JPS6141737A - Cu alloy for electric fuse - Google Patents

Cu alloy for electric fuse

Info

Publication number
JPS6141737A
JPS6141737A JP16128784A JP16128784A JPS6141737A JP S6141737 A JPS6141737 A JP S6141737A JP 16128784 A JP16128784 A JP 16128784A JP 16128784 A JP16128784 A JP 16128784A JP S6141737 A JPS6141737 A JP S6141737A
Authority
JP
Japan
Prior art keywords
fuse
alloy
fuses
electric fuse
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16128784A
Other languages
Japanese (ja)
Other versions
JPS6319578B2 (en
Inventor
Seiji Kumagai
誠司 熊谷
Kuniaki Yoshikawa
吉川 邦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP16128784A priority Critical patent/JPS6141737A/en
Publication of JPS6141737A publication Critical patent/JPS6141737A/en
Publication of JPS6319578B2 publication Critical patent/JPS6319578B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fuses (AREA)

Abstract

PURPOSE:To obtain a fuse which fuses in a nearly fixed time when over-current flows by incorporating a specified amount of Sn to a conventional Cu-Zn alloy for a fuse. CONSTITUTION:The electric fuse is made of an alloy having a composition consisting of 37-43% Zn, 0.1-1% Sn and the balance Cu. When over-current flow, the fuse responds at once and fuses in a nearly fixed time. Thus, the fuse has superior reliability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電気ヒユーズとして用いた場合にすぐれた
性能を発揮するCu合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a Cu alloy that exhibits excellent performance when used as an electrical fuse.

〔従来の技術〕[Conventional technology]

従来、電気ヒユーズ用Cu合金の代表的なものとして、
57%Cu−43%Zn合金が知られており、このCu
合金は主に低圧大電流用、高圧用、およびしかし、上記
の従来Cu −Zn合金は、電気ヒユーズとして実用に
供した場合、溶断時間にバラツキがあるものであり、こ
のように溶断時間にバラツキがあると、過電流(定格電
流の2倍の過電流で定時間内に溶断することが電気ヒユ
ーズの具備する必須条件とされている)にならなくても
溶断してしまったり、また逆に過電流が流れても溶断せ
ず、機器類に損焼をもたらすようになるなどの問題が生
じるようになることから、比較的信頼性の低いものであ
る。
Conventionally, typical Cu alloys for electric fuses include:
A 57% Cu-43% Zn alloy is known, and this Cu
Alloys are mainly used for low voltage and high current applications, and for high voltage applications. However, when the above-mentioned conventional Cu-Zn alloys are used in practical use as electric fuses, there are variations in the fusing time. If there is, the fuse may blow out even if there is no overcurrent (the essential condition for an electric fuse is to blow it within a certain amount of time at an overcurrent of twice the rated current), or vice versa. They are relatively unreliable because they do not melt even when an overcurrent flows, causing problems such as damage to equipment.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から。 Therefore, the inventors of the present invention, from the above-mentioned viewpoint.

上記の従来電気ヒユーズ用Cu合金、すなわち57%C
u −43%Zn合金に着目し、これの電気ヒユーズ機
能としての溶断時間のバラツキを少なくすべく研究を行
なった結果、重量%で(以下係は重量憾を示す)、 Zn : 37〜43%。
The above conventional Cu alloy for electric fuses, i.e. 57% C
Focusing on the u-43% Zn alloy, we conducted research to reduce the variation in the fusing time as an electric fuse function, and as a result, the results were as follows: Zn: 37 to 43% by weight .

8n:0,1〜1%。8n: 0.1-1%.

Cuおよび不可避不純物:残り。Cu and unavoidable impurities: Remaining.

からなる組成を有するCu合金は、これを電気ヒユーズ
として用いた場合、これを流れる過電流罠対する溶断時
間のバラツキがきわめて少ないという知見を得たのであ
る。
It was discovered that when a Cu alloy having a composition of

この発明は、上記知見にもとづいてなされたものであっ
て、以下に成分組成を上記の通りに限定した理由を説明
する。
This invention was made based on the above knowledge, and the reason why the component composition was limited as described above will be explained below.

