JPS6141870B2 - - Google Patents

Info

Publication number
JPS6141870B2
JPS6141870B2 JP56050299A JP5029981A JPS6141870B2 JP S6141870 B2 JPS6141870 B2 JP S6141870B2 JP 56050299 A JP56050299 A JP 56050299A JP 5029981 A JP5029981 A JP 5029981A JP S6141870 B2 JPS6141870 B2 JP S6141870B2
Authority
JP
Japan
Prior art keywords
sintering
temperature
sintered body
sic
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56050299A
Other languages
Japanese (ja)
Other versions
JPS57166376A (en
Inventor
Matsuo Higuchi
Masayuki Ishii
Eiji Kamijo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP56050299A priority Critical patent/JPS57166376A/en
Publication of JPS57166376A publication Critical patent/JPS57166376A/en
Publication of JPS6141870B2 publication Critical patent/JPS6141870B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高温強度が高く、高密度を有する非酸
化物すなわち窒化物や炭化物のセラミツクス焼結
体の製造法に関するものである。 最近、セラミツクス材料特に耐熱性材料として
のセラミツクスの開発が盛んに行なわれており、
なかでも高温において安定な耐熱性物質である共
有結合性化合物、特に窒化珪素(Si3N4)、炭化珪
素(SiC)が非常にすぐれた材料であることが知
られている。 一般にセラミツクスは、原料セラミツクス粉末
を成形焼結して使用されるものであるが、
Si3N4、SiCなどの場合は、一般の酸化物セラミツ
クスと異なり、難焼結性物質であるため、単独組
成たとえばSi3N4粉末のみを焼結しても緻密な焼
結体を得ることは困難である。 このためSi3N4粉末の場合などにはMgO、
Al2O3、Y2O3、CeO2、BeOなどの酸化物粉末を
焼結助剤として添加して焼結することが行なわれ
ている。 焼結助剤を加えた粉末を使用して通常行なわれ
ているプレス成形をして真空あるいは常圧で加熱
焼結する方法は、焼結コストが低く工業的に用い
ることができるが、Si3N4の場合焼結しても孔は
そのまま残存するのでこの方法では高密度な焼結
体を得ることができない。 これに対し、高温下で加圧しながら焼結するホ
ツトプレス法によれば、より緻密な焼結体を得る
ことができるが、この焼結体は高温において強度
低下が生ずる欠点があり、また焼結コストも高く
なる。 この高温における強度低下は、焼結助剤の添加
によりSi3N4の粉末界面に低融点物質が生成する
ことによるものであると考えられ、焼結助剤を使
用する場合は不可避である。 さらに焼結助剤の混合割合を減少し、あるいは
焼結助剤を添加せずに高圧ガス雰囲気中で焼結し
たり、爆発成型などで粉末に瞬間的に高圧を加え
て粉砕したのち、焼結するなどの方法が試みられ
ているが、何れの方法も焼結コストが高く、また
高温強度の低下現象が残る欠点があり、工業的な
方法として成功していない。上記の問題はSiCの
場合も同様である。 本発明者らは、非晶質、結晶質のSi3N4、SiC粉
末に各種窒化物を添加し、プレス成形したのち、
真空、常圧あるいは高圧などの各種の雰囲気およ
び温度など焼結条件を変化させて焼結を行なつて
試験を繰返したが、高温特性において良好な焼結
体を得ることができなかつた。 しかしながら焼結体を細かく視察した結果、そ
の原因が例えば「粉体および粉末冶金」第18巻、
第8号、第338頁に所載の論文(原昭夫著)に示
されるような窒化物粉末の表面酸化現象によるも
のであることが推定できた。 本発明者らは、Si3N4粉末、SiC粉末について緲
密で高温強度の高い焼結体を得るべく種々検討を
行なつた結果、本発明に至つたものである。 即ち、本発明は1000℃における酸化物標準生成
自由エネルギーが−150Kcal/g・molO2以下の金
属元素を1種または2種以上を固体還元剤とし
て、さらに珪素以外の金属窒化物の1種または2
種以上を焼結助剤として添加したSi3N4またはSiC
粉末の成形体を、その焼結に先立つて、Si3N4
たはSiCの酸化現象によつて生じている酸化層の
除去するためにH2、COなどの還元性ガスの減圧
雰囲気に一担保持するか、この減圧雰囲気と真空
雰囲気とを交互に1回以上繰返すか、あるいは上
記還元性ガスのプラズマ雰囲気下に保持させるか
などの活性化処理を施こした後に焼結せしめる方
法であり、これによつて前記焼結体特性の欠点即
ち、高温特性の劣化を解消し、高密度で高温強度
にすぐれた焼結体が得られるのである。 酸化層が除去された粉末の表面は非常に活性化
し、焼結を促進するものと考えられる。 以下本発明をSiCを例にして詳細に説明する。 SiC表面には前記酸化現象により、水酸化物が
生成しており、焼結時の昇温過程においてSiO2
が生成していると考えられる。そしてこのSiO2
を除去するために10-6〜10-7atm以下という高真
空状態にすると、次式 SiO2→SiO↑+1/2O2↑ に従つて、SiO2層が分解し、ガス化して除去す
ることができる。 しかしながら成形体においては、成形体内部で
発生したこれらガスは、ミクロン以下の細孔を通
つてでてくる。 高真空下ではガスの平均自由行程が大きくなつ
ているのでガスがでにくい。従つて高真空下で長
時間を要するという欠点がある。 また常圧(1atm)下でH2やCOなどのガスを用
いた場合には、次式 SiO2+H2→SiO↑+H2O↑ SiO2+CO→SiO↑+CO2↑ となつてSiO2が除去できる。 この反応の自由エネルギー変化は、 △G=△G0+RT ln K それぞれの反応におけるKは PH2OSiO/PH2、PCO2SiO
/PCO であるから、これらの反応進行は各反応系のガス
分圧によつて支配されると考えられる。 従つて反応系内のPH2、PCOを上げ、PH2O
CO2、PSiOを下げることが反応を進めることに
なる。 しかしながら細孔内では投入H2やCOガスと、
発生するSiO、H2O、CO2ガスとの間に相互拡散
がおこる。 ガスの拡散係数Dは D∝1/P (P:圧力) なる関係があるので、今度は低圧の方がのぞまし
い。 即ち、細孔内での還元反応速度は上記したガス
の平均自由行程とガス拡散係数の両者の影響をう
けるので、ある圧力範囲で最も速くなる。 従つて1atmでの反応は、むしろ圧力の高い減
圧下の反応より遅いという欠点を有しているので
ある。 このような欠点を解消するため検討を重ねた結
果、各温度において酸化物標準生成自由エネルギ
ーがSiO2の標準生成自由エネルギー以下のの金
属元素即ち、1000℃における酸化物標準生成自由
エネルギーが−150Kcal/g・molO2以下の金属元
素を1種または2種以上を固体還元剤として、さ
らに珪素以外の金属窒化物の1種または2種以上
を焼結助剤としてSi3N4またはSiC粉末に添加する
ことにより、前記欠点を解消できることを見出し
たのである。 本発明にて使用する上記した1000℃における酸
化物標準生成自由エネルギーが−150Kcal/g・mo
lO以下の金属元素としては、Si、Ti、Ce、Al、
Mg、Be、Zr、Baなどがある。 これら金属元素は、次式 SiO2+M=SiO↑+MO (M:添加金属元素) に従つてSiO2を除去するのである。 上式におけるMOは気体となり除去できる場合
と、固体となつて成形体内部に残存する場合があ
る。 気体となつて除去しうる方が高温特性が良好で
あり、この点からするとSiO、Al2Oなどのガス体
を有するSi、Alが最良である。 これら金属元素の添加量は、0.1〜20重量%の
範囲が好ましい。即ち、0.1重量%未満では添加
の効果(SiO2除去の効果)がなく、また20重量
%より多量に用いると、金属元素が成形体内に残
存し、高温特性が低下する。 しかしこの金属元素の添加量は用いるSiCおよ
び金属元素粉末中に含まれる酸素含有量によつて
異なつてくる。がほぼ上記の範囲内であれば添加
の効果が顕著である。 しかして酸素含有量を除去しうる添加量(ほぼ
10重量%)以上に金属元素を添加する場合であつ
ても、特にSiの場合にはSiO1-Xが生成して金属元
素として残存せず、従つて高温強度の低下はな
い。 Si量の金属元素として残存しない範囲が前記20
重量%以下である。20重量%をこえるSi金属を添
加すると、金属元素が残存し、高温強度の低下が
生じる。 Si以外の金属の場合にはSiC中に添加金属が固
溶するとともに添加金属の炭化物が生成し、前記
20重量%以内であれば、金属元素として残存せ
ず、Siの場合と同様に高温強度の低下が生じな
い。 20重量%をこえる金属を添加するとSiの場合と
同様金属元素が残存し、高温強度の低下が生じ
る。 本発明は上記のような効果を発揮する金属元素
の添加に加えて、さらに珪素以外の金属窒化物を
も添加することによつて、より高温特性の劣化を
解消するものであり、そのような金属窒化物とし
ては、Si以外のLi、Be、Mg、Al、Ti、Y、Zr、
Ba、Ce、Taなど窒化物1種または2種以上が特
に良好である。 これら金属元素および金属窒化物を添加した場
合には、添加しない場合の欠点である高真空を要
せず、1.3×10-4atm以下の真空であればよいこと
が実験的に求められた。 さらにこれら金属元素および金属窒化物の添加
とあわせて前記CO、H2ガスによる還元反応を進
めると効果もより大きくなることが見出された。 この場合には、前記したように減圧雰囲気下の
反応が良好であり、1.3×10-4〜0.8atmの範囲が
ふさわしいことが実験的に求められた。 また前記の真空と減圧雰囲気を交互に1回以上
繰返すことも効果の大きいことが認められた。 即ち、SiO2のH2あるいはCOガスとの反応は、
前記したように成形体内のH2O/H2、CO2/CO
に依存しているが、真空にすることにより、成形
体内のCO2あるいはH2Oを減少させ、CO、H2
スの導入によりCO2/CO、H2O/H2の比が下つ
て還元速度が上がるものと考えられる。 また、前記還元性ガスのプラズマ雰囲気下で成
形体を処理すると、SiO2の還元反応が促進され
粉末表面がさらに活性化される。 これら金属元素と金属窒化物を添加した成形体
の処理温度としては、該成形体の焼結温度以下に
限定される。 というのは焼結温度以上で前記の活性化処理を行
なうと酸化層の除去と同時に焼結が進行し、成形
体全体の均一な酸化層除去が困難となるためであ
る。 以上のような活性化処理を成形体の焼結前に行
ない、成形体内部の粉末表面を活性化することに
より、次の焼結工程へ移すのである。 以上はSiCを例にして説明したが、Si3N4の場合
においても同様であることは云うまでもない。 次に焼結工程について説明する。 SiCの場合には非酸化性の雰囲気で、しかも雰
囲気内酸素が少ないことが条件である。 即ち、焼結前の処理により、成形体を活性化し
たが、焼結時の雰囲気が悪いと、活性化処理の効
果が消滅するためである。この場合、高純度の
Ar、He、H2、N2などのガス雰囲気下でもよい。 特に1.3×10-4atm以下の真空の方が良好である
ことが実験的に求められた。 焼結温度としては、1600〜2300℃の範囲が適当
である。そのような範囲に限定するのは、1600℃
未満では十分な緻密化が得られず、また2300℃よ
り高いとSiC自体の分解反応が著しくなり、気孔
が残存してやはり十分な緻密化が得られないため
である。 次にSi3N4の場合には、Si3N4の分解反応を抑え
るため1atm以上の高圧N2ガス雰囲気とすること
が好ましい。 焼結温度とその雰囲気圧力とは関連性があり、
1600〜2300℃で1atm〜3×103atmのN2ガラス雰
囲気圧力で焼結することが適当である。 このように焼結温度範囲を限定するのは、1600
℃未満ではSiCの場合と同様に緻密化が十分でな
く、また2300℃以上ではSi3N4の分解反応が激し
くなつて緻密化が十分でないためである。 また本発明において用いるSi3N4またはSiC粉末
の粒径は0.5μ以下、好ましくは0.2μ以下が緻密
化を促進するうえで良好である。 以下本発明を実施例により詳細に説明する。 実施例 1 α型を85%含むSi3N4(英国アドバンスドマチ
リアルエンジニアリング社製)100gに対して
AlN5gおよびSi2gをボールミルで混合し粉砕を
行なつた。 この粉末の酸素分析をしたところ3.2重量%で
あつた。 この粉末を2ton/cm2の圧力で長さ40mm、幅30
mm、厚さ10mmの板に成形したのち、焼結炉内に装
填した。 そして炉内を真空(真空度×10-5atm)にした
のち昇温をはじめ1400℃で1時間保持した。その
後炉内に高純N2ガス(純度99.999%)を導入し
た。 そして炉内圧力を40atmにした後昇温し、1850
℃に2時間保持して焼結を行なつた。 比較としてSi金属を添加しない成形体について
も同時に炉内で焼結した。 炉を十分に冷却後焼結体を炉から取出し、酸素
含有量や曲げ強さなどのテストを行なつたところ
第1表の結果を得た。
The present invention relates to a method for producing a ceramic sintered body of non-oxide, ie, nitride or carbide, which has high high-temperature strength and high density. Recently, the development of ceramic materials, especially ceramics as heat-resistant materials, has been actively carried out.
Among them, covalent compounds that are heat-resistant substances that are stable at high temperatures, particularly silicon nitride (Si 3 N 4 ) and silicon carbide (SiC), are known to be excellent materials. Ceramics are generally used by molding and sintering raw ceramic powder.
In the case of Si 3 N 4 , SiC, etc., unlike general oxide ceramics, they are difficult to sinter, so even if only a single composition, for example Si 3 N 4 powder, is sintered, a dense sintered body can be obtained. That is difficult. Therefore, in the case of Si 3 N 4 powder, MgO,
