JPS6140957B2 - - Google Patents

Info

Publication number
JPS6140957B2
JPS6140957B2 JP55049547A JP4954780A JPS6140957B2 JP S6140957 B2 JPS6140957 B2 JP S6140957B2 JP 55049547 A JP55049547 A JP 55049547A JP 4954780 A JP4954780 A JP 4954780A JP S6140957 B2 JPS6140957 B2 JP S6140957B2
Authority
JP
Japan
Prior art keywords
coolant
radioactive
magnetic field
flow path
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55049547A
Other languages
Japanese (ja)
Other versions
JPS56147099A (en
Inventor
Kimichika Fukushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4954780A priority Critical patent/JPS56147099A/en
Publication of JPS56147099A publication Critical patent/JPS56147099A/en
Publication of JPS6140957B2 publication Critical patent/JPS6140957B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】 本発明は原子炉冷却材中の不純物を捕獲し、特
に放射性物質である放射性核種を除去することの
できる放射性物質除去装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radioactive substance removal device capable of capturing impurities in a nuclear reactor coolant and, in particular, removing radionuclides, which are radioactive substances.

液体金属を冷却材とする高速増殖炉において、
1次冷却系機器・配管部に沈着した核分裂成生物
(以下FPと称す)あるいは放射性腐食生成物(以
下CPと称す)等の放射性生成物などの放射性物
質による放射能は、原子炉停止時に行なう点検・
保守・修理等の作業で障害となる。
In a fast breeder reactor that uses liquid metal as a coolant,
Radioactivity due to radioactive substances such as fission products (hereinafter referred to as FP) or radioactive products such as radioactive corrosion products (hereinafter referred to as CP) deposited on primary cooling system equipment and piping should be removed when the reactor is shut down. inspection·
It becomes an obstacle during maintenance, repair, etc. work.

この核分裂生成物は燃料破損によつて冷却材中
へ放出される。また放射性腐食生成物は主として
炉心構造材の放射化によつて生成され、冷却材に
よる構造材の腐食や拡散によつて冷却材中へ放出
される。冷却材中へ移行した放射性生成物は、冷
却材により輸送され1次系機器及び配管壁面に沈
着する。かような放射性核種の沈着に起因する放
射能は、ポンプ、熱交換器、バルブ、流量計等の
機器や配管の保守・点検・修理等の作業に障害を
与える。特に問題となる放射性核種は生成量が多
く半減期の長いもので、核分裂生成物としては
95Zr−95Nb、140Ba−140La等があり放射性腐食生
成物としては60Co、58Co、54Mn等がある。
The fission products are released into the coolant upon fuel failure. Furthermore, radioactive corrosion products are mainly generated by activation of core structural materials, and are released into the coolant due to corrosion and diffusion of the structural materials by the coolant. The radioactive products that have migrated into the coolant are transported by the coolant and deposited on the primary system equipment and piping walls. Radioactivity caused by the deposition of such radionuclides can impede maintenance, inspection, and repair work on equipment such as pumps, heat exchangers, valves, flow meters, and piping. The radionuclides that pose a particular problem are produced in large amounts and have long half-lives, and are considered fission products.
95 Zr- 95 Nb, 140 Ba- 140 La, etc., and radioactive corrosion products include 60 Co, 58 Co, 54 Mn, etc.

従来の放射性腐食生成物の除去装置としては、
放射性核種を沈着しやすいニツケル製のトラツプ
材を冷却材の流路、たとえば炉心出口に設置した
ものがある。
Conventional equipment for removing radioactive corrosion products includes:
Some traps are made of nickel, which tends to deposit radionuclides, and are installed in the coolant flow path, such as at the exit of the reactor core.

しかしながら、このような装置では、流路を通
る冷却材の流れが流路中心部では乱流状態である
がトラツプ材との境界付近では層流をなすいわゆ
る境界層が生じており、放射性物質を捕獲体(ト
ラツプ材)で捕護するには、この境界層を拡散す
る必要がある。ところがこの境界層の拡散速度は
非常に遅いため、その除去効率はあまり良くな
い。
However, in such devices, the flow of coolant through the channel is turbulent at the center of the channel, but a so-called boundary layer occurs near the boundary with the trap material, which is a laminar flow, which prevents radioactive materials from being absorbed. This boundary layer needs to be diffused in order to trap it with a trap material. However, since the diffusion rate of this boundary layer is very slow, its removal efficiency is not very good.

