JPS6141610B2 - - Google Patents

Info

Publication number
JPS6141610B2
JPS6141610B2 JP54042707A JP4270779A JPS6141610B2 JP S6141610 B2 JPS6141610 B2 JP S6141610B2 JP 54042707 A JP54042707 A JP 54042707A JP 4270779 A JP4270779 A JP 4270779A JP S6141610 B2 JPS6141610 B2 JP S6141610B2
Authority
JP
Japan
Prior art keywords
catalyst
carrier
catalysts
titania
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54042707A
Other languages
Japanese (ja)
Other versions
JPS55134641A (en
Inventor
Shigeo Yokoyama
Tetsuya Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4270779A priority Critical patent/JPS55134641A/en
Publication of JPS55134641A publication Critical patent/JPS55134641A/en
Publication of JPS6141610B2 publication Critical patent/JPS6141610B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一酸化炭素、水素、炭化水素ガスなど
の可燃性ガスの酸化触媒に関するものであつて本
発明の触媒はとくに内燃機関の排ガスのような苛
酷な条件下に使用して耐久力の高い触媒である。 更に詳しくは、可燃性ガスの酸化触媒としてコ
ージユライト又はムライトの表面にチタニアある
いはジルコニアを被覆した担体上に白金属元素又
は卑金属の酸化物を担持させた触媒を提供するも
のである。 内燃機関、例えば自動車の排ガス中には一酸化
炭素をはじめ窒素酸化物、炭化水素などいわゆる
公害性物質が多量に含有されているが、とりわけ
一酸化炭素の発生源は自動車排ガスであつて血液
中のヘモグロビンと結合し、回復不能な一酸化炭
素ヘモグロビンとなつてしまうので、その浄化対
策は早くから進められて来ている。 その主なるものはエンジン改良方法、排気マニ
ホールドリアクター、サーマルリアクターおよび
触媒コンバーター方式などであるが、未だ満足す
べき成果をあげているとは言い難い。 ことに触媒方式にあつては白金のような貴金
属、銅や鉄のような卑金属の酸化物を触媒成分と
し、そのものを粒状、ハニカム状等に成形したも
のや、それら触媒成分物質をアルミナ、チタニア
などの担体に直接浸漬担持させたものがあるが、
これら触媒は性能、寿命、耐熱性など現在までの
ところ多くの問題点を残している。 本発明者らは内燃機関の排ガス、焼結炉の排ガ
スなどのように一酸化炭素、水素、炭化水素ガス
などの可燃性ガスを触媒酸化して、有害成分の除
去、酸化反応熱の利用を行うにあたり、アルミ
ナ、コージユライト、ムライトの如き耐熱性多孔
質の表面にチタニア、あるいはジルコニアを被覆
した担体上に貴金属、卑金属の酸化物を担持させ
た触媒が高性能でかつ耐熱性に優れているという
ことに注目し、上記触媒について鋭意実験検討を
重ね、他に類例をみない本発明を提案するに至つ
た。 従来、担体として使用されるアルミナは約600
℃までは耐熱性がありγ型の結晶構造で安定であ
るがチタニアに比べて性能が若干劣る。又、チタ
ニアは500℃以上では結晶構造が触媒活性を有す
るアナターゼ型からルチル型に次第に変化してゆ
き、耐熱性に難点がある。さらにジルコニアは熱
的にも極めて安定であり、触媒にした時の性能も
優れているが、価格が高く、ジルコニアだけを成
型して担体に使用するには経済性が成り立たな
い。 又、触媒活性成分として使用される金属酸化物
の中には高温下で溶融したり担体と反応して触媒
活性を低下させるものもある。そこで本発明者ら
はアルミナ、コージユライト、ムイラトなどの耐
熱性多孔質の表面にチタニア、あるいはジルコニ
アを被覆したものを担体にすると、チタニア自体
の有する触媒活性の安定な温度が高温に移行する
とともに、チタニアあるいはジルコニアの使用量
を少なくしても同様の効果を発揮できることを見
い出した。 本発明は一酸化炭素、水素、炭化水素ガスなど
の可燃性ガスの酸化触媒として、コージユライト
又はムライトの表面にチタニア、あるいはジルコ
ニアを被覆するなどして添加した担体上に卑金属
の酸化物あるいは白金属元素を担体させたことを
特徴とする触媒である。 ここでコージユライト又はムライトの基材表面
にチタニア、ジルコニアを被覆するには基材をチ
タニアのアルコラートや硝酸ジルコニウムの水溶
液に浸漬後、焼成することで、それぞれの酸化物
が容易に得られる。 次に、このようにして得られた担体に卑金属の
酸化物あるいは白金属元素を担持させる方法は従
来から用いられている方法で良く、例えば卑金属
の酸化物を担体させる場合には卑金属の硝酸塩水
溶液に担体を浸漬後焼成すれば良く、又白金属元
素を担持させる場合には白金属元素の塩化物水溶
液に担体を浸漬後水素還元すれば調製できる。 以上のようにして得られた触媒は一酸化炭素、
水素、炭化水素ガスなど可燃性ガスを酸化する反
応に対し300〜800℃の温度領域で高い触媒活性を
示した。 以下、実施例により本発明を具体的に説明す
る。 実施例においては粒状触媒について記述してあ
るが、触媒の形状を特に限定するものではなく、
ハニカム状、板状などの触媒形状で用いて良いこ
とは言うまでもない。 実施例においてはガス温度400℃の試験結果し
か示していないが、400℃以外のガス温度、例え
ば室温から1500℃前後まで使用可能である。 例 1 粒径2〜4mmのγ−Al2O3から成るペレツトを
硝酸ジルコニウム水溶液に浸漬後、乾燥し、550
℃で3時間焼成してアルミナに対してジルコニア
が20重量%被覆された担体を得た。 このようにして得られた担体を硝酸第二鉄水溶
液、硝酸第二銅水溶液、硝酸クロム水溶液に各々
浸漬し、酸化鉄、酸化銅、酸化クロムがそれぞれ
10重量%になるように担持した触媒1、2、3を
又同じ担体を塩化白金酸水溶液、塩化パラジウム
水溶液に各々浸漬し、白金、パラジウムがそれぞ
れ1重量パーセントになるように担持した触媒