Sintering is carried out by adding oxide powders such as Al 2 O 3 , Y 2 O 3 , CeO 2 , BeO, etc. as sintering aids. The conventional method of press forming using powder containing a sintering aid and heating and sintering it in vacuum or normal pressure has a low sintering cost and can be used industrially, but Si 3 In the case of N 4 , the pores remain even after sintering, so it is not possible to obtain a high-density sintered body using this method. On the other hand, the hot press method, in which sintering is carried out under pressure at high temperatures, makes it possible to obtain a denser sintered body, but this sintered body has the disadvantage that its strength decreases at high temperatures; The cost will also be higher. This decrease in strength at high temperatures is thought to be due to the formation of low melting point substances at the Si 3 N 4 powder interface due to the addition of the sintering aid, and is unavoidable when a sintering aid is used. Furthermore, the mixing ratio of the sintering aid may be reduced, or the powder may be sintered in a high-pressure gas atmosphere without the addition of a sintering aid, or the powder may be pulverized by instantaneously applying high pressure using explosive molding, etc., and then sintered. Methods such as sintering have been attempted, but all of these methods have the drawbacks of high sintering costs and a reduction in high-temperature strength, and have not been successful as industrial methods. The above problem also applies to SiC. The present inventors added various nitrides to amorphous and crystalline Si 3 N 4 and SiC powders, press-molded them, and then
Although the test was repeated by performing sintering under various atmospheres such as vacuum, normal pressure, or high pressure, and by changing the sintering conditions such as temperature, it was not possible to obtain a sintered body with good high-temperature properties. However, as a result of a detailed inspection of the sintered body, the cause was found to be, for example, "Powder and Powder Metallurgy" Volume 18,
It can be assumed that this is due to the surface oxidation phenomenon of nitride powder as shown in the paper (authored by Akio Hara) published in No. 8, page 338. The present inventors have conducted various studies on Si 3 N 4 powder and SiC powder in order to obtain a dense sintered body with high high-temperature strength, and as a result, they have arrived at the present invention. That is, the present invention uses one or more metal elements having an oxide standard free energy of formation at 1000°C of -150 Kcal/g・molO 2 or less as a solid reducing agent, and further uses one or more metal nitrides other than silicon as a solid reducing agent. 2
Si 3 N 4 or SiC with seeds or more added as sintering aids
Prior to sintering, the powder compact is placed in a reduced pressure atmosphere of a reducing gas such as H 2 or CO to remove the oxidized layer caused by the oxidation phenomenon of Si 3 N 4 or SiC. This is a method in which sintering is performed after performing an activation treatment such as holding the material in a reduced pressure atmosphere and a vacuum atmosphere alternately one or more times, or holding it in a plasma atmosphere of the above-mentioned reducing gas. This eliminates the drawback of the sintered body properties, that is, the deterioration in high temperature properties, and provides a sintered body with high density and excellent high temperature strength. It is thought that the surface of the powder from which the oxide layer has been removed becomes highly activated and promotes sintering. The present invention will be explained in detail below using SiC as an example. Hydroxide is generated on the SiC surface due to the oxidation phenomenon described above, and SiO 2
is thought to be generated. And this SiO2
When a high vacuum condition of less than 10 -6 to 10 -7 atm is applied to remove the I can do it. However, in a molded body, these gases generated inside the molded body come out through pores of micron size or less. Under high vacuum, the mean free path of gas is large, so it is difficult for gas to come out. Therefore, there is a drawback that it requires a long time under high vacuum. In addition, when using a gas such as H 2 or CO under normal pressure (1 atm), the following formula SiO 2 +H 2 →SiO↑+H 2 O↑ SiO 2 +CO→SiO↑+CO 2 ↑ becomes SiO 2 Can be removed. The free energy change of this reaction is △G=△G 0 +RT ln K K in each reaction is P H2O P SiO /P H2 , P CO2 P SiO
/P CO , it is thought that the progress of these reactions is controlled by the gas partial pressure of each reaction system. Therefore, P H2 and P CO in the reaction system are increased, and P H2O ,
Reducing P CO2 and P SiO will advance the reaction. However, inside the pore, input H 2 and CO gas
Interdiffusion occurs between the generated SiO, H 2 O, and CO 2 gases. Since the gas diffusion coefficient D has the following relationship: D∝1/P (P: pressure), low pressure is preferable this time. That is, since the reduction reaction rate within the pores is affected by both the above-mentioned mean free path of the gas and the gas diffusion coefficient, it becomes fastest in a certain pressure range. Therefore, the reaction at 1 atm has the disadvantage that it is slower than the reaction under reduced pressure where the pressure is higher. As a result of repeated studies to eliminate these drawbacks, we found that metal elements whose oxide standard free energy of formation is less than the standard free energy of formation of SiO 2 at each temperature, that is, the oxide standard free energy of formation at 1000℃ are -150Kcal. /g・molO 2 or less using one or more metal elements as a solid reducing agent and one or more metal nitrides other than silicon as a sintering aid to form Si 3 N 4 or SiC powder. It has been discovered that the above-mentioned drawbacks can be overcome by adding it. The standard free energy of formation of the oxide used in the present invention at 1000℃ is -150Kcal/g・mo
Metal elements with 1O2 or less include Si, Ti, Ce, Al,