この発明は、このような事情に鑑みてなされた
もので、境界層における放射性生成物の移動速度
を速めることによつて、冷却材中の放射性生成物
の除去効率の向上を図る放射性物質除去装置を提
供することを目的とする。
This invention was made in view of these circumstances, and provides a radioactive substance removal device that aims to improve the removal efficiency of radioactive products in the coolant by increasing the movement speed of the radioactive products in the boundary layer. The purpose is to provide

以下、この発明の実施例について詳細に説明す
る。第1図は図示しない原子炉の炉心を通過した
高温冷却材たとえば液体ナトリウムLが流通する
冷却材流路の配管1の一部を示す図である。
Examples of the present invention will be described in detail below. FIG. 1 is a diagram showing a part of a pipe 1 of a coolant flow path through which a high-temperature coolant, for example, liquid sodium L, passes through the core of a nuclear reactor (not shown).

この配管1内に、本発明による放射性物質除去
装置が設置されている。この放射性物質除去装置
は同心円上に配置した4つの捕獲体としての筒体
2,3,4,5と、これら筒体2〜5の各間に設
けられ冷却体Lの流路6を構成するためのスペー
サ7と、筒体2の筒内に設けた複数個の内側電磁
石8と筒体5の外側に設けた複数個の外側電磁石
9と、これら電磁石8,9が冷却体Lに接しない
ようにした蓋体10とで主に構成されている。筒
体2〜5は、たとえばニツケル(Ni)製である
が、Niに限らずニツケル合金でも、またステン
レスまたは鉄などの鉄系金属の表面にニツケルメ
ツキを施したものであつても良い。すなわち表面
はトラツプ材として優れた作用を有し、かつ全体
的には磁化し易い材料である。電磁石8,9は、
一般的なもので、鉄心11にコイル12が巻回さ
れ、直流電流を流して筒体2,5間に冷却材流路
を挾んで互いに逆の極性を有するように配置され
構成されている。
A radioactive substance removal device according to the present invention is installed within this piping 1. This radioactive substance removal device has four cylinder bodies 2, 3, 4, and 5 as trapping bodies arranged concentrically, and a flow path 6 of a cooling body L provided between each of these cylinders 2 to 5. a plurality of inner electromagnets 8 provided in the cylinder of the cylinder 2, a plurality of outer electromagnets 9 provided outside the cylinder 5, and these electromagnets 8, 9 do not contact the cooling body L. It is mainly composed of a lid body 10 having the above-mentioned structure. The cylindrical bodies 2 to 5 are made of, for example, nickel (Ni), but are not limited to Ni, and may be made of a nickel alloy, or may be made of a ferrous metal such as stainless steel or iron with nickel plating applied to the surface. That is, the surface has an excellent effect as a trapping material, and the material as a whole is easily magnetized. Electromagnets 8 and 9 are
This is a general type, in which a coil 12 is wound around an iron core 11, and a direct current is passed through the cylinder bodies 2 and 5, with a coolant flow path sandwiched therebetween, and the coils 12 are arranged so as to have opposite polarities.

筒体2〜5の冷却材Lと接する表面は、第2図
〜第4図に示すように、断面で見ると先端が尖鋭
な突起状の突起部を有している。この突起部は第
5図で示す曲線13のように印加した磁界によつ
て磁力線を生じ勾配磁場が生じる。このような勾
配磁場があると、この間を流通する、たとえば
54Mn、60Co、58Co等は遷移金属で強磁性体であ
95Zr−95Nb、140Ba−140Caは常磁性体であるた
めに、筒体すなわち捕獲体の表面に吸収されるこ
とになり、冷却材内に混在する放射性核種となつ
ている放射性物質を除去することができる。
As shown in FIGS. 2 to 4, the surfaces of the cylinders 2 to 5 that are in contact with the coolant L have protrusions with sharp tips when viewed in cross section. This protrusion generates lines of magnetic force due to the applied magnetic field as shown by curve 13 in FIG. 5, producing a gradient magnetic field. If there is such a gradient magnetic field, the magnetic field that flows between it, for example,
54 Mn, 60 Co, 58 Co, etc. are transition metals and are ferromagnetic, and 95 Zr- 95 Nb, 140 Ba- 140 Ca are paramagnetic, so they are absorbed on the surface of the cylinder, that is, the capture body. This makes it possible to remove radionuclides mixed in the coolant.

以上詳述したように、従来装置では放射性核種
が境界層を拡散して捕獲材へ達していたのに対
し、本発明の装置によれば放射性核種は境界層内
を磁場により高速で輸送されるためにその除去効
率が格段と高くなる。
As detailed above, in the conventional device, radionuclides diffuse through the boundary layer and reach the capture material, whereas in the device of the present invention, radionuclides are transported at high speed within the boundary layer by the magnetic field. Therefore, the removal efficiency becomes much higher.

