JPH0438320Y2 - - Google Patents

Info

Publication number
JPH0438320Y2
JPH0438320Y2 JP1983061212U JP6121283U JPH0438320Y2 JP H0438320 Y2 JPH0438320 Y2 JP H0438320Y2 JP 1983061212 U JP1983061212 U JP 1983061212U JP 6121283 U JP6121283 U JP 6121283U JP H0438320 Y2 JPH0438320 Y2 JP H0438320Y2
Authority
JP
Japan
Prior art keywords
cladding
magnetic field
fluid
demagnetizing
crud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983061212U
Other languages
Japanese (ja)
Other versions
JPS59166199U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983061212U priority Critical patent/JPS59166199U/en
Publication of JPS59166199U publication Critical patent/JPS59166199U/en
Application granted granted Critical
Publication of JPH0438320Y2 publication Critical patent/JPH0438320Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【考案の詳細な説明】 本考案は流体、例えば原子炉冷却材中のクラツ
ドに高周波交番磁場を作用させて残留磁気を除去
するようにしたクラツドの消磁装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crud demagnetization device that removes residual magnetism by applying a high-frequency alternating magnetic field to the crud in a fluid, such as a nuclear reactor coolant.

一般の原子炉では、炉心で発生した熱を取り出
すために、原子炉の種類に応じて、軽水、ナトリ
ウム、炭酸ガス、ヘリウムガスなどの流体、原子
炉冷却材が使用されている。ところで、この原子
炉冷却材の循環路の一部を構成する原子炉圧力容
器、配管などには高品質鋼などの構成材料が多く
使用されているため、原子炉の運転中の放射性熱
エネルギ等による侵食作用などの影響で、放射性
腐食生成物としてクラツド(Fe2O3,Fe3O4など
の酸化鉄微粒子)が発生して原子炉冷却材に混入
し,循環路を流れる現象が発生するといわれてい
る。これらのクラツドは、極めて少量であり、か
つ、原子炉の運転歴、構成材料の相違により左右
されるものであるが、粒子の大きさが1〜10ミク
ロンメートル(μm)程度で、次第に成長する傾
向を示すことが観測されている。また、クラツド
は微粒子であるために、通常の原子炉の運転には
影響を与ぼさないものである。
In general nuclear reactors, fluids such as light water, sodium, carbon dioxide, helium gas, and reactor coolants are used depending on the type of reactor to extract the heat generated in the reactor core. By the way, since many components such as high-quality steel are used for the reactor pressure vessel, piping, etc. that make up part of the reactor coolant circulation path, radioactive thermal energy, etc., is used during reactor operation. Due to the effects of corrosion caused by nuclear reactors, crud (fine iron oxide particles such as Fe 2 O 3 and Fe 3 O 4 ) is generated as a radioactive corrosion product, mixes into the reactor coolant, and flows through the circulation channels. It is said. These cruds are extremely small in quantity and depend on the operating history of the reactor and differences in the constituent materials, but the particle size is approximately 1 to 10 micrometers (μm) and gradually grows. It has been observed that there is a trend. Furthermore, since crud is a fine particle, it does not affect normal nuclear reactor operation.

しかしながら、クラツドが除去装置の定磁場を
受けるなどの原因で残留磁気を帯びるようになる
と、相互に磁着し合う現象により粒子が大きくな
り、循環路の一部に沈澱して堆積することなどが
考えられる。又系内の弁等の塵(ステライト材
部)炉心構成機器(制御棒)等に付着する事によ
る障害が大きな事故に結び付く事になる。堆積ク
ラツドを除去するために、例えば管体の一部交換
などが必要となり得るなどの問題点が残されてい
る。また、原子炉冷却材以外の流体の循環路にあ
つても、流体循環路の構成部品(配管等)が鋼や
ステンレス鋼等の鉄系材料で構成される場合が多
いため、これらの鉄系金属と流体との摩擦によつ
て構成部品の磨耗が起こり、かつ、流体が水等の
腐食性流体で、流体中に溶解酸素が存在するよう
な条件が加わると、錆の発生等によつてクラツド
が発生し易くなる。この場合は、クラツドが放射
性を帯びることがないものの、クラツドが直流磁
化されていると、相互に磁着し合つて粒が大きく
なるために、流体の停滞箇所でクラツドが沈澱し
て堆積する現象や、流路を狭める現象や,弁等の
配管機器の作動に悪影響を及ぼしたりする現象が
起こり易くなる。
However, when the cladding becomes tinged with residual magnetism due to reasons such as being exposed to the constant magnetic field of the removal device, the particles become larger due to the phenomenon of mutual magnetization and may settle and accumulate in a part of the circulation path. Conceivable. In addition, problems caused by dust adhering to valves, etc. (stellite material), core components (control rods), etc. in the system will lead to major accidents. Problems remain, such as that removal of deposited crud may require, for example, partial replacement of the tube. In addition, even in the case of circulation paths for fluids other than reactor coolant, the components of the fluid circulation path (pipes, etc.) are often made of ferrous materials such as steel and stainless steel. If component parts wear out due to friction between metal and fluid, and if the fluid is a corrosive fluid such as water and there is dissolved oxygen in the fluid, rust may occur. Crads are more likely to occur. In this case, although the crud does not become radioactive, if the crud is magnetized with direct current, they become mutually magnetized and the grains become larger, causing the crud to precipitate and accumulate at points where the fluid stagnates. In addition, phenomena that narrow the flow path or adversely affect the operation of piping equipment such as valves are likely to occur.