Examples include Mg, Be, Zr, and Ba. These metal elements remove SiO 2 according to the following formula: SiO 2 +M=SiO↑+MO (M: added metal element). MO in the above formula may become a gas and be removed, or it may become a solid and remain inside the molded body. The high-temperature properties are better if the material can be removed as a gas, and from this point of view, Si and Al containing gases such as SiO and Al 2 O are best. The amount of these metal elements added is preferably in the range of 0.1 to 20% by weight. That is, if it is less than 0.1% by weight, there is no effect of addition (effect of removing SiO 2 ), and if it is used in an amount greater than 20% by weight, the metal element will remain in the molded body and the high-temperature properties will deteriorate. However, the amount of this metal element added varies depending on the SiC used and the oxygen content contained in the metal element powder. If it is within the above range, the effect of addition is significant. However, the amount of addition that can remove the oxygen content (approximately
Even when a metal element is added in an amount of 10% by weight or more, especially in the case of Si, SiO 1-X is generated and does not remain as a metal element, so there is no decrease in high temperature strength. The range in which the amount of Si does not remain as a metallic element is 20
% by weight or less. When more than 20% by weight of Si metal is added, the metal elements remain and the high temperature strength decreases. In the case of metals other than Si, the added metal forms a solid solution in SiC and carbides of the added metal are formed, resulting in the
If it is within 20% by weight, it will not remain as a metallic element and the high temperature strength will not decrease as in the case of Si. If more than 20% by weight of metal is added, the metal elements will remain as in the case of Si, resulting in a decrease in high temperature strength. The present invention further eliminates the deterioration of high-temperature properties by adding metal nitrides other than silicon in addition to the addition of metal elements that exhibit the above-mentioned effects. Metal nitrides include Li, Be, Mg, Al, Ti, Y, Zr,
One or more nitrides such as Ba, Ce, and Ta are particularly good. It has been experimentally determined that when these metal elements and metal nitrides are added, a high vacuum, which is a drawback when not added, is not required, and a vacuum of 1.3×10 -4 atm or less is sufficient. Furthermore, it has been found that the effect becomes even greater when the reduction reaction using the CO and H 2 gases is promoted in conjunction with the addition of these metal elements and metal nitrides. In this case, as mentioned above, the reaction under a reduced pressure atmosphere is good, and it has been experimentally determined that a range of 1.3×10 −4 to 0.8 atm is appropriate. It has also been found that it is highly effective to alternately repeat the vacuum and reduced pressure atmospheres one or more times. That is, the reaction of SiO 2 with H 2 or CO gas is
As mentioned above, H 2 O/H 2 , CO 2 /CO inside the molded body
However, by creating a vacuum, CO 2 or H 2 O inside the molded body is reduced, and by introducing CO and H 2 gases, the ratio of CO 2 /CO and H 2 O / H 2 is lowered. This is thought to increase the rate of reduction. Further, when the compact is treated in a plasma atmosphere of the reducing gas, the reduction reaction of SiO 2 is promoted and the powder surface is further activated. The processing temperature of the molded body to which these metal elements and metal nitrides are added is limited to a temperature equal to or lower than the sintering temperature of the molded body. This is because if the activation treatment is performed at a temperature higher than the sintering temperature, sintering will proceed simultaneously with the removal of the oxide layer, making it difficult to uniformly remove the oxide layer from the entire compact. The above-mentioned activation treatment is performed before sintering the molded body to activate the powder surface inside the molded body, thereby moving on to the next sintering step. The above explanation has been made using SiC as an example, but it goes without saying that the same applies to Si 3 N 4 as well. Next, the sintering process will be explained. In the case of SiC, the conditions are that the atmosphere is non-oxidizing and that there is little oxygen in the atmosphere. That is, although the molded body is activated by the treatment before sintering, if the atmosphere during sintering is bad, the effect of the activation treatment disappears. In this case, high purity
A gas atmosphere such as Ar, He, H 2 , N 2 or the like may be used. In particular, it has been experimentally determined that a vacuum of 1.3×10 -4 atm or less is better. A suitable sintering temperature is in the range of 1600 to 2300°C. Limiting to such range is 1600℃
If it is less than 2300°C, sufficient densification cannot be obtained, and if it is higher than 2300°C, the decomposition reaction of SiC itself becomes significant, and pores remain, making it impossible to obtain sufficient densification. Next, in the case of Si 3 N 4 , it is preferable to use a high pressure N 2 gas atmosphere of 1 atm or higher in order to suppress the decomposition reaction of Si 3 N 4 . There is a relationship between the sintering temperature and the atmospheric pressure.
It is suitable to sinter at 1600-2300° C. under a N 2 glass atmosphere pressure of 1 atm to 3×10 3 atm. Limiting the sintering temperature range in this way is
This is because if the temperature is less than 2300°C, the densification is not sufficient as in the case of SiC, and if the temperature is 2300°C or higher, the decomposition reaction of Si 3 N 4 becomes intense and the densification is not sufficient. Further, the particle size of the Si 3 N 4 or SiC powder used in the present invention is 0.5 μ or less, preferably 0.2 μ or less, which is good for promoting densification. The present invention will be explained in detail below with reference to Examples. Example 1 For 100g of Si 3 N 4 (manufactured by Advanced Materials Engineering, UK) containing 85% α type
5 g of AlN and 2 g of Si were mixed and pulverized using a ball mill. When this powder was analyzed for oxygen, it was found to be 3.2% by weight. This powder is applied at a pressure of 2 tons/cm 2 to a length of 40 mm and a width of 30 mm.
After forming it into a plate with a thickness of 10 mm and a thickness of 10 mm, it was loaded into a sintering furnace. After making the inside of the furnace a vacuum (degree of vacuum x 10 -5 atm), the temperature began to rise and was maintained at 1400°C for 1 hour. Afterwards, high-purity N2 gas (purity 99.999%) was introduced into the furnace. After setting the pressure inside the furnace to 40 atm, the temperature was raised to 1850
Sintering was carried out by holding at ℃ for 2 hours. For comparison, a molded body to which no Si metal was added was also sintered in the furnace at the same time. After the furnace was sufficiently cooled, the sintered bodies were taken out from the furnace and tested for oxygen content, bending strength, etc., and the results shown in Table 1 were obtained.

