JP2002122628A - Specifying method for fault point - Google Patents
Specifying method for fault pointInfo
- Publication number
- JP2002122628A JP2002122628A JP2000314543A JP2000314543A JP2002122628A JP 2002122628 A JP2002122628 A JP 2002122628A JP 2000314543 A JP2000314543 A JP 2000314543A JP 2000314543 A JP2000314543 A JP 2000314543A JP 2002122628 A JP2002122628 A JP 2002122628A
- Authority
- JP
- Japan
- Prior art keywords
- fault
- ground
- point
- impedance
- frequency power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Locating Faults (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、配電系統で発生
したトリップ事故発生後(地絡事故又は短絡事故)の電
源停止状態でその故障点を標定する故障点標定方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fault point locating method for locating a fault point in a power distribution system after a trip accident (a ground fault accident or a short circuit accident) occurs in a power distribution system.
【0002】[0002]
【従来の技術】配電系統において、トリップ事故が発生
した場合、区分開閉器で切り分けられた故障区間内にお
ける故障点を標定する必要がある。このような故障点を
標定する故障点標定方法として、特開平9−10576
5号公報や特開平11−326437号公報に記載され
たものがある。特開平9−105765号公報に記載さ
れたものは、特定周波数の交流信号を各電柱の接地ター
ミナルに印加し、接地線電圧を測定して故障点を標定す
るものである。特開平11−326437号公報に記載
されたものは、停電区間の電線に直流電流を印加し、そ
の直流印加点をはさんだ2点の電流を検出することによ
って、地絡点方向を判別するものである。2. Description of the Related Art When a trip accident occurs in a power distribution system, it is necessary to locate a fault point in a fault section isolated by a sectional switch. As a fault point locating method for locating such a fault point, Japanese Unexamined Patent Application Publication No. 9-10576
No. 5 and JP-A-11-326437. Japanese Unexamined Patent Publication No. Hei 9-105765 discloses a method in which an AC signal having a specific frequency is applied to the ground terminal of each telephone pole, and a ground line voltage is measured to locate a fault point. Japanese Unexamined Patent Application Publication No. 11-326437 discloses a method in which a direct current is applied to an electric wire in a power outage section, and two currents sandwiching the direct current application point are detected to determine a ground fault point direction. It is.
【0003】[0003]
【発明が解決しようとする課題】特開平9−10576
5号公報に記載されたものは、故障区間内の全ての電柱
について測定を行う必要があり、時間と手間がかかり非
効率的であるという問題がある。一方、特開平11−3
26437号公報に記載されたものは、柱上変圧器が線
間短絡状態になった場合は判別することができないの
で、柱上変圧器のプライマリーカットアウトを全て開放
した後でなければ、故障点の標定を行うことができない
という問題がある。Problems to be Solved by the Invention Japanese Patent Application Laid-Open No. 9-10576
The method described in Japanese Patent Publication No. 5 has a problem that it is necessary to measure all the electric poles in the failure section, which is time-consuming and troublesome, and is inefficient. On the other hand, JP-A-11-3
In the system disclosed in Japanese Patent No. 263737, it is not possible to determine when the pole transformer is in a line-to-line short-circuit state. Therefore, unless all the primary cutouts of the pole transformer are opened, a failure point There is a problem that can not be located.
【0004】本発明は、上述の点に鑑みてなされたもの
であり、故障区間内の全ての電柱を測定しなくても、柱
上変圧器が線間短絡した場合でも、簡易かつ短時間に効
率的に故障区間内における地絡点及び短絡点などの故障
点を標定することのできる故障点標定方法を提供するこ
とを目的とする。[0004] The present invention has been made in view of the above points, and is simple and can be performed in a short time even if the pole transformer is short-circuited between lines without measuring all poles in the fault section. It is an object of the present invention to provide a fault point locating method capable of efficiently locating a fault point such as a ground fault point and a short-circuit point in a fault section.
