JPS6289590A - Manufacture of fuel jet nozzle - Google Patents

Manufacture of fuel jet nozzle

Info

Publication number
JPS6289590A
JPS6289590A JP60226816A JP22681685A JPS6289590A JP S6289590 A JPS6289590 A JP S6289590A JP 60226816 A JP60226816 A JP 60226816A JP 22681685 A JP22681685 A JP 22681685A JP S6289590 A JPS6289590 A JP S6289590A
Authority
JP
Japan
Prior art keywords
nozzle
laser beam
hole
shape
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60226816A
Other languages
Japanese (ja)
Inventor
Tsunetaka Hiromi
廣實 常登
Ichiro Yamashita
一郎 山下
Taizo Shimada
泰三 嶋田
Naoya Sakai
直哉 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Motors Corp
Priority to JP60226816A priority Critical patent/JPS6289590A/en
Publication of JPS6289590A publication Critical patent/JPS6289590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To manufacture a product having the high reliability at low cost by irradiating a laser beam, forming continuously plural minute holes in a prescribed special shape at the prescribed position of a nozzle base material, and also immersing it in an electrolyte. CONSTITUTION:The direction of the laser beam 1 is positioned so as to be opposed to the prescribed position of a nozzle base material 2, the minute hole 41 is pierced, and subsequently, the direction of the laser beam 1 is changed so as to be opposed to the prescribed position of the nozzle base material 2 being adjacent to its minute hole 41, and a minute hole 42 is pierced continuously. Thereafter. plural minute holes 41, 42, 43... are formed continuously in a prescribed shape. Also, said material is immersed in an electrolyte and a burr left between the minute holes is melted and removed. In this way, a nozzle having the excellent accuracy can be manufactured at the low cost.

Description

【発明の詳細な説明】 産業上の利用分野 ディーゼルエンジン等において、噴射ノズルの噴孔から
噴霧される噴粒は、空気摩擦のためその周辺から分散が
始まり、全体が直径2〜50μ位の噴粒に分裂され、そ
の大きさは先端から根本に行く程、また周縁から中心に
近ずく程大きい噴粒となる。ところが、大きな噴粒が高
温のピストン及びシリンダの壁に当るのは必ずしも悪く
はないが、大きな噴粒が冷却された壁に付着すると不完
全燃焼するから燃焼室の形に応じて適当な霧化噴射到達
距離、ひろがり角が必要としていた。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application In diesel engines, etc., the spray particles sprayed from the nozzle hole of the injection nozzle begin to disperse from the periphery due to air friction, and the entire spray particle has a diameter of about 2 to 50 μm. It is divided into particles, and the size becomes larger as you go from the tip to the root, and from the periphery to the center. However, while it is not necessarily bad for large particles to hit the hot piston and cylinder walls, incomplete combustion occurs when large particles adhere to the cooled walls, so it is important to make sure that the atomization is appropriate depending on the shape of the combustion chamber. The injection distance and spread angle were necessary.

そこで、燃焼室の形に応じた適当な霧化噴射到達距離、
ひろがり角が達成される為の特殊形状で、しかも不完全
燃焼防止の為に噴粒な小さくさせる孔径の小さな燃料噴
射ノズルが得られることを望まれていた。
Therefore, the appropriate atomization injection reach depending on the shape of the combustion chamber,
It has been desired to obtain a fuel injection nozzle that has a special shape to achieve a widening angle and also has a small hole diameter to reduce the size of the spray particles to prevent incomplete combustion.

本発明は、その特殊噴孔形状である燃料噴射ノズルの製
造方法に関するものである。
The present invention relates to a method of manufacturing a fuel injection nozzle having a special injection hole shape.

従来の技術 従来のこの種の燃料噴射ノズルの製造方法に当っては、
噴孔を細いドリルで丸型孔が1個、また円 は、複数個をN陣状に穿孔したものであった。
Prior Art In the conventional manufacturing method of this type of fuel injection nozzle,
One round hole was drilled with a thin drill, and multiple round holes were drilled in N formations.