【表】 上表から本発明の焼結体は比較の焼結体より、
酸素含有量がはるかに減少して緻密化されてお
り、高温特性も殆んど劣化しない焼結体が得られ
た。 これに対し、比較例のものは、殆んど酸素含有
量も減少せず緻密化もなされず高温特性もかんば
しくなかつた。 実施例 2 実施例1における添加金属SiをAl、Be、Mg、
Baに変え、他は実施例1と全く同様にして焼結
体を得た。 比較として本発明では範囲外の金属元素である
Mn、Co、Cr、Snなどを添加したものも同様に焼
結体とし、実施例1におけると同様に試験したと
ころ第2表の結果が得られた。
[Table] From the above table, the sintered body of the present invention is superior to the comparative sintered body.
A sintered body was obtained which was densified with a much reduced oxygen content and whose high-temperature properties hardly deteriorated. On the other hand, in the comparative example, the oxygen content hardly decreased, densification did not occur, and the high-temperature properties were not strong. Example 2 The additive metal Si in Example 1 was replaced with Al, Be, Mg,
A sintered body was obtained in the same manner as in Example 1 except that Ba was used. For comparison, in the present invention, metal elements are outside the range.
Sintered bodies to which Mn, Co, Cr, Sn, etc. were added were also made into sintered bodies and tested in the same manner as in Example 1, and the results shown in Table 2 were obtained.