【0005】[0005]
【課題を解決するための手段】請求項1に記載された故
障点標定方法は、高周波電源と電圧測定センサと電流測
定センサを用いて、配電線の相間インピーダンス及び対
地インピーダンスを測定して、地絡事故及び短絡事故の
故障種別を判定するものである。この方法では、まず、
高周波電源、電圧測定センサ及び電流測定センサを用い
て配電線の各相の相間インピーダンス及び対地インピー
ダンスを測定する。対地インピーダンスが他相に比べて
極端に小さい場合にはそれは地絡事故と判定できる。ま
た、相間インピーダンスが他の相間インピーダンスより
も極端に小さい場合にはそれは短絡事故と判定できる。According to a first aspect of the present invention, there is provided a fault locating method, comprising measuring a phase impedance and a ground impedance of a distribution line using a high-frequency power supply, a voltage measuring sensor, and a current measuring sensor. This is to determine the fault type of the short-circuit accident and the short-circuit accident. In this method, first,
The inter-phase impedance and the ground impedance of each phase of the distribution line are measured using a high-frequency power supply, a voltage measurement sensor, and a current measurement sensor. If the ground impedance is extremely small compared to the other phases, it can be determined that the ground fault has occurred. If the inter-phase impedance is extremely smaller than the other inter-phase impedances, it can be determined that a short circuit has occurred.
【0006】請求項2に記載された故障点標定方法は、
高周波電源を配電線に接続し、その接続点を挟むように
前記配電線の両側に電流測定センサを設置し、前記電流
センサによって測定された電流値の大きい方向に地絡点
故障があると判定するものである。この方法では、高周
波電源の接続点を挟む2地点で電流を測定すると、前述
のように対地インピーダンスの違いにより流れる電流の
大きさが異なるので、電流値の大きい方向で短絡事故が
発生していることを判別できる。[0006] A fault point locating method according to a second aspect is characterized in that:
A high-frequency power supply is connected to a distribution line, and current measurement sensors are installed on both sides of the distribution line so as to sandwich the connection point, and it is determined that a ground fault has occurred in a direction in which the current value measured by the current sensor is larger. Is what you do. In this method, when the current is measured at two points across the connection point of the high-frequency power supply, the magnitude of the current flowing due to the difference in the ground impedance is different as described above, so that a short circuit accident has occurred in the direction of the larger current value. Can be determined.
【0007】請求項3に記載された故障点標定方法は、
請求項1又は2において、前記高周波電源を用いた測定
を柱上変圧器の設置された電柱におけるプライマリーカ
ットアウトを介して行うものである。請求項1又は2の
故障点標定方法は、配電線に対して高周波電源を印加す
る場合、柱上変圧器のプライマリーカットアウトを用い
ることによって配電線への電力供給を容易に行うことが
できる。[0007] According to a third aspect of the present invention, there is provided a failure point locating method.
3. The method according to claim 1, wherein the measurement using the high-frequency power supply is performed via a primary cutout of a utility pole on which a pole transformer is installed. 4. According to the fault point locating method of claim 1 or 2, when applying high-frequency power to a distribution line, power can be easily supplied to the distribution line by using a primary cutout of a pole transformer.
【0008】請求項4に記載された故障点標定方法は、
請求項1又は2において、前記高周波電源が正弦波の連
続出力を行うのではなく、パルス状の出力を行うもので
ある。これは、故障原因が絶縁劣化の場合に、絶縁破壊
を起こさせ、その瞬間における対地インピーダンス又は
相間インピーダンスを測定するために、高周波電源によ
ってパルス状の出力を行わせるようにしたものである。[0008] According to a fourth aspect of the present invention, there is provided a failure point locating method.
3. The high-frequency power supply according to claim 1, wherein the high-frequency power supply does not output a sine wave continuously, but outputs a pulse-like output. This is a technique in which when a failure is caused by insulation deterioration, insulation breakdown occurs, and a pulse-like output is performed by a high-frequency power supply in order to measure a ground impedance or an interphase impedance at that moment.
