JPS6141673B2 - - Google Patents

Info

Publication number
JPS6141673B2
JPS6141673B2 JP55114924A JP11492480A JPS6141673B2 JP S6141673 B2 JPS6141673 B2 JP S6141673B2 JP 55114924 A JP55114924 A JP 55114924A JP 11492480 A JP11492480 A JP 11492480A JP S6141673 B2 JPS6141673 B2 JP S6141673B2
Authority
JP
Japan
Prior art keywords
nozzle
laser beam
irradiating
laser
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55114924A
Other languages
Japanese (ja)
Other versions
JPS5739087A (en
Inventor
Takashi Oomae
Yasuyuki Yoshida
Satoshi Suzuki
Tamotsu Oka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11492480A priority Critical patent/JPS5739087A/en
Publication of JPS5739087A publication Critical patent/JPS5739087A/en
Publication of JPS6141673B2 publication Critical patent/JPS6141673B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】 本発明は燃料ノズルより燃料を燃焼室に噴射す
るための貫通孔を形成せしめるためのノズルの孔
あけ加工方法及び装置の改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in a nozzle drilling method and apparatus for forming a through hole for injecting fuel into a combustion chamber from a fuel nozzle.

従来燃料ノズルは第1図A及びBに示す如くノ
ズル1に多数の貫通孔2,2′………を円周状に
設け、燃料を該貫通孔より霧状に噴射せしめてい
るものである。そのため該貫通孔は直径0.1〜0.4
mm程度の微細にして且つ高精度のものが要求され
ると共に燃焼室に均一に噴霧するため貫通孔のピ
ツチ誤差もほとんどない程度の極めて厳しいもの
が要求されているものである。
In the conventional fuel nozzle, as shown in FIGS. 1A and 1B, a number of through holes 2, 2', etc. are provided in a nozzle 1 in a circumferential manner, and fuel is injected in the form of mist from the through holes. . Therefore, the diameter of the through hole is 0.1 to 0.4
It is required to be as fine as millimeter and highly precise, and to spray uniformly into the combustion chamber, it is also required to be very strict, with almost no pitch error in the through holes.

而して従来上記の微細にして且つ高精度の貫通
孔2をうるにはパルスレーザー等の高エネルギー
密度熱源により穿孔加工が施されているものであ
る。このレーザによる穿孔加工は第2図に示す如
く間欠的に発生するパルス状のレーザビーム3を
凸レンズ4で集束し、その噴口部5となるべき位
置に数十発照射して貫通孔をあけるものである。
即ちノズルに設ける複数個の噴口部を貫通するに
おいて、まず第1の噴口部にパルス状レーザービ
ームを数十発照射して一度に該噴口部を貫通せし
めた後、ノズル1を回転軸6を中心として所望角
度回転せしめ再度レーザビームを数十発照射して
第2の噴口部を穿孔する。このようにして順次噴
口部5に孔あけを行うものであるが、この場合同
一の個所に数十発のレーザビームを照射するため
該ノズルの温度分布が極度に偏り熱変形を生ず
る。この熱変形によつて貫通孔のピツチに大きな
誤差を生じ、該貫通孔からの燃料が均一に噴射さ
れないため燃料効率等の製品性能に悪影響を及ぼ
すものであつた。
Conventionally, in order to form the above-mentioned fine and highly accurate through holes 2, drilling has been performed using a high energy density heat source such as a pulsed laser. In this laser drilling process, as shown in Fig. 2, a pulsed laser beam 3 that is generated intermittently is focused by a convex lens 4, and dozens of shots are irradiated onto the position that will become the nozzle 5 to form a through hole. It is.
That is, in order to penetrate the plurality of nozzle ports provided in the nozzle, first, dozens of pulsed laser beams are irradiated to the first nozzle port to penetrate the nozzle ports at once, and then the nozzle 1 is rotated around the rotating shaft 6. The center is rotated to a desired angle and several tens of laser beams are irradiated again to form a second nozzle. In this way, holes are sequentially drilled in the nozzle portion 5, but in this case, since several tens of laser beams are irradiated to the same location, the temperature distribution of the nozzle becomes extremely uneven, resulting in thermal deformation. This thermal deformation caused a large error in the pitch of the through holes, and the fuel was not uniformly injected from the through holes, which had an adverse effect on product performance such as fuel efficiency.