4、5をそれぞれ調製した。 これらの触媒の活性評価を表1に示す条件で実
施し、その結果を表2に示す。
The present invention relates to an oxidation catalyst for combustible gases such as carbon monoxide, hydrogen, and hydrocarbon gases, and the catalyst of the present invention has high durability especially when used under harsh conditions such as exhaust gas from internal combustion engines. It is a catalyst. More specifically, the present invention provides a combustible gas oxidation catalyst in which a platinum element or a base metal oxide is supported on a carrier made of cordierite or mullite coated with titania or zirconia. Exhaust gas from internal combustion engines, such as automobiles, contains large amounts of so-called polluting substances such as carbon monoxide, nitrogen oxides, and hydrocarbons, but the source of carbon monoxide in particular is automobile exhaust gas, which is found in blood. Because it combines with hemoglobin and becomes irrecoverable carboxyhemoglobin, measures to purify it have been underway for a long time. The main areas of improvement are engine improvement methods, exhaust manifold reactors, thermal reactors, and catalytic converter systems, but it is difficult to say that satisfactory results have been achieved so far. In particular, in the case of catalytic methods, oxides of noble metals such as platinum or base metals such as copper and iron are used as catalyst components, and these oxides are formed into granules or honeycomb shapes, and these catalytic component materials are used in alumina, titania, etc. There are products that are directly immersed and supported on carriers such as
These catalysts still have many problems such as performance, lifespan, and heat resistance. The present inventors catalytically oxidize combustible gases such as carbon monoxide, hydrogen, and hydrocarbon gases, such as exhaust gas from internal combustion engines and sintering furnaces, to remove harmful components and utilize the heat of oxidation reaction. In this process, a catalyst in which noble metal or base metal oxides are supported on a heat-resistant porous surface such as alumina, cordierite, or mullite coated with titania or zirconia has high performance and excellent heat resistance. Taking note of this fact, we conducted extensive experimental studies on the above-mentioned catalyst, and came to propose the present invention, which is unprecedented. Conventionally, alumina used as a carrier is about 600
It has heat resistance up to ℃ and is stable with a γ-type crystal structure, but its performance is slightly inferior to titania. Furthermore, at temperatures above 500°C, the crystal structure of titania gradually changes from an anatase type, which has catalytic activity, to a rutile type, and it has a drawback in heat resistance. Furthermore, zirconia is extremely stable thermally and has excellent performance when used as a catalyst, but it is expensive and it is not economical to mold only zirconia and