【表】 上表から本発明の焼結体においては添加金属元
素としてAlを用いたものはSiと同様の効果が得ら
れ、またBe、Mg、Baを用いたものについては焼
結体が緻密化するとともに酸素含有量も半減して
いることが認められた。 これに対して比較例の焼結体はいずれも殆んど
酸素含有量も減少せず、また緻密化もなされず特
性も良くなかつた。 実施例 3 重量比でSiO2粉末(平均粒径12mμ)1、C
粉末(平均粒径29mμ)0.6の配合割合で混合し
た粉末をボールミルで均一に混合したのち、この
粉末を反応炉内に入れ、1800℃で5時間H2ガス
中で熱処理を行ないSiO粉末を合成した。 次いでこのSiO粉末にAlN5重量%、YN2重量%
およびSi2重量%を添加し、ボールミルで混合粉
砕を行なつた。 この粉末の酸素分析を行なつたところ酸素量は
2.5重量%であつた。 この粉末を3ton/cm2の圧力で長さ40mm、幅40
mm、厚さ10mmの板に成形したのち、焼結炉内に装
填した。 そして炉内を4×10-4atmの真空にしたのち昇
温を行ない、1700℃で1時間保持した。 その後真空度を保持したまま昇温し、2000℃で
2時間保持して焼結を行なつた。 比較のためにSi金属を添加していない成形体も
同様にして焼結した。 炉を十分冷却したのち焼結体を取出し、試験し
たところこのSiO焼結体においても実施例1と同
様に本発明の焼結体が第3表に示すように良い結
果を得た。
[Table] From the above table, in the sintered body of the present invention, those using Al as an additive metal element have the same effect as Si, and those using Be, Mg, and Ba have a denser sintered body. It was observed that the oxygen content was also reduced by half as the temperature increased. On the other hand, all of the sintered bodies of Comparative Examples had almost no decrease in oxygen content, were not densified, and had poor properties. Example 3 Weight ratio of SiO 2 powder (average particle size 12 mμ) 1, C
Powders (average particle size 29 mμ) mixed at a blending ratio of 0.6 were uniformly mixed in a ball mill, then placed in a reactor and heat treated in H2 gas at 1800°C for 5 hours to synthesize SiO powder. did. Next, 5% by weight of AlN and 2% by weight of YN were added to this SiO powder.
and 2% by weight of Si were added and mixed and pulverized using a ball mill. Oxygen analysis of this powder revealed that the amount of oxygen was
It was 2.5% by weight. This powder is applied at a pressure of 3 tons/cm 2 to a length of 40 mm and a width of 40 mm.
After forming it into a plate with a thickness of 10 mm and a thickness of 10 mm, it was loaded into a sintering furnace. After creating a vacuum of 4×10 −4 atm in the furnace, the temperature was raised and maintained at 1700° C. for 1 hour. Thereafter, the temperature was raised while maintaining the degree of vacuum, and the temperature was held at 2000°C for 2 hours to perform sintering. For comparison, a molded body to which no Si metal was added was also sintered in the same manner. After sufficiently cooling the furnace, the sintered body was taken out and tested. Similar to Example 1, the sintered body of the present invention obtained good results as shown in Table 3.