本発明はかかる欠点を改善せんとして鋭意研究
を行つた結果、燃料ノズルに複数個の貫通孔を設
けるにおいて、熱変形を防止し該貫通孔のピツチ
等の位置を高精度にする方法を見出したものであ
る。即ち本発明は所定間隔毎に複数個の噴口部を
円周状に設けたノズルの該噴口部にレーザビーム
を照射して貫通孔を形成せしめるノズル孔あけ加
工方法において、第1の噴口部に数発以下のレー
ザパルスを照射した後、第2の噴口部から最終噴
口部まで順次上記と同様にレーザパルスを照射す
る照射工程を所望回数繰返して噴口部に貫通孔を
形成せしめることを特徴とするノズルの孔あけ加
工方法である。
As a result of intensive research aimed at improving these drawbacks, the present invention has discovered a method for preventing thermal deformation and ensuring high accuracy in the positioning of the pitches, etc. of the through holes when providing a plurality of through holes in the fuel nozzle. It is something. That is, the present invention provides a nozzle drilling method in which a through hole is formed by irradiating a laser beam onto the nozzle of a nozzle in which a plurality of nozzles are circumferentially provided at predetermined intervals. After irradiating several laser pulses or less, the irradiation step of sequentially irradiating laser pulses from the second nozzle to the final nozzle in the same manner as above is repeated a desired number of times to form a through hole in the nozzle. This is a nozzle drilling method.

又本発明はレーザ発生器に反転用平面鏡を取付
け、レーザ発生器より発生するパルス状レーザビ
ームを該平面鏡を介し又は介せずに正面方向及び
反対方向の2方向から進行せしめ且つ該レーザパ
ルスの角度を切換えるためのレーザビーム方向切
換器を設け、該切換器に平面鏡及び凸レンズの光
学器機を取付け該凸レンズからのレーザビームを
噴口部に照射することを特徴とするノズルの孔あ
け加工装置である。
Further, the present invention attaches a reversing plane mirror to the laser generator, allows the pulsed laser beam generated by the laser generator to proceed from two directions, the front direction and the opposite direction, with or without passing through the plane mirror, and A nozzle drilling device is provided with a laser beam direction switching device for switching the angle, and an optical device including a plane mirror and a convex lens is attached to the switching device, and the laser beam from the convex lens is irradiated to the nozzle part. .

このように本発明はノズルに円周状に設けた10
〜20個の噴口部にパルス状レーザビームを照射す
るにおいて、一度に数十発の如く照射して貫通孔
を形成せしめることなく、1個所の噴口部に1発
乃至2〜3発づつ照射せしめ噴口部の温度を上昇
せしめることなく順次同様に少数発づつ照射し、
全部の噴口部に照射した後、再度当初の噴口部に
もどり前記と同様の照射を繰返し行つて貫通孔を
形成せしめるものである。従つて噴口部には熱変
形をあたえることがないから著しく寸法精度に優
れた貫通孔を穿孔せしめることが出来るものであ
る。
In this way, the present invention provides a nozzle with 10
When irradiating ~20 nozzles with a pulsed laser beam, each nozzle is irradiated with 1 to 2 to 3 laser beams at a time, without irradiating dozens of laser beams at once to form a through hole. Without increasing the temperature of the nozzle, irradiate a small number of shots one after another in the same way,
After irradiating all the nozzle parts, the same irradiation as above is repeated again to the original nozzle part to form a through hole. Therefore, the nozzle part is not subjected to thermal deformation, so that a through hole with extremely high dimensional accuracy can be bored.

又その装置としては被加工ノズルを回転せしめ
レーザビームの照射位置を切替えるというもので
はなく、レーザビームの通路を容易に切換えうる
ためのレーザビーム方向切換器を設けることによ
り正確に噴口部の所定位置にレーザパルスを照射
せしめることが出来るものである。
In addition, the device does not rotate the nozzle to be processed and switch the irradiation position of the laser beam, but it is equipped with a laser beam direction switch that allows the path of the laser beam to be easily changed. It is possible to irradiate laser pulses to

本発明の一例を図面にもとづき詳細に説明す
る。
An example of the present invention will be explained in detail based on the drawings.

第3図及び第4図に示す如くノズル1に16個の
噴口部を設け、レーザ発生器7より発生したパル
ス状レーザビーム3をレーザビーム方向切換器8
を介し更に凸レンズ9及び平面反射鏡10により
16種のレーザビーム通路を設定するものである。
この場合16種のレーザビーム通路にレーザビーム
を順次切換えて搬送するため特に反射角度を異に
する平面鏡を複数個取付けたレーザビーム方向切
換器を設けるものである。
As shown in FIGS. 3 and 4, the nozzle 1 is provided with 16 nozzle ports, and the pulsed laser beam 3 generated from the laser generator 7 is transferred to the laser beam direction switch 8.
further by a convex lens 9 and a plane reflecting mirror 10.
It has 16 types of laser beam paths.
In this case, in order to sequentially switch and convey the laser beam to 16 types of laser beam paths, a laser beam direction switch is provided, which is equipped with a plurality of plane mirrors having different reflection angles.

