supply circuit.

【図8】 事故に対する配電系統に流れる電流の説明図
である。
FIG. 8 is an explanatory diagram of a current flowing in a power distribution system for an accident.

【図9】 自家用側の事故で流れる電流の説明図であ
る。
FIG. 9 is an explanatory diagram of a current flowing in a private accident.

【図10】 事故電流の波形の説明図である。FIG. 10 is an explanatory diagram of a waveform of a fault current.

【図11】 図10の波形解析の説明図である。FIG. 11 is an explanatory diagram of the waveform analysis of FIG. 10;

【図12】 もらい事故で流れる電流の説明図である。FIG. 12 is an explanatory diagram of a current flowing in a received accident.

【図13】 事故電流の波形の説明図である。FIG. 13 is an explanatory diagram of a waveform of a fault current.

【図14】 図13の波形解析の説明図である。14 is an explanatory diagram of the waveform analysis of FIG.

【符号の説明】[Explanation of symbols]

1 変電所、 2 配電線、 3・4 自家用電
気設備、10 制御装置、 11 入力端子、 1
2 入力回路、13 フィルタ回路、 14 高
調波解析回路、15 レベル検出回路、 16 動
作時間特性切替回路、17 タイマー、 18 出
力回路、 20 BCT、21 一次導体、 22
貫通型ブッシング、 23 磁心、24 二次
巻線、 25 開閉器、 26 負荷、27 高
圧進相コンデンサ、 30 自己電源回路、 31
BCT、32 昇圧トランス、 33 整流・安
定化回路、34 バッテリー、 35 地絡検出
部。
1 Substation, 2 Distribution line, 3/4 Private electrical equipment, 10 Control device, 11 Input terminal, 1
2 input circuit, 13 filter circuit, 14 harmonic analysis circuit, 15 level detection circuit, 16 operating time characteristic switching circuit, 17 timer, 18 output circuit, 20 BCT, 21 primary conductor, 22
Piercing type bushing, 23 magnetic core, 24 secondary winding, 25 switch, 26 load, 27 high-voltage advance capacitor, 30 self-power supply circuit, 31
BCT, 32 step-up transformer, 33 rectification / stabilization circuit, 34 battery, 35 ground fault detector.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 配電用変電所からの高圧配電線路に接続
される自家用高圧受電設備において、 前記自家用高圧受電設備に零相変流器を内蔵した開閉器
を配置し、零相変流器を介して地絡継電器を配置し、 前記開閉器に設ける地絡継電器には、零相変流器から入
力される高圧電路の零相電流データから、自家用高圧受
電設備側での事故と高圧配電線路側での事故とを判別す
る手段を設け、 前記事故の発生源が高圧配電線路側の場合に、自家用高
圧受電設備側での開閉器の動作時間を遅らせるよう制御
することを特徴とする事故範囲判別機能付地絡継電器
1. A private high-voltage power receiving facility connected to a high-voltage distribution line from a distribution substation, wherein a switch incorporating a zero-phase current transformer is disposed in the private high-voltage power receiving facility, and the zero-phase current transformer is provided. A ground fault relay is arranged via the ground fault relay provided in the switch, based on the zero-phase current data of the high-voltage path input from the zero-phase current transformer, the accident on the private high-voltage power receiving equipment side and the high-voltage distribution line. Means for discriminating an accident on the side of the accident, wherein when the source of the accident is on the high-voltage distribution line side, control is performed to delay the operation time of the switch on the side of the private high-voltage power receiving facility. Ground fault relay with discrimination function
【請求項2】 前記自家用高圧受電設備に設ける事故判
別手段においては、事故電流の波形を解析した結果にも
とづいて、高圧配電線路側の事故を判別して、前記自家
用高圧受電設備の開閉器の動作時間を、自家用高圧受電
設備側事故時の動作時間よりも所定の時間遅らせる制御
を行うことを特徴とする請求項1に記載の事故範囲判別
機能付地絡継電器。
2. An accident discriminating means provided in the private high-voltage power receiving facility, based on a result of analyzing a waveform of the fault current, discriminates an accident on the high-voltage distribution line side, and determines whether or not the switch of the private high-voltage power receiving facility has a switch. The ground fault relay with an accident area discrimination function according to claim 1, wherein control is performed to delay the operation time by a predetermined time from the operation time at the time of the accident at the side of the private high-voltage power receiving facility.
【請求項3】 前記自家用高圧受電設備に設ける事故判
別手段において、零相変流器から地絡継電器の制御回路
に入力される情報を、高調波解析する回路とレベル検出
回路とに並列に入力し、 前記2つの回路の出力を動作時間特性切換回路に伝達
し、 前記動作時間特性切換回路においては、波形の歪率と偶
数高調波成分の含有率を、あらかじめ設定している値と
比較し、自家用側か否かの判断を行う手段を設けること
を特徴とする請求項2に記載の事故範囲判別機能付地絡
継電器。
3. An accident discriminating means provided in the private high-voltage power receiving equipment, wherein information inputted from a zero-phase current transformer to a control circuit of a ground fault relay is inputted in parallel to a harmonic analysis circuit and a level detection circuit. The outputs of the two circuits are transmitted to an operation time characteristic switching circuit. In the operation time characteristic switching circuit, the distortion rate of the waveform and the content of the even harmonic component are compared with preset values. 3. The ground fault relay with an accident area discriminating function according to claim 2, further comprising means for judging whether or not it is a private use side.
【請求項4】 配電用変電所からの高圧配電線路に接続
される自家用高圧電気設備において、 前記自家用高圧受電設備に設ける地絡継電器に対して、
制御電源としての自己電源回路を設け、前記自己電源回
路においては、一次導体の絶縁に用いる絶縁ブッシング
に対して、二次巻線を設けた磁心を配置して変流手段を
構成し、外部電源を設けない自己電源型を設けることを
特徴とする事故範囲判別機能付地絡継電器。
4. A private high-voltage electrical facility connected to a high-voltage distribution line from a distribution substation, wherein a ground fault relay provided in the private high-voltage power receiving facility is:
A self-power supply circuit as a control power supply is provided, and in the self-power supply circuit, a current transformer is configured by arranging a magnetic core provided with a secondary winding with respect to an insulating bushing used for insulating a primary conductor. A ground fault relay with an accident area discrimination function, which is provided with a self-powered type that does not have a power supply.
JP2000134554A 2000-05-08 2000-05-08 Ground relay with failed-area determining function Pending JP2001320828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000134554A JP2001320828A (en) 2000-05-08 2000-05-08 Ground relay with failed-area determining function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000134554A JP2001320828A (en) 2000-05-08 2000-05-08 Ground relay with failed-area determining function