【表】 実施例 4 実施例1における真空下での成形体の酸化物除
去温度を1000〜2000℃間にて数段階と変えた以外
は実施例1と同様の条件にて焼結を行い、この酸
化層除去温度と酸素含有量との関係を調べたとこ
ろ、第1図の結果を得、Si金属添加においては、
1050℃と焼結温度(1800℃)間の範囲(斜線部
分)が効果的であることが認められた。 実施例 5 実施例3における添加金属元素Siの添加量を0
〜40重量%の間で変化させた以外はすべて実施例
3と同様の条件にて焼結を行ない、Siの添加量と
得られた焼結体の曲げ強さとの関係を調べたとこ
ろ第2図のような効果が得られ、Si添加量は、
0.1〜20重量%の範囲(斜線部分)が好ましいこ
とが認められた。 実施例 6 実施例1における酸化物除去のための活性化処
理雰囲気をCOガスあるいはH2ガスにかえ、さら
に雰囲気圧力を第4表に示すようにかえたほか
は、実施例1と同様の条件で焼結体を得た。これ
を実施例1と同じようにテストしたところ第4表
に示すような結果が得られた。
[Table] Example 4 Sintering was carried out under the same conditions as in Example 1, except that the temperature for removing oxides from the compact under vacuum in Example 1 was changed in several steps between 1000 and 2000°C. When we investigated the relationship between this oxide layer removal temperature and oxygen content, we obtained the results shown in Figure 1.
It was found that the range (shaded area) between 1050°C and the sintering temperature (1800°C) was effective. Example 5 The amount of added metal element Si in Example 3 was reduced to 0.
Sintering was carried out under the same conditions as in Example 3 except that the amount was varied between ~40% by weight, and the relationship between the amount of Si added and the bending strength of the obtained sintered body was investigated. The effect shown in the figure is obtained, and the amount of Si added is
It was found that a range of 0.1 to 20% by weight (shaded area) is preferable. Example 6 The conditions were the same as in Example 1, except that the activation treatment atmosphere for removing oxides in Example 1 was changed to CO gas or H 2 gas, and the atmosphere pressure was changed as shown in Table 4. A sintered body was obtained. When this was tested in the same manner as in Example 1, the results shown in Table 4 were obtained.