【0009】請求項5に記載された故障点標定方法は、
請求項1において、前記高周波電源、電圧測定センサ及
び電流測定センサが一体に構成されたインピーダンスメ
ータで構成されているものである。これは、故障原因が
金属接触等のような場合、高周波電源の容量が小さくて
も十分に故障点標定を行うことができるので、高周波電
源、電圧測定センサ、電流測定センサが一体で構成され
た比較的小さな容量のインピーダンスメータを使用する
ことができる。[0009] A fault point locating method according to a fifth aspect of the present invention comprises:
In claim 1, the high-frequency power supply, the voltage measurement sensor, and the current measurement sensor are configured as an integrated impedance meter. This is because when the cause of the failure is a metal contact or the like, the failure point can be sufficiently located even with a small capacity of the high-frequency power supply, so that the high-frequency power supply, the voltage measurement sensor, and the current measurement sensor are integrally configured. A relatively small capacity impedance meter can be used.
【0010】[0010]
【発明の実施の形態】以下、本発明の実施の形態を添付
図面に従って説明する。なお、以下の図1、図2では説
明図の簡略化のため、三相のうち一相の配電線の図示を
省略している。図1は、地絡故障の場合における本発明
の故障点標定方法の一実施例を示す図である。図におい
て、配電線10,12は、各電柱20〜30の上に設置
されている。電柱20,25,30には、柱上変圧器4
1〜43がそれぞれ設置されている。柱上変圧器41〜
43はそれぞれのプライマリーカットアウトPC1〜P
C6を介して配電線10,12に接続されている。図1
では、配電線10が電柱29付近で地絡している。この
地絡点50がこの故障点標定方法によって標定される。Embodiments of the present invention will be described below with reference to the accompanying drawings. In FIGS. 1 and 2 below, for simplification of the explanatory diagram, illustration of one-phase distribution line among three phases is omitted. FIG. 1 is a diagram showing an embodiment of a fault point locating method of the present invention in the case of a ground fault. In the figure, distribution lines 10 and 12 are installed on utility poles 20 to 30, respectively. The poles 20, 25, and 30 have pole transformers 4
1 to 43 are provided respectively. Pole-mounted transformers 41-
43 is each primary cutout PC1 to P
It is connected to distribution lines 10 and 12 via C6. FIG.
In, the distribution line 10 is grounded near the utility pole 29. This ground fault point 50 is located by this failure point location method.
【0011】図1のような地絡点50が存在する場合
に、高周波電源、電圧センサ及び電流センサを用いて、
配電線10,12の各相の対地インピーダンスを測定す
る。配電線10,12の各相の対地インピーダンスを測
定すると、地絡相である配電線10の対地インピーダン
スは、他相である配電線12の対地インピーダンスに比
べて小さな値となるので、地絡相を容易に判別すること
ができる。高周波電源は柱上変圧器41〜43の各プラ
イマリーカットアウトPC1〜PC6に接続される。When a ground fault point 50 as shown in FIG. 1 exists, a high-frequency power source, a voltage sensor, and a current sensor are used.
The ground impedance of each phase of the distribution lines 10 and 12 is measured. When the ground impedance of each phase of the distribution lines 10 and 12 is measured, the ground impedance of the distribution line 10 that is the ground fault phase is smaller than the ground impedance of the distribution line 12 that is the other phase. Can be easily determined. The high frequency power supply is connected to each of the primary cutouts PC1 to PC6 of the pole transformers 41 to 43.
【0012】また、このときに高周波電源の接続点をは
さむ2地点の電流を電流センサで測定することによっ
て、地絡点50の存在する方向を判別することができ
る。これは地絡点50の存在する方向の電流値の方が大
きくなるので、2地点のうち電流値の大きい方向に地絡
点50が存在することが判別できる。At this time, the direction in which the ground fault point 50 exists can be determined by measuring the current at two points sandwiching the connection point of the high-frequency power supply with a current sensor. This is because the current value in the direction in which the ground fault point 50 is present is larger, so it can be determined that the ground fault point 50 exists in the direction of the larger current value between the two points.
【0013】さらに、配電線10,12には、1[mH
/km]程度のインダクタンス成分が存在するので、電
源接続点が地絡点50に近いほど、対地インピーダンス
が小さくなり、電源接続点を変えながら地絡相における
対地インピーダンスを測定することで、故障点標定を容
易に行うことができる。Further, the distribution lines 10 and 12 have 1 [mH
/ Km], the closer the power supply connection point is to the ground fault point 50, the smaller the ground impedance becomes. By measuring the ground impedance in the ground fault phase while changing the power supply connection point, the failure point is determined. Orientation can be easily performed.