本考案は前記背景を考慮してなされたもので,
その目的とするところは,流体中に含まれる微粒
子であるクラツドの回転を抑制しながら、高周波
磁界によつて磁化を行ない,かつ、流体の流れと
ともに高周波磁場から遠ざけ、クラツドを効率良
く脱磁して、流体循環路における堆積及びこれに
基づく不具合現象の発生を防止し、配管路の健全
性を向上させることにある。
The present invention was made in consideration of the above background.
The purpose of this is to suppress the rotation of the cladding, which is fine particles contained in the fluid, while magnetizing it using a high-frequency magnetic field, and to efficiently demagnetize the cladding by moving it away from the high-frequency magnetic field as the fluid flows. The object of the present invention is to prevent accumulation in the fluid circulation path and the occurrence of malfunctions based thereon, and to improve the integrity of the piping path.

かかる目的を達成するため、本考案は、流体中
に懸濁している微粒子磁性粉粒体が、低周波によ
る磁場(50Hz程度)では消磁できない(原因とし
て粒子そのものが回転運動をしてしまうため、外
部エネルギが回転に消費されてしまう)こと、ま
た、高磁場(3000〜5000ガウスなど)においても
消磁できないこと等を考慮して、粒子の回転が追
いつかない周波数(2500〜3000Hzなど)によつ
て、比較的弱い磁場強度で消磁効果をあげようと
するものである。
In order to achieve this objective, the present invention aims to demagnetize fine particles of magnetic powder suspended in a fluid by using a low-frequency magnetic field (approximately 50 Hz) (because the particles themselves undergo rotational movement). Considering that external energy is consumed in rotation) and that demagnetization is not possible even in high magnetic fields (3000 to 5000 Gauss, etc.), the rotation of particles cannot keep up with the frequency (2500 to 3000 Hz, etc.). , which attempts to achieve a demagnetizing effect with a relatively weak magnetic field strength.

以下、本考案を図面に示す実施例に基づいて説
明する。
Hereinafter, the present invention will be explained based on embodiments shown in the drawings.

第1図は、沸騰水型原子力発電施設における一
実施例を示すものである。この実施例では原子炉
圧力容器1内で発生した主蒸気が、主蒸気管2に
よつて発電用タービン8に供給されてこれを駆動
した後、その排蒸気が復水器4によつて復水させ
られて給水ポンプ5により給水管6から再び原子
炉圧力容器1へ戻る循環路を経由する如くなつて
いる。そして、これら原子炉冷却材の循環路の途
中に、クラツドの消磁装置7が設置される。
FIG. 1 shows an embodiment of a boiling water nuclear power generation facility. In this embodiment, the main steam generated in the reactor pressure vessel 1 is supplied to the power generation turbine 8 through the main steam pipe 2 to drive it, and then the exhaust steam is condensed by the condenser 4. Water is supplied to the reactor pressure vessel 1 via a circulation path from a water supply pipe 6 by a water supply pump 5 and returned to the reactor pressure vessel 1. A clad demagnetizer 7 is installed in the middle of the reactor coolant circulation path.

この消磁装置7は、前記循環路の途中の例えば
復水器4と給水ポンプ5との間を接続する如く直
列に挿入されるとともに非磁性体よりなる消磁管
路8と、該消磁管路8内を流される原子炉冷却材
に交番磁場を作用させるための電磁コイル9と、
該電磁コイル9に高周波電圧を印加し、例えば
3000ヘルツ(H2z)、200ガウス程度の交番磁場
を発生させる高周波発電機などの高周波電源10
とを備えた構成とされている。
The degaussing device 7 is inserted in series between the condenser 4 and the water supply pump 5 in the middle of the circulation path, for example, and connects a demagnetizing pipe 8 made of a non-magnetic material, and a demagnetizing pipe 8 made of a non-magnetic material. an electromagnetic coil 9 for applying an alternating magnetic field to the reactor coolant flowing therein;
A high frequency voltage is applied to the electromagnetic coil 9, for example.
High frequency power source 10 such as a high frequency generator that generates an alternating magnetic field of about 3000 hertz (H 2 z) and 200 Gauss
It is said to be configured with the following.