(at  Zn Zn成分には、過電流に対する溶断反応性を向上させ、
もって短時間での溶断を行なわしめる作用があるが、そ
の含有量が37%未満では前記作用に所望の効果が得ら
れず、一方43%を越えて含有させると、板状や線状な
どの形状を有するヒユーズに加工するのが著しく困難に
なることから、その含有量を37〜43%と定めた。
(at Zn The Zn component improves fusing reactivity against overcurrent,
This has the effect of causing melt cutting in a short time, but if the content is less than 37%, the desired effect cannot be obtained, while if the content exceeds 43%, it will cause plate-like, linear, etc. Since it becomes extremely difficult to process into a shaped fuse, the content was set at 37 to 43%.

(b)  5n Sn成分には、過電流に即応してヒユーズが°溶断する
性質、すなわち溶断時間のバラツキを小さくする作用が
あるが、その含有量が0.1%未満では前記作用に所望
の効果が得られず、一方1%を越えて含有させても前記
作用により一層の向上効果が現われないことから、その
含有量を0.1〜1%と定めた。
(b) The 5n Sn component has the property of causing the fuse to blow out immediately in response to an overcurrent, that is, it has the effect of reducing the variation in the blowing time, but if its content is less than 0.1%, the desired effect may not be achieved. The content was determined to be 0.1 to 1% because no effect could be obtained, and even if the content exceeded 1%, no further improving effect would appear due to the above-mentioned action.

なお、この発明のCu合金においては、不可避不純物と
して、B、 Mg、 AJ、 Co、 Ni、 Ag、
 Pb。
In addition, in the Cu alloy of this invention, B, Mg, AJ, Co, Ni, Ag,
Pb.

Fe、およびPなどのうちの1種または2種以上を含有
しても、その含有量がそれぞれ0.1%未満であれば、
ヒユーズ特性に何らの悪影響を及ぼすものではない。
Even if it contains one or more of Fe, P, etc., if the content is less than 0.1%,
It does not have any adverse effect on the fuse characteristics.

〔実施例〕〔Example〕

つぎに、この発明のCu合金を実施例により具体的に説
明する。
Next, the Cu alloy of the present invention will be specifically explained using examples.

低周波溝型溶解炉を用い、それぞれ81表に示される成
分組成をもった本発明Cu合金1〜9および従来Cu合
金を調製し、半連続鋳造法にて厚さ:150m!IX幅
:40011X長さ:1500111の寸法をもったケ
ークに鋳造し、ついで熱間圧延にて厚さ: 11mの熱
延板とした後、表面スケール除去のための面削を0.5
龍づつ両面について行ない、引続いて、通常の条件で冷
間圧延、焼鈍、および酸洗を繰り返し行ない、最終的に
仕上げ圧延により厚さ:0.2mの冷延板とした。
Using a low-frequency groove-type melting furnace, Cu alloys 1 to 9 of the present invention and conventional Cu alloys having the compositions shown in Table 81 were prepared, and a thickness of 150 m was cast by semi-continuous casting. It was cast into a cake with dimensions of IX width: 40011X length: 1500111, and then hot-rolled into a hot-rolled plate with a thickness of 11m, and then face milled by 0.5 to remove surface scale.
Then, cold rolling, annealing, and pickling were repeated under normal conditions, and finally a cold-rolled plate having a thickness of 0.2 m was final rolled.

ついで、この結果得られた本発明Cu合金1〜9および
従来Cu合金の冷延板より定格電流がそれぞれIOAお
よび30Aのヒユーズを5本づつ製造した。
Then, five fuses each having a rated current of IOA and 30 A were manufactured from the resulting cold-rolled sheets of the Cu alloys 1 to 9 of the present invention and the conventional Cu alloy.