Publications (1)

Publication Number Publication Date
JP2001320828A true JP2001320828A (en) 2001-11-16

Family

ID=18642813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000134554A Pending JP2001320828A (en) 2000-05-08 2000-05-08 Ground relay with failed-area determining function

Country Status (1)

Country Link
JP (1) JP2001320828A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521374A (en) * 2004-11-18 2008-06-19 ドン・エナジー・セールス・アンド・ディストリビューション・アクティーゼルスカブ Compensation for a simple fiber optic Faraday effect sensor
WO2010048867A1 (en) * 2008-10-27 2010-05-06 清华大学 Method for detecting single phase grounding fault based on harmonic component of residual current
KR101033125B1 (en) * 2009-01-30 2011-05-11 주식회사 비츠로테크 A method for compensating brake out time error of relay protecting electric power system
JP2017022917A (en) * 2015-07-14 2017-01-26 光商工株式会社 Ground directional relay device and ground directional relay device system
JP2019158672A (en) * 2018-03-14 2019-09-19 富士電機株式会社 Abnormal current detector for three-phase AC cable
CN110927539A (en) * 2019-12-05 2020-03-27 武汉理工大学 Power distribution network fault section positioning method based on single-ended transient energy spectrum similarity

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521374A (en) * 2004-11-18 2008-06-19 ドン・エナジー・セールス・アンド・ディストリビューション・アクティーゼルスカブ Compensation for a simple fiber optic Faraday effect sensor
JP4869245B2 (en) * 2004-11-18 2012-02-08 パワーセンス・アクティーゼルスカブ Compensation for a simple fiber optic Faraday effect sensor
WO2010048867A1 (en) * 2008-10-27 2010-05-06 清华大学 Method for detecting single phase grounding fault based on harmonic component of residual current
US8918296B2 (en) 2008-10-27 2014-12-23 Tsinghua University Method for detecting single phase grounding fault based on harmonic component of residual current
KR101033125B1 (en) * 2009-01-30 2011-05-11 주식회사 비츠로테크 A method for compensating brake out time error of relay protecting electric power system
JP2017022917A (en) * 2015-07-14 2017-01-26 光商工株式会社 Ground directional relay device and ground directional relay device system
JP2019158672A (en) * 2018-03-14 2019-09-19 富士電機株式会社 Abnormal current detector for three-phase AC cable
JP7123584B2 (en) 2018-03-14 2022-08-23 富士電機株式会社 Abnormal current detector for three-phase AC cable
CN110927539A (en) * 2019-12-05 2020-03-27 武汉理工大学 Power distribution network fault section positioning method based on single-ended transient energy spectrum similarity

Similar Documents

Publication Publication Date Title
CN107966633B (en) Method and system for rapidly judging single-phase earth fault line of power distribution network of power supply system
Brunello et al. Shunt capacitor bank fundamentals and protection
TW480800B (en) Protection system for power receiving station
JP5726047B2 (en) Operation test apparatus and operation test method for high-voltage system protection equipment
US6025980A (en) Earth leakage protective relay
US20090154033A1 (en) Electrical Arc Fault Circuit Interrupter Apparatus and Method
US4607309A (en) Apparatus for detecting arcing faults on low-voltage spot networks
US20180226796A1 (en) Method and system for improved operation of power grid components in the presence of direct current (dc)
KR102104835B1 (en) Gis for 29kv with prevention apparatus for secondary circuit opening of current transformer
US20220285930A1 (en) Transformer rectifier unit power quality protection
JP5561831B2 (en) Transformer internal failure detection device
KR101490770B1 (en) Ground fault detecting apparatus
JP2001320828A (en) Ground relay with failed-area determining function
JP2002320325A (en) Power transmission and distribution equipment
EP3595157B1 (en) Power conversion device
Mohanty et al. Current restrained undervoltage protection scheme of converter dominated microgrids
Panasetsky et al. On the problem of shunt reactor tripping during single-and three-phase auto-reclosing
JPH10243549A (en) Ferro-resonance monitoring and protecting device
CN106972462A (en) Low-voltage distribution cabinet broken neutral line protection device and detection method
KR20020041973A (en) Breaker for a leakage of electrocity
Beltz et al. Application considerations for high resistance ground retrofits in pulp and paper mills
RU2400764C1 (en) Method of controlling three-phase feeder isolation
KR100585378B1 (en) Leakage Current Detect Interrupter
KR102411894B1 (en) Insulation separation type mechanical latch monitoring protection device of secondary commercial circuit of current transformer for switchgear
JP2013113632A (en) Ground fault detecting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024