【表】 実施例 7 酸化物除去の活性化処理雰囲気を1.5×10-4atm
の真空からCOガスの減圧雰囲気(0.15atm)5
回繰返しとした以外は実施例1と同様にして焼結
体を得た。 結果は第5表の通りであり、これを第1表およ
び第4表と比較すると、酸素含有量は本実施例が
最も少なく高温強度の劣化も少ないことを示し
た。
[Table] Example 7 Activation treatment atmosphere for oxide removal was set to 1.5×10 -4 atm
From vacuum to CO gas reduced pressure atmosphere (0.15 atm) 5
A sintered body was obtained in the same manner as in Example 1 except that the process was repeated several times. The results are shown in Table 5, and when compared with Tables 1 and 4, it was found that the present example had the lowest oxygen content and little deterioration in high-temperature strength.

【表】 実施例 8 実施例3のSiC粉末を用いた焼結における焼結
温度をかえた以外は全ての条件を実施例3と同じ
にして焼結を行なつたところ第3図に示す結果を
得、1600〜2300℃の範囲(斜線部分)が焼結の最
適範囲であることが確認された。そして図示省略
したがSi3N4についても同じ結果が得られた。 またこの焼結温度とN2ガス雰囲気における圧
力との関係を調べたところ第4図のように1600〜
2300℃の範囲の斜線部分が好ましいという結果を
得た。
[Table] Example 8 Sintering was carried out using the SiC powder of Example 3 under all the same conditions as Example 3 except for changing the sintering temperature, and the results shown in Figure 3 were obtained. It was confirmed that the range of 1600 to 2300°C (shaded area) is the optimum range for sintering. Although not shown, the same results were obtained for Si 3 N 4 as well. In addition, we investigated the relationship between this sintering temperature and the pressure in the N2 gas atmosphere, and as shown in Figure 4, it was found that
The results show that the shaded area in the range of 2300°C is preferable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における酸化物除去処理温度と
焼結体中の酸素含有量の関係を示す図表、第2図
は本発明の一実施例におけるSi金属の添加量と焼
結体の1400℃における曲げ強さの関係を示す図
表、第3図は同じく本発明の一実施例における焼
結温度と密度の関係を示す図表であり、第4図は
本発明の一実施例としてのSi3N4の焼結温度とと
N2ガス雰囲気圧力との関係を示す図表である。
Figure 1 is a chart showing the relationship between the oxide removal treatment temperature and the oxygen content in the sintered body in the present invention, and Figure 2 is a graph showing the relationship between the amount of Si metal added and the sintered body at 1400°C in one embodiment of the present invention. FIG. 3 is a chart showing the relationship between sintering temperature and density in an embodiment of the present invention, and FIG . 4 is a chart showing the relationship between sintering temperature and density in an embodiment of the present invention. 4 sintering temperature and
It is a chart showing the relationship with N2 gas atmosphere pressure.