又本発明においてビーム発生器7により発生し
たレーザビーム3をノズルの全周に設けた噴口部
に照射せしめなければならないため該レーザビー
ムを上記方向切換器の正面方向及び反対方向の二
方向から進入せしめるものである。即ちノズルの
右側(正面)方向の噴口部に対してはビーム発生
器7からのレーザビーム3をそのままレーザビー
ム方向切換器8に直進せしめた後、光学機器によ
つて照射すればよいが、ノズルの左側(裏側)方
向の噴口部に対してはビーム発生器7とレーザビ
ーム方向切換器8との間に反転用平面反射鏡11
を設け、この反射鏡を経た後、更に平面鏡12,
12′,12″を経過しレーザビームを該方向切換
器8の左側(裏側)より進入せしめた後上記同様
光学器機によつて照射するものである。
In addition, in the present invention, since the laser beam 3 generated by the beam generator 7 must be irradiated onto the nozzle provided around the entire circumference of the nozzle, the laser beam enters from two directions, the front direction and the opposite direction of the direction changer. It is something that forces you to do something. In other words, the nozzle on the right side (front) direction can be irradiated with the laser beam 3 from the beam generator 7 by directing it directly to the laser beam direction switch 8 and then using an optical device. For the nozzle in the left side (back side) direction, a reversing plane reflector 11 is installed between the beam generator 7 and the laser beam direction switch 8.
After passing through this reflecting mirror, a plane mirror 12,
12' and 12'', the laser beam enters from the left side (back side) of the direction switch 8, and is then irradiated by the same optical device as described above.

このように本発明はレーザビーム方向切換器に
よつて該ビームの通路を変えるものであり、従来
の如くノズルを回転せしめることなく、噴口部の
所定位置に正確にレーザパルスを照射することが
出来るものであり、第5図に示す如き単なる回転
形平面鏡13を使用した場合には、回転停止位置
の僅かな誤差角度(10分〜40分)が、第3図及び
第4図に示す如く光学器機の使用により拡大され
て大きな照準誤差となる。従つて照準に誤差があ
ると噴口部に少しづつ穴をあけるとしても既に掘
られている穴部に再度正確にレーザビームを照射
することが困難となり致命的な損傷をあたえるも
のである。
In this way, the present invention uses a laser beam direction switch to change the path of the beam, making it possible to accurately irradiate a predetermined position of the nozzle with a laser pulse without rotating the nozzle as in the conventional method. However, when a simple rotating plane mirror 13 as shown in FIG. This is magnified by the use of equipment, resulting in large aiming errors. Therefore, if there is an error in aiming, even if the hole is drilled little by little in the nozzle, it will be difficult to re-irradiate the laser beam accurately onto the hole that has already been dug, resulting in fatal damage.

而して本発明におけるレーザビーム方向切換器
8の1例を示すと第6図に示す如く十分な剛性を
有する軸棒14に所望の角度で取付けられた平面
鏡15を所望数摺動可能に挿着し、該平面鏡を軸
方向に移動せしめることによりレーザビーム方向
を自在に切換えることが出来るものである。なお
この場合軸の剛性さえ十分であれば照準誤差は0
となり精度の高い噴口部の孔あけ加工を行うこと
が出来る。又第7図のものはレーザビーム方向切
換器8の他の例を示すものであり、軸棒14,1
4′に夫々反射方向を異にする反射平面鏡15,
15′を備えた、軸方向のみ可動の単位鏡体をレ
ーザビーム通路を横切りうる位置に複数本並設し
て所望の単位鏡体のみにレーザビームを反射せし
めるようにしたものである。
One example of the laser beam direction switching device 8 according to the present invention is shown in FIG. 6, in which a desired number of plane mirrors 15 attached at a desired angle are slidably inserted into a shaft rod 14 having sufficient rigidity. The direction of the laser beam can be freely switched by moving the plane mirror in the axial direction. In this case, as long as the shaft rigidity is sufficient, the aiming error will be 0.
This allows for highly accurate drilling of the nozzle. 7 shows another example of the laser beam direction switch 8, in which the shaft rods 14, 1
4', reflective plane mirrors 15 each having different reflection directions;
15', a plurality of unit mirror bodies movable only in the axial direction are arranged in parallel at positions where they can cross the laser beam path, so that the laser beam is reflected only on a desired unit mirror body.