use it as a carrier. Furthermore, some metal oxides used as catalytically active components melt at high temperatures or react with the carrier, reducing the catalytic activity. Therefore, the present inventors used a heat-resistant porous material such as alumina, cordierite, or muirato coated with titania or zirconia as a carrier. It was discovered that the same effect can be achieved even if the amount of titania or zirconia used is reduced. The present invention is an oxidation catalyst for combustible gases such as carbon monoxide, hydrogen, and hydrocarbon gases. This is a catalyst characterized by supporting a metal element. Here, in order to coat the surface of a cordierite or mullite base material with titania or zirconia, the respective oxides can be easily obtained by immersing the base material in an aqueous solution of titania alcoholate or zirconium nitrate and then firing. Next, a method for supporting a base metal oxide or a platinum metal element on the support thus obtained may be any conventional method. For example, when supporting a base metal oxide, a base metal nitrate aqueous solution may be used. The carrier may be immersed in a solution of chloride of a platinum metal element and then calcined, or in the case of supporting a platinum metal element, the carrier may be immersed in an aqueous solution of chloride of a platinum metal element and then reduced with hydrogen. The catalyst obtained in the above manner contains carbon monoxide,
It showed high catalytic activity in the temperature range of 300-800℃ for reactions that oxidize combustible gases such as hydrogen and hydrocarbon gases. Hereinafter, the present invention will be specifically explained with reference to Examples. Although granular catalysts are described in the examples, the shape of the catalyst is not particularly limited;
Needless to say, the catalyst may be used in a honeycomb or plate shape. Although the examples only show test results at a gas temperature of 400°C, gas temperatures other than 400°C can be used, for example from room temperature to around 1500°C. Example 1 Pellets made of γ-Al 2 O 3 with a particle size of 2 to 4 mm were immersed in an aqueous solution of zirconium nitrate, dried, and
After firing at ℃ for 3 hours, a carrier was obtained in which 20% by weight of zirconia was coated on alumina. The carrier thus obtained was immersed in a ferric nitrate aqueous solution, a cupric nitrate aqueous solution, and a chromium nitrate aqueous solution, respectively.
Catalysts 1, 2, and 3 were supported at 10% by weight, and catalyst 4 was prepared by immersing the same carrier in an aqueous solution of chloroplatinic acid and an aqueous solution of palladium chloride, respectively, to support platinum and palladium at 1% by weight. 5 were prepared respectively. The activity of these catalysts was evaluated under the conditions shown in Table 1, and the results are shown in Table 2.