Claims (1)

【特許請求の範囲】 1 1000℃における酸化物標準生成自由エネルギ
ーが−150kcal/g・molO2以下のSi、Ti、Ce、
Al、Mg、Be、Ca、Zr、Ba、Liの金属元素の1種
または2種以上を固体還元剤として、さらにSi以
外の金属窒化物の1種または2種以上を焼結助剤
として添加したSi3N4またはSiC粉末の成形体を該
成形体の焼結温度以下で活性化処理したのち、非
酸化性雰囲気下にて焼結することを特徴とする
Si3N4またはSiC焼結体の製造法。 2 活性化処理を還元性ガスの減圧雰囲気下、焼
結温度以下で行なうことを特徴とする特許請求の
範囲第1項記載のSi3N4またはSiC焼結体の製造
法。 3 活性化処理を還元性ガスの減圧雰囲気と真空
雰囲気の交互1回以上の繰返し状態のもとで焼結
温度以下で行なうことを特徴とする特許請求の範
囲第1項記載のSi3N4またはSiC焼結体の製造法。 4 活性化処理を還元性ガスのプラズマ雰囲気
下、焼結温度以下で行なうことを特徴とする特許
請求の範囲第1項記載のSi3N4またはSiC焼結体の
製造法。 5 還元性ガスがCOおよび/またはH2であるこ
とを特徴とする特許請求の範囲第2項乃至第4項
のいずれかの項に記載のSi3N4またはSiC焼結体の
製造法。
[Claims] 1. Si, Ti, Ce, which has an oxide standard free energy of formation at 1000°C of −150 kcal/g・molO 2 or less,
One or more metal elements such as Al, Mg, Be, Ca, Zr, Ba, and Li are added as a solid reducing agent, and one or more metal nitrides other than Si are added as a sintering aid. A compact of Si 3 N 4 or SiC powder is activated at a temperature below the sintering temperature of the compact, and then sintered in a non-oxidizing atmosphere.
Method for producing Si 3 N 4 or SiC sintered bodies. 2. The method for producing a Si 3 N 4 or SiC sintered body according to claim 1, wherein the activation treatment is performed in a reduced pressure atmosphere of a reducing gas at a temperature below the sintering temperature. 3. Si 3 N 4 according to claim 1, characterized in that the activation treatment is performed at a temperature below the sintering temperature under conditions in which a reduced pressure atmosphere of a reducing gas and a vacuum atmosphere are alternately repeated one or more times. Or a method for manufacturing SiC sintered bodies. 4. The method for producing a Si 3 N 4 or SiC sintered body according to claim 1, wherein the activation treatment is performed in a reducing gas plasma atmosphere at a temperature below the sintering temperature. 5. The method for producing a Si 3 N 4 or SiC sintered body according to any one of claims 2 to 4, wherein the reducing gas is CO and/or H 2 .
JP56050299A 1981-04-02 1981-04-02 Manufacture of non-oxide ceramics Granted JPS57166376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56050299A JPS57166376A (en) 1981-04-02 1981-04-02 Manufacture of non-oxide ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56050299A JPS57166376A (en) 1981-04-02 1981-04-02 Manufacture of non-oxide ceramics

Publications (2)

Publication Number Publication Date
JPS57166376A JPS57166376A (en) 1982-10-13
JPS6141870B2 true JPS6141870B2 (en) 1986-09-18

Family

ID=12855012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56050299A Granted JPS57166376A (en) 1981-04-02 1981-04-02 Manufacture of non-oxide ceramics

Country Status (1)

Country Link
JP (1) JPS57166376A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126319A1 (en) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. Process for production of porous silicon carbide sintered compacts
JP5111139B2 (en) * 2007-03-30 2012-12-26 イビデン株式会社 Method for producing porous silicon carbide sintered body

Also Published As

Publication number Publication date
JPS57166376A (en) 1982-10-13

Similar Documents

Publication Publication Date Title
EP0079678B1 (en) Method for sintering silicon nitride
RU1782229C (en) Method for making self-baring ceramic body
JP2577899B2 (en) Silicon nitride sintered body and method for producing the same
JPH021793B2 (en)
JPS6141870B2 (en)
JPS6141869B2 (en)
US5114889A (en) Silicon nitride sintered body and process for preparation thereof
JPS646142B2 (en)
JPH0242792B2 (en)
JPH04500497A (en) Improving thermal conductivity of aluminum nitride through pre-densification treatment
JPH11236286A (en) Production of boron carbide coating
JP2742619B2 (en) Silicon nitride sintered body
JPS6363515B2 (en)
JPH0579625B2 (en)
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JP3280059B2 (en) Method for producing activated silicon carbide
JP2694369B2 (en) Silicon nitride sintered body
JPS6241763A (en) Manufacture of non-oxide ceramics
JPS5945970A (en) Method of sintering silicon nitride
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
JPS5921577A (en) Method of sintering silicon carbide powder molded body
JPH01145380A (en) Production of silicon nitride sintered form
JPH0772105B2 (en) Silicon nitride sintered body and method for manufacturing the same
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH05139840A (en) Siliceous nitride sintered compact and its production