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

実施例 パルスレーザ(YAGレーザ)を使用して、ノ
ズルにピツチ0.8mmの等間隔にて噴口数16の噴口
部を設け、上記のレーザを2発づつ照射し、この
工程を5回繰返して各噴口部に10発づつレーザパ
ルスを照射して貫通孔を形成した。
Example Using a pulsed laser (YAG laser), the nozzle was equipped with 16 nozzles at equal intervals of 0.8 mm, and the above laser was irradiated with two shots each, and this process was repeated five times. A through hole was formed by irradiating the nozzle with 10 laser pulses each.

斯くして得たノズルの温度分布は円周方向に均
一に維持され、熱変形は全く認められず又ピツチ
誤差は±0.01mm以下であつた。
The temperature distribution of the thus obtained nozzle was maintained uniformly in the circumferential direction, no thermal deformation was observed, and the pitch error was less than ±0.01 mm.

なお従来方法の如く噴口部の夫々に一度に10発
のレーザビームを照射して貫通孔を形成せしめた
後、次の噴口部にも同様にて貫通孔を設けたとこ
ろ燃料ノズルの温度分布はかたより熱変形を生じ
且つピツチ誤差は最大0.2mmに達した。
In addition, as in the conventional method, after forming a through hole by irradiating each nozzle with 10 laser beams at a time, a through hole was similarly provided at the next nozzle, and the temperature distribution of the fuel nozzle was Thermal deformation occurred on one side, and the pitch error reached a maximum of 0.2 mm.

以上詳述した如く本発明によれば加工中に熱変
形を生ずることがないためピツチ等において高精
度の孔あけ加工を施すことが出来うる等顕著な効
果を有する。
As described in detail above, the present invention has remarkable effects such as being able to perform highly accurate drilling in pitches and the like since thermal deformation does not occur during processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃料ノズルを示すものでありA
は断面図、Bは底面図、第2図は従来のノズルに
孔あけ加工方法を示す説明図、第3図及び第4図
は本発明の1例を示すものであり、第3図は概略
立面図、第4図は概略平面図、第5図は従来の反
射平面鏡の斜視図、第6図及び第7図は本発明に
おけるレーザビーム方向切換器の1例を示す概略
説明図、第8図は本発明におけるノズルに設けた
噴口部の説明図である。 1……ノズル、2……貫通孔、3……レーザビ
ーム、4……凸レンズ、5……噴口部、6……
軸、7……レーザビーム発生器、8……ビーム方
向切換器、9……凸レンズ、10……平面鏡、1
1……反転用平面鏡、12……平面鏡、13……
平面鏡、14……軸棒、15……平面鏡。
Figure 1 shows a conventional fuel nozzle.
is a cross-sectional view, B is a bottom view, FIG. 2 is an explanatory diagram showing a conventional method of drilling a hole in a nozzle, FIGS. 3 and 4 show an example of the present invention, and FIG. 3 is a schematic diagram. 4 is a schematic plan view, FIG. 5 is a perspective view of a conventional reflective plane mirror, and FIGS. 6 and 7 are schematic explanatory views showing one example of a laser beam direction switch according to the present invention. FIG. 8 is an explanatory view of the spout section provided in the nozzle in the present invention. 1... Nozzle, 2... Through hole, 3... Laser beam, 4... Convex lens, 5... Nozzle part, 6...
Axis, 7... Laser beam generator, 8... Beam direction switch, 9... Convex lens, 10... Plane mirror, 1
1... Plane mirror for reversal, 12... Plane mirror, 13...
Plane mirror, 14... shaft rod, 15... plane mirror.

Claims (1)