【表】【table】

【表】 例 2 例1に示すγ−Al2O3のペレツトをテトトラ−
イソプロピルチタネートのアルコール溶液に浸漬
後、乾燥し、500℃で3時間焼成してアルミナに
対してチタンが20重量%担持された担体を得た。 このようにして得られた担体を例1と同様にし
て酸化鉄、酸化銅、酸化クロムがそれぞれ10重量
%になるように担持した触媒6、7、8を又白
金、パラジウムがそれぞれ1重量%になるように
担持した触媒9、10を調製して、表1に示す条件
で触媒の活性評価を行い、表3のような結果が得
られた。
[Table] Example 2 The γ-Al 2 O 3 pellets shown in Example 1 were
The carrier was immersed in an alcoholic solution of isopropyl titanate, dried, and fired at 500°C for 3 hours to obtain a carrier in which 20% by weight of titanium was supported on alumina. Catalysts 6, 7, and 8 were prepared in the same manner as in Example 1 so that iron oxide, copper oxide, and chromium oxide were supported at 10% by weight each, and platinum and palladium were each supported at 1% by weight. Catalysts 9 and 10 were prepared and the activity of the catalysts was evaluated under the conditions shown in Table 1, and the results shown in Table 3 were obtained.

【表】 例 3 上記触媒の一酸化炭素以外の可燃性ガスを酸化
する反応についての効果をみるために、例1の白
金触媒4を用いて表4の条件で触媒活性を評価し
た結果を表5に示す。
[Table] Example 3 In order to see the effect of the above catalyst on the reaction of oxidizing combustible gases other than carbon monoxide, the results of evaluating the catalytic activity under the conditions shown in Table 4 using platinum catalyst 4 of Example 1 are shown below. 5.

【表】【table】

【表】 例 4 酸化触媒の耐熱性をテストし、従来の触媒調製
法のものと比較するためにアルミナ担体、チタニ
ア担体、又アルミナのジルコニア被覆担体、アル
ミナのチタニア被覆担体に白金を1重量%担持し
た触媒、11、12、4、9を耐熱テストとして、
700℃で120時間空気中で焼成して表1に示す条件
で触媒の活性評価を行い、表6のような結果が得
られた。
[Table] Example 4 To test the heat resistance of an oxidation catalyst and compare it with that of a conventional catalyst preparation method, 1% by weight of platinum was added to an alumina support, a titania support, a zirconia-coated alumina support, and a titania-coated alumina support. Supported catalysts 11, 12, 4, and 9 were tested for heat resistance.
The activity of the catalyst was evaluated under the conditions shown in Table 1 by firing in air at 700°C for 120 hours, and the results shown in Table 6 were obtained.

【表】 実施例 1 担体としてγ−Al2O3のかわりに粒子径2〜4
mmφのコージユライトを用いて例1と同様の方法
で酸化鉄、酸化銅、酸化クロムがそれぞれ10重量
%になるように担持した触媒13、14、15を、又、
白金、パラシウムがそれぞれ1重量%になるよう
に担持した触媒16、17を調製した。 これらの触媒の活性評価を表1に示す条件で実
施した結果を表7に示す。
[Table] Example 1 Particle size 2 to 4 instead of γ-Al 2 O 3 as carrier
Catalysts 13, 14, and 15 were prepared by supporting iron oxide, copper oxide, and chromium oxide in an amount of 10% by weight each in the same manner as in Example 1 using mmφ cordierite.
Catalysts 16 and 17 were prepared in which platinum and palladium were supported at 1% by weight, respectively. The activity of these catalysts was evaluated under the conditions shown in Table 1, and the results are shown in Table 7.

【表】 触媒16について700℃で120時間空気中で焼成し
て表1に示す条件で触媒の活性評価を行い、CO
酸化率94%という耐熱性テスト前と同じ結果が得
られた。 実施例 2 担体としてγ−Al2O3のかわりに粒子径2〜4
mmφのムライトを用いて例1と同様の方法で酸化
鉄、酸化銅、酸化クロムがそれぞれ10重量%にな
るように担持した触媒18、19、20を、又、白金、
パラジウムがそれぞれ1重量%になるように担持
した触媒21、22を調製した。 これらの触媒の活性評価を表1に示す条件で実
施し、その結果を表8に示す。
[Table] Catalyst 16 was calcined in air at 700°C for 120 hours and the activity of the catalyst was evaluated under the conditions shown in Table 1.
The same result as before the heat resistance test was obtained, with an oxidation rate of 94%. Example 2 Particle size 2 to 4 instead of γ-Al 2 O 3 as carrier
Catalysts 18, 19, and 20 were prepared by using mmφ mullite to support iron oxide, copper oxide, and chromium oxide in an amount of 10% by weight, respectively, in the same manner as in Example 1.
Catalysts 21 and 22 each containing 1% by weight of palladium were prepared. The activity of these catalysts was evaluated under the conditions shown in Table 1, and the results are shown in Table 8.