【0014】次に、短絡故障の場合について説明する。
図2は、短絡故障の場合における本発明の故障点標定方
法の一実施例を示す図である。図2において、図1と同
じ構成のものには同一の符号が付してあるので、その説
明は省略する。図2が図1と異なる点は、電柱29付近
で短絡事故(短絡点51)が発生している点である。こ
のような短絡点51が存在する場合に、高周波電源、電
圧センサ及び電流センサを用いて、配電線10,12の
各相の相間インピーダンスを測定する。配電線10,1
2の各相の相間インピーダンスを測定すると、短絡点5
1の存在する相間インピーダンスは、他の相間と比べて
相間インピーダンスが小さくなるので、短絡相を容易に
判別することができる。高周波電源は柱上変圧器41〜
43の各プライマリーカットアウトPC1〜PC6に接
続される。配電線10,12には、1[mH/km]程
度のインダクタンス成分が存在するので、電源接続点が
短絡点51に近いほど、相間インピーダンスが小さくな
り、電源接続点を変えながら短絡相における相間インピ
ーダンスを測定することで、故障点標定を容易に行うこ
とができる。Next, a case of a short-circuit fault will be described.
FIG. 2 is a diagram showing one embodiment of the fault point locating method of the present invention in the case of a short-circuit fault. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted. FIG. 2 differs from FIG. 1 in that a short-circuit accident (short-circuit point 51) occurs near the utility pole 29. When such a short-circuit point 51 exists, the inter-phase impedance of each phase of the distribution lines 10 and 12 is measured using a high-frequency power supply, a voltage sensor, and a current sensor. Distribution lines 10, 1
When the inter-phase impedance of each phase is measured, the short-circuit point 5
Since the inter-phase impedance where 1 exists is smaller than the inter-phase impedance, the short-circuit phase can be easily determined. High frequency power supply is pole transformer 41-
43 are connected to the primary cutouts PC1 to PC6. Since the distribution lines 10 and 12 have an inductance component of about 1 [mH / km], the closer the power supply connection point is to the short-circuit point 51, the lower the inter-phase impedance becomes. By measuring the impedance, the fault point can be easily located.
【0015】この実施の形態による故障点標定方法の具
体例を以下説明する。高周波電源としては柱上変圧器4
1〜43が誘導性となる周波数範囲(例えば1[kH
z])の正弦波発生装置を用いる。この高周波電源を用
いて次のようにして故障点の標定を行う。A specific example of the fault locating method according to this embodiment will be described below. Pole transformer 4 as high frequency power supply
Frequency range in which 1 to 43 are inductive (for example, 1 [kHz]
z]). Using this high-frequency power source, a fault point is located as follows.
【0016】まず、故障区間の中央付近に位置する電柱
20に設置されている柱上変圧器41のプライマリーカ
ットアウトPC1,PC2において、対地インピーダン
スZa1、相間インピーダンスZp1の測定を行い、地
絡故障なのか短絡故障なのかの故障種類及び故障相の判
別を行う。図1の場合は配電線10の地絡故障と判定さ
れ、図2の場合は配電線10と12との短絡故障と判定
される次に、前記測定地点(電柱20)の近くであって
柱上変圧器42のプライマリーカットアウトPC3,P
C4が存在する最も近い電柱25に移動する。図1に示
すように故障種類の判定結果が配電線10の地絡故障の
場合には、プライマリーカットアウトPC3において、
地絡相(配電線10)の対地インピーダンスZa2を測
定する。対地インピーダンスZa2が前述の対地インピ
ーダンスZa1よりも小さければ、故障点(地絡点5
0)は、電柱20から電柱25を見た方向に存在し、電
柱25から電柱20を見た方向の電柱20以前には存在
しないことが判明する。逆に、対地インピーダンスZa
2が前述の対地インピーダンスZa1よりも大きけれ
ば、故障点は電柱20から電柱25を見た方向の電柱2
5以後には存在せず、電柱25から電柱20を見た方向
に存在することが判明する。First, at the primary cutouts PC1 and PC2 of the pole transformer 41 installed on the utility pole 20 located near the center of the fault section, the ground impedance Za1 and the inter-phase impedance Zp1 are measured, and a ground fault is detected. A failure type and a failure phase are determined. In the case of FIG. 1, it is determined that a ground fault has occurred in the distribution line 10, and in the case of FIG. 2, it has been determined that a short-circuit failure has occurred between the distribution lines 10 and 12. Primary cutout PC3, P of upper transformer 42
It moves to the nearest utility pole 25 where C4 exists. As shown in FIG. 1, when the failure type determination result is a ground fault of the distribution line 10, the primary cutout PC 3
The ground impedance Za2 of the ground fault phase (distribution line 10) is measured. If the ground impedance Za2 is smaller than the above-described ground impedance Za1, a failure point (ground fault point 5
0) exists in the direction in which the utility pole 25 is viewed from the utility pole 20, and does not exist before the utility pole 20 in the direction in which the utility pole 20 is viewed from the utility pole 25. Conversely, ground impedance Za
2 is larger than the above-mentioned ground impedance Za1, the fault point is the electric pole 2 in the direction in which the electric pole 25 is viewed from the electric pole 20.