また、燃焼室の形に応じた適切な霧化が出来るように微
小孔の連続よりなる、所定の特殊噴孔形状が形成された
としても、連続した微小孔をドリルによる機械加工では
出来ない為、穿孔に放電加工が用いられたものもあった
が、穿孔操作を困難とし、しかも大きな孔径となりかね
なかった。
In addition, even if a special nozzle hole shape consisting of a series of micro holes is formed to achieve appropriate atomization depending on the shape of the combustion chamber, continuous micro holes cannot be machined with a drill. In some cases, electrical discharge machining was used for drilling, but this made the drilling operation difficult and could lead to large holes.

発明が解決しようとする問題点 ところで、燃料噴射ノズルの噴孔は微細なものであり、
その形状、面積がエンジン性能に及ぼす影響が大きく、
細いドリルによる穿孔では、刃先の摩耗による孔径の変
化が多く生じ、1個の丸型孔にあっては燃焼室に必要燃
料を与るために孔径が大きくなって噴粒が大粒となった
。そこで、放電加工による特殊形状の噴孔を得ようとし
たが、このような噴孔にあっては、形状が不整となって
面積が大きくなったりして燃料と空気との不適切な混合
を生じ、結局、エンジン性能に悪い影響を及ぼすことに
なった。また、微小孔の連続よりなる特殊噴孔では微小
孔の連続部分にバリを生じ、ドリル加工の場合でも噴孔
の貫通光にバリを生じ、生じたバリを加工せずにそのま
まの状態で使用した場合には、経時変化によるバリの摩
耗などで形状が変って特性を変化させ、上述同様、エン
ジン性能に悪い影響を及ぼすことになった。
Problems to be solved by the invention By the way, the injection holes of the fuel injection nozzle are minute.
Its shape and area have a great influence on engine performance.
When drilling with a thin drill, the hole diameter often changed due to wear of the cutting edge, and in the case of one round hole, the hole diameter became large to provide the necessary fuel to the combustion chamber, resulting in large spray particles. Therefore, an attempt was made to obtain a specially shaped nozzle hole by electric discharge machining, but such a nozzle hole has an irregular shape and a large area, resulting in improper mixing of fuel and air. This resulted in a negative impact on engine performance. In addition, with special nozzle holes consisting of a series of microholes, burrs occur in the continuous part of the microholes, and even when drilling, burrs occur in the light passing through the nozzle hole, and the resulting burrs are used as is without processing. In this case, the shape changes due to wear of the burr over time, changing the characteristics, and as mentioned above, this has a negative effect on engine performance.

本発明は、エンジン性能を向上させる特殊噴孔形状の製
造方法であり、しかも小さな孔径の燃料噴射ノズルを迅
速で、安価な加工で、そして、燃焼効率のよい噴孔形状
をきわめて容易に形成することができる新規な燃料噴射
ノズルの製造方法を提供するここを目的とする。
The present invention is a method for manufacturing a special nozzle hole shape that improves engine performance, and furthermore, allows quick and inexpensive processing to produce a fuel injection nozzle with a small hole diameter, and extremely easily forms a nozzle hole shape with high combustion efficiency. The present object is to provide a novel method for manufacturing a fuel injection nozzle that can be used.

問題点を解決するための手段 本発明の燃料噴射ノズルの製造方法は、第1の発明とし
て、先ず、レーザビームの方向をノズル素材の所定位置
に対向するよう位置決めした後、そのノズル素材の所定
位置にレーザビームによる照射で微小孔を穿孔し、次に
、その微小孔と隣接するノズル素材の所定位置に対向す
るようレーザビームの方向を変更して位置決めした後、
レーザビームによる照射により次の微小孔を穿孔して、
先に穿孔された微小孔に連続せしめ、以後同様にそのノ
ズル素材に複数の微小孔を連続するように穿孔して所定
の特殊形状の噴孔を形成するここを特徴とする燃料噴射
ノズルの製造方法である。
Means for Solving the Problems In the method for manufacturing a fuel injection nozzle of the present invention, first, the direction of the laser beam is positioned to face a predetermined position of the nozzle material, and then the direction of the laser beam is positioned to face the predetermined position of the nozzle material. After drilling a microhole at the position by irradiation with a laser beam, and then changing the direction of the laser beam and positioning it so that it faces the predetermined position of the nozzle material adjacent to the microhole,
The next microhole is drilled by irradiation with a laser beam,
Manufacture of a fuel injection nozzle characterized by forming a nozzle hole of a predetermined special shape by continuously drilling a plurality of microholes in the nozzle material in the same manner as the previously drilled microholes. It's a method.