【表】 触媒21について100℃で120時間空気中で焼成し
て表1に示す条件で触媒の活性評価を行い、CO
酸化率93%という耐熱性テスト前と同じ結果が得
られた。
[Table] Catalyst 21 was calcined in air at 100°C for 120 hours and the activity of the catalyst was evaluated under the conditions shown in Table 1.
The same result as before the heat resistance test was obtained, with an oxidation rate of 93%.

Claims (1)

【特許請求の範囲】[Claims] 1 コージユライト、又はムライトに、チタニア
あるいはジルコニアを添加した担体上に白金属元
素又は銅、クロム、鉄、ニツケル、コバルトなど
の卑金属の酸化物を担持させたことを特徴とする
可燃性ガスの酸化触媒。
1. Oxidation of flammable gas characterized by supporting cordierite or mullite with oxides of platinum metal elements or base metals such as copper, chromium, iron, nickel, and cobalt on a carrier to which titania or zirconia is added. catalyst.
JP4270779A 1979-04-09 1979-04-09 Oxidation catalyst Granted JPS55134641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4270779A JPS55134641A (en) 1979-04-09 1979-04-09 Oxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4270779A JPS55134641A (en) 1979-04-09 1979-04-09 Oxidation catalyst

Publications (2)

Publication Number Publication Date
JPS55134641A JPS55134641A (en) 1980-10-20
JPS6141610B2 true JPS6141610B2 (en) 1986-09-16

Family

ID=12643533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4270779A Granted JPS55134641A (en) 1979-04-09 1979-04-09 Oxidation catalyst

Country Status (1)

Country Link
JP (1) JPS55134641A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616846B2 (en) * 1988-09-29 1994-03-09 日本化成株式会社 Wet ceramic oxidation catalyst for rotten odor gas oxidation deodorization and deodorization method using the same
KR20010037198A (en) * 1999-10-14 2001-05-07 이계안 Diesel oxidation catalyst
JP4498881B2 (en) * 2004-10-15 2010-07-07 大倉工業株式会社 Particulate combustion catalyst

Also Published As

Publication number Publication date
JPS55134641A (en) 1980-10-20

Similar Documents

Publication Publication Date Title
JPH03161052A (en) Exhaust gas cleaning catalyst and its preparation
JPH03207445A (en) Multi-functional catalyst for conversion of contaminant containing ce and u as well as metal exhausted from internal combustion engine, and preparation of said catalyst
JP2002361083A (en) Exhaust gas cleaning catalyst for internal combustion engine, method of producing the same and claening apparatus
JPS6141610B2 (en)
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JPS6054736A (en) Oxidation catalyst
JPH0472577B2 (en)
JPH04166228A (en) Oxidation catalyst
JP2563393B2 (en) Combustible gas oxidation catalyst
JPH074527B2 (en) Combustible gas oxidation catalyst
JPH07251073A (en) Exhaust gas purifying catalyst
JPH115035A (en) Waste gas purification material and method for purifying waste gas
JPH0554381B2 (en)
JPH04135641A (en) Oxidation catalyst
JPH02191548A (en) Catalyst for purification of exhaust gas
JPH04349935A (en) Oxidation catalyst
JPH04166227A (en) Oxidation catalyst
JPH05277367A (en) Oxidation catalyst
JPS63267805A (en) Oxidizing catalyst for high temperature service
JP2024099150A (en) Exhaust gas purification catalyst
JPH02237643A (en) Production of catalyst for cleaning exhaust gas
AU2014224354A1 (en) Diesel exhaust gas oxidation catalyst, and method for purifying diesel exhaust gas by using same
JPH05269381A (en) Oxidation catalyst
JPH0592137A (en) Oxidizing catalyst
JPH04330940A (en) Oxidation catalyst