It is found that it does not exist after 5 and exists in the direction in which the utility pole 20 is viewed from the utility pole 25.
【0017】前述の故障種類の判定結果が短絡故障の場
合には、対地インピーダンスの代わりに、相間インピー
ダンスの測定値を用いて、同様の短絡点の絞り込みを行
う。すなわち、プライマリーカットアウトPC3,PC
4において、短絡相である配電線10と配電線12との
相間インピーダンスZp2を測定する。相間インピーダ
ンスZp2が前述の相間インピーダンスZp1よりも小
さければ故障点(短絡点51)は電柱20から電柱25
を見た方向に存在し、電柱25から電柱20を見た方向
の電柱20以前には存在しないことが判明する。逆に、
相間インピーダンスZp2が前述の相間インピーダンス
Zp1よりも大きければ故障点は電柱20から電柱25
を見た方向の電柱25以後には存在せず、電柱25から
電柱20を見た方向に存在することが判明する。なお、
電流センサ(CT)を高周波電源の印加点を挟むような
形で配電線の両側に取り付け、その電流値の大きな方向
に地絡故障点が存在することを判別してもよい。図1の
場合は、電柱25から電柱30を見た方向の電流値が大
きくなっており、電柱25から電柱30を見た方向の電
柱25以後に故障点が存在することが判明する。When the result of the above-described fault type determination is a short-circuit fault, a similar short-circuit point is narrowed down by using the measured value of the inter-phase impedance instead of the ground impedance. That is, primary cutout PC3, PC
In 4, the inter-phase impedance Zp2 between the distribution line 10 and the distribution line 12, which is a short-circuit phase, is measured. If the inter-phase impedance Zp2 is smaller than the inter-phase impedance Zp1, the failure point (short-circuit point 51) is from the utility pole 20 to the utility pole 25.
It is found that the power pole 20 exists in the direction in which the power pole 20 is viewed from the power pole 25 and does not exist before the power pole 20 in the direction in which the power pole 20 is viewed from the power pole 25. vice versa,
If the inter-phase impedance Zp2 is larger than the inter-phase impedance Zp1, the fault point is from the utility pole 20 to the utility pole 25.
It can be seen that it does not exist after the electric pole 25 in the direction in which the electric pole 20 is viewed, but exists in the direction in which the electric pole 20 is viewed from the electric pole 25. In addition,
A current sensor (CT) may be mounted on both sides of the distribution line so as to sandwich the application point of the high-frequency power supply, and it may be determined that a ground fault point exists in the direction of a large current value. In the case of FIG. 1, the current value in the direction in which the utility pole 30 is viewed from the utility pole 25 is large, and it is found that a fault point exists after the utility pole 25 in the direction in which the utility pole 30 is viewed from the utility pole 25.