また、第2の発明として、上記製造された燃料噴射ノズ
ルには、レーザビームを照射してノズル素材に複数の微
小孔を穿孔して連続させることにより所定特殊形状を形
成し、その所定特殊形状の隣接する微小孔間には微小孔
の穿孔での残りがバリを成し、そのバリ付き噴孔を形成
したノズル素材を電解液に浸漬して、その噴孔に電解液
を流して、噴ホトリを溶解除去し、高温の燃焼室での高
圧の噴霧によっても変形しないような噴孔な形成するこ
こを特徴とした燃料噴射ノズルの製造方法である。
In addition, as a second invention, the fuel injection nozzle manufactured above is formed into a predetermined special shape by irradiating the fuel injection nozzle with a laser beam and making a plurality of microholes in a row in the nozzle material. The residue from drilling the micro holes forms burrs between adjacent micro holes, and the nozzle material with the burred nozzle holes is immersed in an electrolytic solution, and the electrolyte is flowed through the nozzle holes. This method of manufacturing a fuel injection nozzle is characterized in that it dissolves and removes dust and forms a nozzle hole that will not be deformed even by high-pressure spray in a high-temperature combustion chamber.

作用 従って、レーザビームによる加工で、ドリルでは穿孔で
きない微小孔が形成出来、そして、レーザ加工に際して
は燃料噴射ノズルを固定しレーザビームを移行させるか
、またはレーザビームを固定し燃料噴射ノズルを回転さ
せ、その後、レーザビームによる照射で所定特殊形状の
噴孔が形成され、特殊形状が形成されることによってエ
ンジンの燃焼室の形に応じた適切な霧化噴射到達距離や
ひろがり角が得られ、エンジン性能を向上させることに
なる。
Effect: Therefore, by machining with a laser beam, micro holes that cannot be drilled with a drill can be formed, and during laser machining, the fuel injection nozzle is fixed and the laser beam is moved, or the laser beam is fixed and the fuel injection nozzle is rotated. After that, injection holes with a predetermined special shape are formed by irradiation with a laser beam, and by forming the special shape, an appropriate atomization injection reach and spread angle can be obtained according to the shape of the combustion chamber of the engine. This will improve performance.

また、エンジンの燃焼室内は高温で、しかも燃料噴射ノ
ズルの噴孔を流出する燃料の噴射圧が噴粒な小さく、ひ
ろがり角を大きくする為に、高噴封圧にしである為、噴
孔にあるバリは溶融変形しゃすく噴孔の形状が変化し特
性が変えられることになった。そこで、これらを防止す
るため、予め、バリを電解溶液などで除去する。
In addition, the combustion chamber of the engine is high temperature, and the injection pressure of the fuel flowing out of the injection hole of the fuel injection nozzle is small. Some burrs were melted and deformed, changing the shape of the nozzle hole and changing its characteristics. Therefore, in order to prevent these problems, burrs are removed in advance using an electrolytic solution or the like.

実施例 第1図は第1の発明についての燃料噴射ノズルの製造方
法の説明図である。
Embodiment FIG. 1 is an explanatory diagram of a method of manufacturing a fuel injection nozzle according to the first invention.

その製造方法の第1工程では、レーザビーム1の方向を
ノズル素材2の所定位置、好ましくはその仮想軸心線3
と交叉し、かつ所定の角度θを有するように位置決めす
る。その所定位置は第2図、第3図及び第4図に示す如
く、形成されるべき噴孔4の形状の種類によって決まり
、また、所定の角度θはノズル素材20曲面位置によっ
て決まる。
In the first step of the manufacturing method, the direction of the laser beam 1 is set at a predetermined position of the nozzle material 2, preferably its virtual axis 3.
It is positioned so that it intersects with and has a predetermined angle θ. As shown in FIGS. 2, 3, and 4, its predetermined position is determined by the type of shape of the nozzle hole 4 to be formed, and the predetermined angle θ is determined by the position of the curved surface of the nozzle material 20.