なお、定格電流はヒユーズの成分組成および断面積によ
り変化するので、ヒユーズの定格電流が1OAおよび3
0Aとなるようにヒユーズの幅をそれぞれ第1表に示さ
れる寸法(この場合ヒユーズの厚さは0.2m、長さは
55朋)とすることにより調製した。
Note that the rated current varies depending on the composition and cross-sectional area of the fuse, so the rated current of the fuse is 1OA and 3OA.
The width of each fuse was adjusted to the dimensions shown in Table 1 (in this case, the thickness of the fuse was 0.2 m, and the length was 55 mm) so that the current was 0 A.

引続いて、これらのヒユーズについて、81図に概略図
で示される溶断試験装置を用い、JISC8352r配
置用ヒユーズおよびホルダ通則」の5・6溶断試験に準
じて試験を行なった。
Subsequently, these fuses were tested using the fusing test apparatus shown schematically in Figure 81 in accordance with Section 5.6 Fusing Test of JISC8352r General Rules for Arranging Fuses and Holders.

第1図の溶断試験装置において、1は方形スイッチ、2
はスライダ、3は抵抗、4は整流器、5は電流計、6は
ヒユーズ組込みであって、スライダ2を操作して、電流
計5を流れる電流がヒユーズの定格電流の2倍となる、
すなわち定格電流が1OAのヒユーズにあっては20A
、同じり30Aのヒユーズにあっては60Aとなるよう
に調整した後、ヒユーズをヒユーズ組込み6にセットし
、方形スイッチ1を入れ、ヒユーズが溶断するまでの時
間を測定した。この試験をそれぞれ5本づつのヒユーズ
について行ない、最長溶断時間と最短溶断時間をチェッ
クし、この両者の差をもって溶断時間のバラツキを評価
した。これらの結果を第1表に合せて示した。
In the fusing test device shown in Fig. 1, 1 is a rectangular switch;
is a slider, 3 is a resistor, 4 is a rectifier, 5 is an ammeter, and 6 is a built-in fuse, and by operating the slider 2, the current flowing through the ammeter 5 becomes twice the rated current of the fuse.
In other words, for a fuse with a rated current of 1OA, it is 20A.
After adjusting the 30A fuse to 60A, the fuse was set to fuse setting 6, square switch 1 was turned on, and the time until the fuse blown was measured. This test was conducted for each of five fuses, the longest blowing time and the shortest blowing time were checked, and the variation in blowing time was evaluated based on the difference between the two. These results are also shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示されるよ5K、本発明Cu合金1〜9で製造
されたヒユーズは、いずれも従来Cu合金製ヒユーズに
比して溶断時間のバラツキがきわめて小さいことが明ら
かである。
As shown in Table 1, it is clear that all of the fuses manufactured with 5K Cu alloys 1 to 9 of the present invention have extremely small variations in blowing time compared to fuses made of conventional Cu alloys.

上述のよ5に、この発明のCu合金は、過電流に対する
溶断反応性および溶断即応性にすぐれているので、これ
を電気ヒユーズとして用いた場合、溶断時間のバラツキ
がきわめて小さく、すぐれたヒユーズ性能を発揮し、著
しく高い信頼性をもつものである。
As mentioned above, the Cu alloy of the present invention has excellent fusing reactivity and fast response to overcurrent, so when it is used as an electric fuse, the variation in blowing time is extremely small, and it has excellent fuse performance. It exhibits extremely high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶断試験装置の概略図である。図面において、 1、・・・方形スイッチ、  2・・・スライダ、  
3・・・抵抗、 4・・・整流器、  5・・・電流計
、 6・・ヒユーズ組込み。
FIG. 1 is a schematic diagram of a fusing test device. In the drawings: 1. Rectangular switch, 2. Slider,
3... Resistor, 4... Rectifier, 5... Ammeter, 6... Built-in fuse.