【0018】次に、故障点が存在すると判別された方向
の電柱であって、柱上変圧器43のプライマリーカット
アウトPC5,PC6が存在する電柱30に移動し、同
様の測定を行うことによって故障点の絞り込みを行う。
図1に示すように故障種類の判定結果が地絡故障の場合
には、プライマリーカットアウトPC5において、地絡
相(配電線10)の対地インピーダンスZa3を測定す
る。対地インピーダンスZa3が前述の対地インピーダ
ンスZa2よりも小さければ、故障点(地絡点50)
は、電柱25から電柱30を見た方向に存在し、電柱3
0から電柱25を見た方向の電柱25以前には存在しな
いことが判別する。Next, the electric pole in the direction in which the fault point is determined to exist is moved to the electric pole 30 in which the primary cutouts PC5 and PC6 of the pole transformer 43 are present, and the same measurement is performed. Perform point refinement.
As shown in FIG. 1, when the failure type is determined to be a ground fault, the primary cutout PC5 measures the ground impedance Za3 of the ground fault phase (distribution line 10). If the ground impedance Za3 is smaller than the above-described ground impedance Za2, a failure point (ground fault point 50)
Exists in the direction in which the telephone pole 30 is viewed from the telephone pole 25, and the telephone pole 3
It is determined that it does not exist before the electric pole 25 in the direction in which the electric pole 25 is viewed from 0.
【0019】前述の故障種類の判定結果が短絡故障の場
合には、対地インピーダンスの代わりに、相間インピー
ダンスの測定値を用いて、同様の短絡点の絞り込みを行
う。すなわち、プライマリーカットアウトPC5,PC
6において、短絡相である配電線10と配電線12との
相間インピーダンスZp3を測定する。相間インピーダ
ンスZp3が前述の相間インピーダンスZp2よりも小
さければ故障点(短絡点51)は電柱25から電柱30
を見た方向に存在し、電柱30から電柱25を見た方向
の電柱25以前には存在しないことが判明する。なお、
電流センサ(CT)を高周波電源の印加点を挟むような
形で配電線の両側に取り付け、その電流値の大きな方向
に地絡故障点が存在することを判別してもよい。図1の
場合は、電柱30から電柱25を見た方向の電流値が大
きくなっており、電柱30から電柱25を見た方向の電
柱30以前、すなわち電柱25と電柱30の区間に故障
点が存在することが判別する。この電流センサによる判
別を行わない場合には、前述と同様の処理を次の電柱に
対して行うことによって、電柱25と電柱30の区間に
故障点が存在することが判別する。When the result of the above-described fault type determination is a short-circuit fault, a similar short-circuit point is narrowed down using the measured value of the inter-phase impedance instead of the ground impedance. That is, primary cutout PC5, PC
At 6, the inter-phase impedance Zp3 between the distribution line 10 and the distribution line 12, which is a short-circuit phase, is measured. If the inter-phase impedance Zp3 is smaller than the above-described inter-phase impedance Zp2, the failure point (short-circuit point 51) is from the utility pole 25 to the utility pole 30.
It is found that the power pole 25 exists in the direction in which the power pole 25 is viewed from the power pole 30 and does not exist before the power pole 25 in the direction in which the power pole 25 is viewed from the power pole 30. In addition,
A current sensor (CT) may be mounted on both sides of the distribution line so as to sandwich the application point of the high-frequency power supply, and it may be determined that a ground fault point exists in the direction of a large current value. In the case of FIG. 1, the current value in the direction of viewing the utility pole 25 from the utility pole 30 is large, and a failure point is located before the utility pole 30 in the direction of viewing the utility pole 25 from the utility pole 30, that is, in the section between the utility pole 25 and the utility pole 30. It is determined that it exists. When the determination by the current sensor is not performed, the same processing as described above is performed on the next telephone pole, thereby determining that a fault point exists in the section between the telephone pole 25 and the telephone pole 30.