このような位置決めは、レーザビーム1の位置を固定し
てノズル素材2の位置を変更自在とし、その仮想軸心線
3が該レーザビーム1と交叉するよう調整する場合と、
逆に、ノズル素材2の位置を固定し、レーザビームlの
位置、即ち、それの光学系を変更自在としてその仮想軸
心線3と交叉するよう調整する場合とがある。
Such positioning includes two cases in which the position of the laser beam 1 is fixed and the position of the nozzle material 2 is freely changeable, and the virtual axis 3 is adjusted so as to intersect with the laser beam 1;
Conversely, there are cases where the position of the nozzle material 2 is fixed, and the position of the laser beam l, that is, its optical system, is freely changeable and adjusted so that it intersects with the virtual axis 3.

なお、仮想軸心線3と交叉するよう位置決めするのは複
数個所に形成された噴孔4から均等に燃料が噴射される
ようにするためである。
Note that the reason for positioning so as to intersect with the virtual axis 3 is to ensure that fuel is evenly injected from the nozzle holes 4 formed at a plurality of locations.

同製造方法の第2工程では、前工程後に、そのノズル素
材20所定位置に位置決めされたレーザビーム1による
照射によって微小孔41.41a。
In the second step of the manufacturing method, after the previous step, the nozzle material 20 is irradiated with the laser beam 1 positioned at a predetermined position to form microholes 41.41a.

41bが穿孔される。その照射はノズル素材\の肉厚の
状態によりワンショットで行なう場合と、複数回のショ
ットに分けられて行なわれる場合とがある。ところが、
ワンショットでは穿孔できない肉厚の後者の場合ではノ
ズル素材2の肉厚内にバリが形成されることになる。
41b is perforated. The irradiation may be performed in one shot or divided into multiple shots depending on the thickness of the nozzle material. However,
In the latter case, where the thickness is too thick to drill in one shot, burrs will be formed within the thickness of the nozzle material 2.

第3工程では、前工程で穿孔された微小孔41.41a
と隣接するノズル素材20所定位置に、好ましくは上記
仮想軸心線3と交叉し、かつ所定の角度を有するように
レーザビームの方向を変更して位置決めし、レーザビー
ムによる照射により微小孔42.42aを穿孔する。そ
して、微小孔42.42aを穿孔した場合、その微小孔
42.42aの穿孔された所定位置は前工程で穿孔され
た微小孔41.41aと連続する程度に接近した位置で
ある。
In the third step, the microhole 41.41a drilled in the previous step
The nozzle material 20 is positioned at a predetermined position adjacent to the nozzle material 20, preferably by changing the direction of the laser beam so that it intersects with the virtual axis 3 and has a predetermined angle, and the microhole 42 is irradiated with the laser beam. 42a is drilled. When the microhole 42.42a is drilled, the predetermined position of the microhole 42.42a is close enough to be continuous with the microhole 41.41a drilled in the previous step.

第4工程では、前工程後にその定められたノズル素材2
0所定位置にレーザビーム1による照射で微小孔41.
42.431」、41a 、 42a 、 43a・・
・が連続して穿孔され所定特殊形状の噴孔が形成される
。しかし、これら微小孔相互間には微小孔穿孔の際の残
りであるバリ5が存在し、バリ付噴孔4が形成される。
In the fourth step, the determined nozzle material 2 is
A microhole 41.0 is formed at a predetermined position by irradiation with the laser beam 1.
42.431'', 41a, 42a, 43a...
- are continuously drilled to form a nozzle hole of a predetermined special shape. However, burrs 5 remaining from drilling the microholes are present between these microholes, and a burred nozzle hole 4 is formed.

以上のように、レーザビームを使用することによって形
成される噴孔4の形状の種類は、エンジンの燃焼室の形
に応じた適切な霧化噴射到達距離、ひろがり角を達成さ
せる為に形成される形状であって、第2図による工形状
、第3図による工形状の他、第5図tal、(bl、(
C1の如(、Y形状、L形状、十字形状等の形状もある
As described above, the types of shapes of the nozzle holes 4 formed by using a laser beam are determined in order to achieve an appropriate atomization injection reach and spread angle depending on the shape of the combustion chamber of the engine. In addition to the machining shape shown in FIG. 2 and the machining shape shown in FIG. 3, the shape shown in FIG.
There are also shapes such as C1 (, Y shape, L shape, cross shape, etc.).