Claims (1)

【特許請求の範囲】 Zn:37〜43%、 Sn:0.1〜1%、 Cuおよび不可避不純物:残り、 からなる組成(以上重量%)を有することを特徴とする
電気ヒューズ用Cu合金。
[Scope of Claims] A Cu alloy for an electric fuse, characterized in that it has a composition (the above weight %) consisting of: Zn: 37 to 43%, Sn: 0.1 to 1%, and the remainder Cu and unavoidable impurities.
JP16128784A 1984-07-31 1984-07-31 Cu alloy for electric fuse Granted JPS6141737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16128784A JPS6141737A (en) 1984-07-31 1984-07-31 Cu alloy for electric fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16128784A JPS6141737A (en) 1984-07-31 1984-07-31 Cu alloy for electric fuse

Publications (2)

Publication Number Publication Date
JPS6141737A true JPS6141737A (en) 1986-02-28
JPS6319578B2 JPS6319578B2 (en) 1988-04-23

Family

ID=15732236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16128784A Granted JPS6141737A (en) 1984-07-31 1984-07-31 Cu alloy for electric fuse

Country Status (1)

Country Link
JP (1) JPS6141737A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051254A1 (en) * 2007-10-18 2009-04-23 Sintobrator, Ltd. Copper alloy powder and method for producing the same
JP2010172903A (en) * 2009-01-27 2010-08-12 Nec Schott Components Corp Thermosensitive material and method for manufacturing the same, thermal fuse, and circuit protection element
CN105074025A (en) * 2013-03-18 2015-11-18 三菱综合材料株式会社 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive component and terminal for electrical and electronic equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211027A (en) * 1984-04-04 1985-10-23 Yazaki Corp Alloy for meltable conductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211027A (en) * 1984-04-04 1985-10-23 Yazaki Corp Alloy for meltable conductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051254A1 (en) * 2007-10-18 2009-04-23 Sintobrator, Ltd. Copper alloy powder and method for producing the same
JP2010172903A (en) * 2009-01-27 2010-08-12 Nec Schott Components Corp Thermosensitive material and method for manufacturing the same, thermal fuse, and circuit protection element
CN105074025A (en) * 2013-03-18 2015-11-18 三菱综合材料株式会社 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive component and terminal for electrical and electronic equipment

Also Published As

Publication number Publication date
JPS6319578B2 (en) 1988-04-23

Similar Documents

Publication Publication Date Title
JP4056175B2 (en) Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability
JP2005206891A (en) Copper alloy with high strength and high electroconductivity
JPS647144B2 (en)
SE446991B (en) MATERIAL FOR ELECTRICAL CONTACTS AND PROCEDURES FOR ITS MANUFACTURING
JP2000073130A (en) Copper alloy sheet excellent in press punchability
JPS62227051A (en) Terminal and connector made of cu alloy
JPS6141737A (en) Cu alloy for electric fuse
JPH01309219A (en) Terminal for electric apparatus made of cu alloy
US2161574A (en) Silver alloy
KR20240026276A (en) Copper alloy materials, resistance materials and resistors for resistors using the same
JPH04180531A (en) Electrically conductive material
US4330331A (en) Electric contact material and method of producing the same
JPS63203738A (en) Cu alloy for relay and switch
JPS6140019B2 (en)
JPS63230837A (en) Copper alloy for fuse
JPH01180930A (en) Cu alloy for terminal and connector
JPS63161134A (en) Copper alloy for electrical parts
JPH05198247A (en) Copper alloy for fuse terminal material
US2197393A (en) Electric contact
JPH06184678A (en) Copper alloy for electrical parts
JPS63161135A (en) Copper alloy for electrical parts
JPH0499838A (en) Conductive material
JPS62130247A (en) Copper alloy for electronic appliance
JPS6047341B2 (en) electrical contact materials
JPS6260850A (en) Manufacture of copper alloy having superior stress relaxation resistance