【0020】なお、故障原因が金属接触等の場合、高周
波電源の容量が小さくても、上記手順による故障点標定
は可能である。従って、高周波電源、電圧センサ、電流
センサを一体化したものとしては、市販のLCRメータ
で測定周波数が[kHz]のオーダーのものを使用する
ことができる。一方、故障原因が絶縁劣化による場合
は、所要の電圧が印加されないままだと、そのまま絶縁
状態が保持されるので、故障点のインピーダンスは高い
ままである恐れがある。このような場合は、所要の高電
圧を出力可能な高周波電源を用いて絶縁破壊を発生させ
ればよい。必要なデータは、絶縁破壊した瞬間の対地イ
ンピーダンス又は相間インピーダンスであるため、高周
波電源は正弦波出力でもパルス出力でも問題なく使用で
きるが、絶縁破壊を発生させるにはパルス出力の方が好
ましい。In the case where the cause of the failure is a metal contact or the like, even if the capacity of the high-frequency power supply is small, it is possible to locate the failure point by the above procedure. Therefore, as the integrated high-frequency power supply, voltage sensor, and current sensor, a commercially available LCR meter having a measurement frequency on the order of [kHz] can be used. On the other hand, when the failure is caused by insulation deterioration, the insulation state is maintained as it is unless the required voltage is applied, and the impedance at the failure point may remain high. In such a case, insulation breakdown may be generated using a high-frequency power supply capable of outputting a required high voltage. The necessary data is the ground impedance or inter-phase impedance at the moment of the dielectric breakdown, so that the high-frequency power supply can be used without any problem with either a sine wave output or a pulse output, but the pulse output is more preferable for causing the dielectric breakdown.
【0021】このように、この実施の形態では、最終的
にプライマリーカットアウトの設置間隔単位で故障点の
存在位置を絞り込むことができる。これによって故障点
がないと判断された区間では、測定の必要がないため、
トリップ事故発生後の故障点の早期発見、早期復旧が可
能となる。また、故障点が絶縁回復している場合でも、
絶縁破壊瞬時の測定データをもとにして故障点標定が可
能である。As described above, in this embodiment, it is possible to finally narrow down the locations of the fault points in units of the installation interval of the primary cutout. Because there is no need for measurement in the section where it is determined that there is no failure point,
Early detection and restoration of a fault point after a trip accident has occurred. Also, even if the failure point has been restored to insulation,
Failure point location is possible based on the measured data at the moment of insulation breakdown.
【0022】[0022]
【発明の効果】本発明の故障点標定方法によれば、故障
区間内の全ての電柱を測定しなくても、柱上変圧器が線
間短絡した場合でも、簡易かつ短時間に効率的に故障区
間内における地絡点及び短絡点などの故障点を標定する
ことができるという効果がある。According to the fault locating method of the present invention, even if all poles in a fault section are not measured, even if a pole transformer is short-circuited between lines, it can be efficiently performed in a short time. There is an effect that fault points such as a ground fault point and a short-circuit point in a fault section can be located.
【図1】 地絡故障の場合における本発明の故障点標定
方法の一実施例を示す図FIG. 1 is a diagram showing an embodiment of a fault point locating method of the present invention in the case of a ground fault.
【図2】 短絡故障の場合における本発明の故障点標定
方法の一実施例を示す図FIG. 2 is a diagram showing an embodiment of a fault point locating method according to the present invention in the case of a short-circuit fault;
10,12 配電線 20〜30 電柱 41〜43 柱上変圧器 50 地絡点 51 短絡点 PC1〜PC6 プライマリーカットアウト Za1〜Za3 対地インピーダンス Zp1〜Zp3 相間インピーダンス 10, 12 Distribution line 20 to 30 Utility pole 41 to 43 Pole transformer 50 Ground fault point 51 Short circuit point PC1 to PC6 Primary cutout Za1 to Za3 Impedance to ground Zp1 to Zp3 Interphase impedance
Claims (5)
センサを用いて、配電線の相間インピーダンス及び対地
インピーダンスを測定して、地絡事故及び短絡事故の故
障種別を判定することを特徴とする故障点標定方法。A fault characterized in that a high-frequency power supply, a voltage measuring sensor and a current measuring sensor are used to measure a phase impedance and a ground impedance of a distribution line to determine a fault type of a ground fault and a short circuit. Point location method.
点を挟むように前記配電線の両側に電流測定センサを設
置し、前記電流センサによって測定された電流値の大き
い方向に地絡点故障があると判定することを特徴とする
故障点標定方法。2. A high-frequency power supply is connected to a distribution line, current measuring sensors are installed on both sides of the distribution line so as to sandwich the connection point, and a ground fault point is set in a direction in which a current value measured by the current sensor is large. A failure point locating method characterized by determining that there is a failure.