なお、第4図に示す如く、レーザビームにより穿孔され
た微小孔41b、 42b、 43b @−を相互に連
続させずに独立状態で相互に近接させて穿孔させ微小孔
群の噴孔4bとしてもよい。
In addition, as shown in FIG. 4, the micro holes 41b, 42b, 43b@- drilled by the laser beam are not continuous with each other but are drilled independently and close to each other to form the nozzle hole 4b of the micro hole group. good.

次に、本発明の第2の発明についての燃料噴射ノズルの
製造方法を説明する。
Next, a method for manufacturing a fuel injection nozzle according to the second aspect of the present invention will be described.

レーザビーム1による照射でノズル素材2に穿孔された
微小孔41,42.43・・・を連続させて形成された
所定の特殊形状の噴孔4にはバリ5が存在し、バリ付噴
孔4を形成するノズル素材2であった。
A burr 5 exists in the nozzle hole 4 of a predetermined special shape, which is formed by continuously forming microholes 41, 42, 43, etc., drilled in the nozzle material 2 by irradiation with the laser beam 1, and the nozzle hole with burrs is formed. It was the nozzle material 2 forming the nozzle 4.

そこで、バリがあるが為の常置な除去するのに、第6図
に示す如く、バリ付き噴孔を形成したノズル素材2を電
解液に浸漬し、バリ付き噴孔4に電解液を注入透過させ
る。この場合、当該ノズル素材2を保持する支持枠7を
電極に兼用させることで噴孔4内のバリ5が突出してい
るために電解液と接触することが高く、先ず溶出するこ
とになる。
Therefore, in order to permanently remove the burrs, as shown in Fig. 6, the nozzle material 2 on which the burred nozzle holes are formed is immersed in an electrolytic solution, and the electrolytic solution is injected into the burred nozzle holes 4 and permeates. let In this case, by making the support frame 7 holding the nozzle material 2 also serve as an electrode, the burr 5 in the nozzle hole 4 protrudes and is likely to come into contact with the electrolyte and will be eluted first.

このようにして電解液6が噴孔4を透過する循環で、第
7図に示すような、噴孔内のバリが全部除去され、経時
変化でのバリが存在していた為の摩耗などで噴孔の形状
変化を起すようなことがない。
As the electrolytic solution 6 circulates through the nozzle hole 4 in this way, all the burrs inside the nozzle hole are removed, as shown in Fig. 7, and wear due to burrs due to changes over time is removed. There is no change in the shape of the nozzle hole.

発明の効果 よって、以上の結果、本発明の詳細な説明の燃料噴射ノ
ズルの製造方法によれば、■一般のドリル加工のように
刃先の摩耗による孔径の変化がなく、■瞬時に加工が完
了し、従って、加工費も安価であり、■小さな孔を連続
して丸型孔以外の所定特殊形状が穿孔を自由に容易にす
ることが出来ることになる。
As a result of the above-mentioned effects of the invention, according to the method for manufacturing a fuel injection nozzle described in the detailed description of the present invention, ■ there is no change in the hole diameter due to wear of the cutting edge unlike in general drilling, and ■ machining is completed instantly. Therefore, the processing cost is low, and (1) small holes can be formed in a series of predetermined special shapes other than round holes to facilitate drilling freely.