尚、本発明による放射性物質除去装置を高速増
殖炉に用いて、放射性核種を含んだ冷却材を浄化
する際には、冷却材の炉心出口に本発明の装置を
設け浄化した冷却材を再び冷却系に戻すように構
成すれば良い。特に捕獲体にニツケル系の金属で
表面を構成することにより、効果的に放射性物質
を除去することができその工業的価値は大なるも
のである。
When using the radioactive material removal device according to the present invention in a fast breeder reactor to purify coolant containing radionuclides, the device of the present invention is installed at the core outlet of the coolant and the purified coolant is cooled again. It is only necessary to configure it so that it can be returned to the system. In particular, by configuring the surface of the capture body with a nickel-based metal, radioactive substances can be effectively removed, and this has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す縦断面図、
第2図乃至第5図は本発明の実施例の一部を示す
縦断面図であり、特に第5図は外部より磁場を印
加したときの磁力線の様子を示す図である。 1……配管、2〜5……筒体(捕獲体)、8,
9……電磁石。
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention;
2 to 5 are longitudinal sectional views showing a part of an embodiment of the present invention, and in particular, FIG. 5 is a diagram showing the appearance of magnetic lines of force when a magnetic field is applied from the outside. 1...Piping, 2-5...Cylinder (capturing body), 8,
9...Electromagnet.

Claims (1)

【特許請求の範囲】[Claims] 1 放射性物質を含む冷却材の流路内の流れに沿
つて少なくとも表面がニツケル系のトラツプ材か
らなりかつその表面に複数の突起部を有する磁化
し易い材料を配置し、かつ前記冷却材の流通する
流路を挾んで互いに逆極性となるように前記磁化
し易い材料に磁場を印加して前記トラツプ材の表
面に勾配磁場を形成してなることを特徴とする放
射性物質除去装置。
1. A highly magnetizable material having at least a surface made of a nickel-based trapping material and having a plurality of protrusions on the surface is disposed along the flow of the coolant containing radioactive material in the flow path, and the flow of the coolant is A radioactive substance removal apparatus characterized in that a magnetic field is applied to the easily magnetized material so as to have opposite polarities across the flow path to form a gradient magnetic field on the surface of the trap material.
JP4954780A 1980-04-17 1980-04-17 Radioactive substance removing device Granted JPS56147099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4954780A JPS56147099A (en) 1980-04-17 1980-04-17 Radioactive substance removing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4954780A JPS56147099A (en) 1980-04-17 1980-04-17 Radioactive substance removing device

Publications (2)

Publication Number Publication Date
JPS56147099A JPS56147099A (en) 1981-11-14
JPS6140957B2 true JPS6140957B2 (en) 1986-09-11

Family

ID=12834213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4954780A Granted JPS56147099A (en) 1980-04-17 1980-04-17 Radioactive substance removing device

Country Status (1)

Country Link
JP (1) JPS56147099A (en)

Also Published As

Publication number Publication date
JPS56147099A (en) 1981-11-14

Similar Documents

Publication Publication Date Title
US4306970A (en) Magnetic particle separating device
Comley The significance of corrosion products in water reactor coolant circuits
US4842812A (en) Reactor coolant crud control by particulate scavenging and filtration
GB1578396A (en) Magnetic separator
US4251372A (en) Magnetic filter with permanent magnets
JPH0314486B2 (en)
GB1559554A (en) Radionuclide deposition control
JPS6140957B2 (en)
JP2008501114A (en) Nuclear power plant
Lister The mechanisms of corrosion product transport and their investigation in high temperature water loops
Emory Nuclear power reactor applications of high gradient magnetic filtration
JP2962669B2 (en) Corrosion product removal equipment for sodium cooled reactor
JPS6140958B2 (en)
McGuire Radionuclide trap
Gusev et al. Cleaning Aqueous Media from Iron Oxides by High-Gradient Magnetic Filtration
JPS58102194A (en) Magnetic filter for reactor coolant
Kim et al. DEVELOPMENT OF MOVING ALTERNATING MAGNETIC FILTER FOR CRUD REMOVAL
JPS5936252Y2 (en) electromagnetic filter
JPS58219496A (en) Radioactive corrosion product capturing device
JPS5910263B2 (en) Magnetic powder collection device
JPS56150145A (en) Removing method for radioactive substance contained in coolant of nuclear reactor
Kim et al. Application of magnetic filter to reduce the crud in PWR primary coolant system
JPS622197A (en) Radioactive corrosion product capture apparatus
Dolle et al. Extraction of insoluble corrosion products from the water circuits of nuclear power stations by electromagnetic filtration
JPS58174898A (en) Reactor primary coolant clean-up device