源を用いた測定を柱上変圧器の設置された電柱における
プライマリーカットアウトを介して行うことを特徴とす
る故障点標定方法。3. The fault locating method according to claim 1, wherein the measurement using the high-frequency power supply is performed through a primary cutout of a utility pole on which a pole transformer is installed.
源が正弦波の連続出力を行うのではなく、パルス状の出
力を行うことを特徴とする故障点標定方法。4. A fault point locating method according to claim 1, wherein the high-frequency power supply does not output a sine wave continuously but outputs a pulse.
圧測定センサ及び電流測定センサが一体に構成されたイ
ンピーダンスメータで構成されていることを特徴とする
故障点標定方法。5. The fault point locating method according to claim 1, wherein the high-frequency power supply, the voltage measurement sensor and the current measurement sensor are constituted by an impedance meter integrally formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000314543A JP2002122628A (en) | 2000-10-16 | 2000-10-16 | Specifying method for fault point |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000314543A JP2002122628A (en) | 2000-10-16 | 2000-10-16 | Specifying method for fault point |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002122628A true JP2002122628A (en) | 2002-04-26 |
Family
ID=18793778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000314543A Pending JP2002122628A (en) | 2000-10-16 | 2000-10-16 | Specifying method for fault point |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002122628A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103616609A (en) * | 2013-08-16 | 2014-03-05 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | High voltage DC ground electrode circuit fault distance measurement method utilizing DC components |
CN104267318A (en) * | 2014-10-29 | 2015-01-07 | 杭州凯达电力建设有限公司 | Electric power maintaining method and system |
JP2017515113A (en) * | 2014-04-29 | 2017-06-08 | ザ ユニバーシティ オブ アクロンThe University of Akron | Smart sensor network for power grid health monitoring |
-
2000
- 2000-10-16 JP JP2000314543A patent/JP2002122628A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103616609A (en) * | 2013-08-16 | 2014-03-05 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | High voltage DC ground electrode circuit fault distance measurement method utilizing DC components |
JP2017515113A (en) * | 2014-04-29 | 2017-06-08 | ザ ユニバーシティ オブ アクロンThe University of Akron | Smart sensor network for power grid health monitoring |
CN104267318A (en) * | 2014-10-29 | 2015-01-07 | 杭州凯达电力建设有限公司 | Electric power maintaining method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101143024B1 (en) | Apparatus and method for detecting leak current | |
AU701621B2 (en) | A device for sensing of electric discharges in a test object | |
JP4920357B2 (en) | Leakage current detection apparatus and method | |
JPH0783984A (en) | Ground fault detecting method of conductor of electric apparatus | |
JP2001242206A (en) | Measuring method of grounding resistance | |
JP3169921B2 (en) | Ground resistance measuring method and ground resistance measuring system | |
JP2002122628A (en) | Specifying method for fault point | |
RU2305293C1 (en) | METHOD OF DETECTING FAULT IN 6( 10 )-35 kV ELECTRIC CIRCUIT WITH ISOLATED OR COMPENSATED NEUTRAL POINT | |
KR101117870B1 (en) | Apparatus and method for detecting leak current | |
JP2003232826A (en) | Leak detection device | |
JP2002247748A (en) | Short-circuit detector | |
JP3279215B2 (en) | Ground fault detection method for power system | |
JP3351304B2 (en) | System for detecting the applied voltage polarity of a cable line and the system for detecting the breakdown position of a cable line | |
JP2002027660A (en) | Ground fault detector for low-voltage circuit | |
JP2003090859A (en) | Short circuit detector | |
JP3178358B2 (en) | Harmonic measurement device | |
JPH1068749A (en) | Resistive component leakage meter | |
JP3408992B2 (en) | Low-voltage side ground fault relay | |
JPH0473755B2 (en) | ||
JPS6142218A (en) | Directivity ground-fault indicator | |
JP2001050997A (en) | Measuring device for capacitance to ground and measuring method thereof | |
SU1481695A1 (en) | Method of locating permanent loops in three-phase electric networks with insulated neutral | |
JPH0618606A (en) | Method for generating alarm for insulation deterioration | |
JPH11326437A (en) | Accident block detecting device and method for electric wire | |
JPH06109801A (en) | Detection of partial discharge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060703 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060704 |