また、本発明の第2の発明の燃料噴射ノズルの製造方法
によれば、バリ付噴孔で生じる経時変化によって起るバ
リ摩耗がなくなり、従って、このバリ摩耗に起因する噴
霧形状の表面積減少などの特性の変化をなくシ、これを
使用したディーゼルエンジンの信頼性が高まることにな
る。
Furthermore, according to the method for manufacturing a fuel injection nozzle according to the second aspect of the present invention, burr wear that occurs due to aging in the burr-equipped nozzle hole is eliminated, and therefore, the surface area of the spray shape due to the burr wear decreases, etc. This eliminates changes in the characteristics of the diesel engine and increases the reliability of diesel engines using it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、第1の発明である燃料噴射ノズルの製造方法
を実施する場合のレーザビームの方向とノズル素材との
位置決め状態を表わす説明図であり、第2図は、同上レ
ーザビームにより噴孔のあげられた燃料噴射ノズルの第
1実施例の要部の正面図、第3図は、同上燃料噴射ノズ
ルの第2実施例の要部正面図、第4図は、同上燃料噴射
ノズルの第3実施例の要部正面図である。第5図は、同
上燃料噴射ノズルの噴孔形状例の状態図であって、(a
lは、Y形状状態図、(blは、L形状状態図、(C1
は、十字形状状態図である。第6図は、第2の発明であ
る燃料噴射ノズルの製造方法の説明図であって、第7図
は、同製造方法により完成された状態の要部正面図であ
る。 1・−レーザビーム、2・・ノズル素材 3a*仮想軸
心線、4・・噴孔、41,42,43・・・・・微小孔
、41a、42a、43a11@・e・微小孔、41b
9.42b、43b、、、  、 、微小孔、50.バ
リ、6.。 (ほか1名) ^か 口 → 滅 然 ζ %゛ も\ 1吟 恰
FIG. 1 is an explanatory diagram showing the direction of the laser beam and the positioning state of the nozzle material when carrying out the method for manufacturing a fuel injection nozzle according to the first invention, and FIG. FIG. 3 is a front view of the main part of the first embodiment of the fuel injection nozzle with raised holes, FIG. 3 is a front view of the main part of the second embodiment of the same fuel injection nozzle, and FIG. FIG. 7 is a front view of main parts of a third embodiment. FIG. 5 is a state diagram of an example of the shape of the nozzle hole of the fuel injection nozzle as described above, and (a
l is the Y-shape phase diagram, (bl is the L-shape phase diagram, (C1
is a cross-shaped state diagram. FIG. 6 is an explanatory diagram of a method of manufacturing a fuel injection nozzle according to the second invention, and FIG. 7 is a front view of the main part of the fuel injection nozzle completed by the same manufacturing method. 1.-Laser beam, 2.. Nozzle material 3a*Virtual axis line, 4.. Nozzle hole, 41, 42, 43...Minor hole, 41a, 42a, 43a11@.e.Minor hole, 41b
9.42b, 43b, , , , Micropore, 50. Bali, 6. . (1 other person) ^kaguchi → Metezen ζ %゛mo\ 1gin

Claims (1)

【特許請求の範囲】 1 噴射ノズルにおける噴孔の穿孔に当つて、 先ず、レーザビーム(1)の方向をノズル素材 (2)の所定位置に対向するように位置決めした 後、そのノズル素材(2)の所定位置にレーザビ ーム(1)による照射で微小孔(41)を穿孔し、 次に、その微小孔(41)と隣接するノズル素材 (2)の所定位置に対向するようレーザビーム (l)の方向を変更して位置決めした後、同様に、 レーザビーム(1)による照射を行なつて先に穿 孔された微小孔(41)に連続した微小孔(42) を穿孔し、以後、このようにしてノズル素材 (2)に複数の微小孔(41)(42)(43)・・・
を連続 して穿孔することにより所定の特殊形状の噴孔 を形成するここを特徴とした燃料噴射ノズルの 製造方法。 2 噴射ノズルにおける噴孔の穿孔に当つて、 レーザビーム(1)による照射でノズル素材(2) の所定位置に複数の微小孔(41)(42)(43)・
・・ を連続させて穿孔した所定の特殊形状を形成し その特殊形状噴孔の隣接する微小孔間に存在す る両者の微小孔穿孔での残りがバリを成し、該 バリ付きの噴孔を形成したノズル素材(2)を電 解液(6)に浸漬して、墳孔に電解液を透過させ ることにより上記噴孔のバリを溶解除去させる ことを特徴とした燃料噴射ノズノルの製造方法。
[Claims] 1. When drilling the injection hole in the injection nozzle, first, the direction of the laser beam (1) is positioned to face a predetermined position of the nozzle material (2), and then the nozzle material (2) is ) is irradiated with the laser beam (1) to make a microhole (41), and then the laser beam (l) is irradiated with the laser beam (l) so as to face a predetermined position of the nozzle material (2) adjacent to the microhole (41). ) After changing the direction and positioning, the laser beam (1) is irradiated in the same way to drill a microhole (42) that is continuous to the previously drilled microhole (41). In this way, a plurality of micro holes (41) (42) (43)... are formed in the nozzle material (2).
A method of manufacturing a fuel injection nozzle characterized by forming a nozzle hole of a predetermined special shape by continuously drilling holes. 2. When drilling the injection hole in the injection nozzle, a plurality of micro holes (41), (42), (43), and
... are continuously drilled to form a predetermined special shape, and the remainder from the drilling of both microholes that exists between adjacent microholes of the special shape nozzle forms a burr, and the nozzle with the burr is A method for manufacturing a fuel injection nozzle, characterized in that the formed nozzle material (2) is immersed in an electrolytic solution (6), and the electrolytic solution is allowed to permeate the mound to dissolve and remove burrs in the nozzle hole.
JP60226816A 1985-10-14 1985-10-14 Manufacture of fuel jet nozzle Pending JPS6289590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60226816A JPS6289590A (en) 1985-10-14 1985-10-14 Manufacture of fuel jet nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60226816A JPS6289590A (en) 1985-10-14 1985-10-14 Manufacture of fuel jet nozzle