【特許請求の範囲】 1 所定間隔毎に複数個の噴口部を円周状に設け
たノズルの該噴口部にレーザパルスを照射して貫
通孔を形成せしめるノズル孔あけ加工方法におい
て、第1の噴口部に数発以下のパルス状レーザビ
ームを照射した後、第2の噴口部から最終噴口部
まで順次上記と同様にレーザビームを照射する照
射工程を、所望回数繰返して噴口部に貫通孔を形
成せしめることを特徴とするノズルの孔あけ加工
方法。 2 レーザ発生器より発生するパルス状レーザビ
ームをノズルの噴口部に照射せしめて貫通孔を形
成するノズルの孔あけ加工装置において、レーザ
発生器に反転用平面鏡を取付け、パルス状レーザ
ビームを該平面鏡を介し又は介せずに正面方向及
び反対方向の2方向から進入せしめ且つ該レーザ
ビームの角度を切換えるためのレーザビーム方向
切換器を設け、該切換器に平面鏡及び凸レンズの
光学器機を取付け、該凸レンズからのレーザビー
ムを噴口部に照射することを特徴とするノズルの
孔あけ加工装置。 3 レーザビーム方向切換器として可動にして且
つレーザビームの反射方向が異なる平面鏡を所望
数設け、該平面鏡を移動して反射角度を調整せし
めることにより前記噴口部の所定位置に順次レー
ザビームを照射せしめることを特徴とする特許請
求の範囲第2項記載のノズル孔あけ加工装置。
[Claims] 1. A nozzle drilling method in which a through hole is formed by irradiating a laser pulse to the nozzle of a nozzle having a plurality of nozzles circumferentially provided at predetermined intervals, the first method comprising: After irradiating the nozzle with several pulsed laser beams or less, the irradiation step of sequentially irradiating the laser beam from the second nozzle to the final nozzle in the same manner as above is repeated a desired number of times to form a through hole in the nozzle. A nozzle drilling method characterized by forming a hole. 2. In a nozzle drilling device that forms a through hole by irradiating a pulsed laser beam generated from a laser generator onto the orifice of a nozzle, a reversing plane mirror is attached to the laser generator, and the pulsed laser beam is applied to the plane mirror. A laser beam direction switch is provided to allow the laser beam to enter from two directions, the front direction and the opposite direction, with or without the aid of a A nozzle drilling device characterized by irradiating a nozzle with a laser beam from a convex lens. 3. A desired number of movable plane mirrors with different laser beam reflection directions are provided as a laser beam direction switch, and by moving the plane mirrors and adjusting the reflection angle, laser beams are sequentially irradiated to predetermined positions of the nozzle part. A nozzle drilling device according to claim 2, characterized in that:
JP11492480A 1980-08-21 1980-08-21 Method and device for piercing of nozzle Granted JPS5739087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11492480A JPS5739087A (en) 1980-08-21 1980-08-21 Method and device for piercing of nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11492480A JPS5739087A (en) 1980-08-21 1980-08-21 Method and device for piercing of nozzle

Publications (2)

Publication Number Publication Date
JPS5739087A JPS5739087A (en) 1982-03-04
JPS6141673B2 true JPS6141673B2 (en) 1986-09-17

Family

ID=14650024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11492480A Granted JPS5739087A (en) 1980-08-21 1980-08-21 Method and device for piercing of nozzle

Country Status (1)

Country Link
JP (1) JPS5739087A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411592A (en) * 1987-07-03 1989-01-17 Janome Sewing Machine Co Ltd Automatic stitch balancing thread tension sewing machine equipped with sewing correction apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289590A (en) * 1985-10-14 1987-04-24 Mitsubishi Motors Corp Manufacture of fuel jet nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411592A (en) * 1987-07-03 1989-01-17 Janome Sewing Machine Co Ltd Automatic stitch balancing thread tension sewing machine equipped with sewing correction apparatus

Also Published As

Publication number Publication date
JPS5739087A (en) 1982-03-04

Similar Documents

Publication Publication Date Title
JP3748280B2 (en) Processing equipment
JP4873191B2 (en) Material drilling and removal equipment using laser beam
KR100216226B1 (en) Device for scanning a surgical laser beam
US5367143A (en) Apparatus and method for multi-beam drilling
US6574024B1 (en) Laser beam homogenization by scanning a beam onto a mask
JP3174580B2 (en) Nozzle forming method and apparatus
JP2002536187A (en) Method for forming a hole in a workpiece using a laser beam
US5585019A (en) Laser machining of a workpiece through adjacent mask by optical elements creating parallel beams
US5438441A (en) Method and apparatus for material processing with a laser controlled by a holographic element
US20210229215A1 (en) Laser beam scanner
JPH02263589A (en) Method and apparatus for laser beam machining surface of metal
JPH0732183A (en) Co2 laser beam machine
JPS6141673B2 (en)
TW202135965A (en) Laser processing device and method for laser-processing a workpiece
CN116475589A (en) Swing type cutting-measuring integrated method based on optical rotation system
CN114799572A (en) Laser cutting machining method based on scanning path control energy distribution
JPS6121193Y2 (en)
CN114833472A (en) Laser processing method for non-taper cooling air film hole of aero-engine flame tube
JP2002346775A (en) Device and method for laser beam machining
DE4202941C2 (en) Process for removing material from a moving workpiece
JP3524855B2 (en) Laser irradiation apparatus and laser processing method
JP2817555B2 (en) Laser processing machine
JPH05220189A (en) Ablation device by laser beam
JP2023512236A (en) Materials processing using laser beams, especially assembly with laser drilling
JP2003080389A (en) Device and method for laser beam machining and method for manufacturing product having laser beam machined work