Publications (1)

Publication Number Publication Date
JPS6289590A true JPS6289590A (en) 1987-04-24

Family

ID=16851050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60226816A Pending JPS6289590A (en) 1985-10-14 1985-10-14 Manufacture of fuel jet nozzle

Country Status (1)

Country Link
JP (1) JPS6289590A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564391A (en) * 1979-06-21 1981-01-17 Toshiba Corp Laser working method
JPS5739087A (en) * 1980-08-21 1982-03-04 Mitsubishi Heavy Ind Ltd Method and device for piercing of nozzle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564391A (en) * 1979-06-21 1981-01-17 Toshiba Corp Laser working method
JPS5739087A (en) * 1980-08-21 1982-03-04 Mitsubishi Heavy Ind Ltd Method and device for piercing of nozzle

Similar Documents

Publication Publication Date Title
DE60216177T2 (en) Cooling system of a coated turbine blade tip
US20060163211A1 (en) Article having diffuser holes and method of making same
JP2985004B2 (en) Wing having dispersed cooling holes and method and apparatus for processing the same
JP3825748B2 (en) Method of drilling a hole in a metal workpiece having a thermal barrier coating
JP3263397B2 (en) Apparatus for forming shaped holes in objects such as gas turbine engine parts
US6781091B2 (en) Method of forming a shaped hole
US5096379A (en) Film cooled components
DE102011056623A1 (en) A method of modifying a substrate to form a through-hole therein and related objects
US4818834A (en) Process for drilling chamfered holes
EP0740743A1 (en) Nozzle plate, in particular a nozzle plate for injection valves, and method of manufacturing the nozzle plate
CH708318A2 (en) Turbine component and method for making same.
JPH1085977A (en) Laser beam machining for noncircular opening
EP0787255A1 (en) Perforated disc, especially for injection valves, and process for producting it
JPH02500347A (en) Electrodes for electrical discharge machines and their formation method
US20140075755A1 (en) System and method for manufacturing an airfoil
DE19607266A1 (en) Perforated disk, in particular for injection valves and method for producing a perforated disk
JP2012132451A5 (en)
US10329917B2 (en) Gas turbine engine component external surface micro-channel cooling
EP0826457A1 (en) A method of drilling a hole in a workpiece
JPS6289590A (en) Manufacture of fuel jet nozzle
US9597751B2 (en) Method for producing a hole with side-delimiting flanks in a component
JP4122105B2 (en) Nozzle for injection
US6600132B2 (en) Method and apparatus to generate orifice disk entry geometry
CN106735942B (en) A kind of combustion chamber Fuel Injector Bar micropore cold forming process method
US9611824B2 (en) Process for manufacturing an injector body