また、消磁装置7は、原子炉冷却材中のクラツ
ドを移動磁場などの作用で分離除去するクラツド
分離装置11が設けられる場合、第1図に示すよ
うにその下流に直列に配設される。
Further, when a crud separation device 11 is provided, which separates and removes crud in the reactor coolant by the action of a moving magnetic field, the degaussing device 7 is arranged in series downstream of the crud separation device 11, as shown in FIG.

しかして、原子炉冷却材を消磁装置7に送り込
み消磁管路8を通過させると、原子炉冷却材中の
クラツドが、第2図に曲線で示す磁場によつて磁
化される。この磁化力は、第1図および第2図に
示すように、クラツドの位置によつて変化し、ク
ラツドが受ける磁場は零から最大、最大から零に
連続的に変化する。
When the reactor coolant is fed into the demagnetizer 7 and passed through the demagnetizer conduit 8, the crud in the reactor coolant is magnetized by the magnetic field shown by the curve in FIG. As shown in FIGS. 1 and 2, this magnetizing force changes depending on the position of the cladding, and the magnetic field that the cladding receives changes continuously from zero to the maximum and from the maximum to zero.

したがつてクラツド内に発生する磁束密度Bは
磁場の強さHにより緩やかにかつ第3図に示すよ
うにヒステリシス曲線に基づいて変化する。この
場合、消磁装置7に供給される前のクラツドが残
留磁気(残留磁束)を帯びていたとすると,反対
方向の磁化力を受けたときに消滅し、また、新し
く発生した残留磁束が反転する磁化力を受けて消
滅する現場を繰り返す。このように交番磁場を与
えてクラツド内に繰り返し磁束を発生させ、次に
磁場を弱めて零とすることにより、第3図c,
d,e,fで示すヒステリシス曲線は収束して零
に至り、残留磁気が除去されるものである。
Therefore, the magnetic flux density B generated in the cladding varies gradually with the magnetic field strength H and according to a hysteresis curve as shown in FIG. In this case, if the cladding has residual magnetism (residual magnetic flux) before being supplied to the demagnetizer 7, it will disappear when it receives a magnetizing force in the opposite direction, and the newly generated residual magnetic flux will reverse the magnetization. The scene of being destroyed by force is repeated. In this way, by applying an alternating magnetic field to repeatedly generate magnetic flux within the cladding, and then weakening the magnetic field to zero, the magnetic flux shown in Fig. 3c,
The hysteresis curves indicated by d, e, and f converge to zero, and residual magnetism is removed.

なお、第1図のc−d位置のように強磁場が作
用している部分では、クラツドが磁化されて磁場
中にとどまろうとする力が働くことが考えられる
が、クラツドが原子炉冷却材から受ける流体抵抗
の方がはるかに大きく、クラツドの粒径が例えば
10μm以下の如く小さい場合は、前記とどまろう
とする力を無視できるものである。
Note that in the area where a strong magnetic field is acting, such as the position c-d in Figure 1, it is thought that the cladding is magnetized and exerts a force to stay in the magnetic field, but the cladding is not exposed to the reactor coolant. The fluid resistance experienced is much larger, and the grain size of the cladding is e.g.
When the diameter is small, such as 10 μm or less, the force to stay can be ignored.

また、本考案者の実施例では、3000ヘルツ、
200ガウスの交番磁場を軽水中のクラツド(粒径
0.5〜7μm)に3〜5秒間作用させた場合、ほぼ
100%の消磁効果が認められた。
In addition, in the inventor's example, 3000 hertz,
An alternating magnetic field of 200 Gauss is applied to the cladding (particle size
0.5~7μm) for 3~5 seconds, approximately
100% demagnetization effect was observed.

このようにクラツドの残留磁気が除去された状
態となると、クラツドが相互に磁着し合つて粒子
が大きくなる現象を防止するとか、前述の懸念を
解消し原子力発電施設の健全性を向上させる効果
ができ、また、クラツドを原子炉冷却材で搬送し
ながら交番磁場から遠ざけることにより、磁場の
変化を緩やかにして消磁作用を確実にできるなど
の効果を奏するものである。
When the residual magnetism of the cladding is removed in this way, it is possible to prevent the phenomenon in which the claddings become magnetically attached to each other and increase the size of particles, and it has the effect of resolving the above-mentioned concerns and improving the health of nuclear power generation facilities. Furthermore, by moving the cladding away from the alternating magnetic field while being transported by the reactor coolant, changes in the magnetic field can be made gentler and the demagnetization effect can be ensured.

以上説明したように、本考案に係るクラツドの
消磁装置によれば、流体に含まれるクラツドが、
流体とともに高周波磁界中に送り込まれて、磁化
されるとともに、この磁化時のクラツドの回転
が、流体の粘性に基づいて抑制されるために、高
周波磁界によつて高速回転させられることがな
く、クラツドの交流磁化が促進され、かつ、消磁
管路が非磁性体であるために、クラツドの交流磁
化が損なわれることが少なく、その後、流体の流
れとともに、クラツドが高周波磁場から遠ざけら
れて減磁されることによつて、クラツドの脱磁が
効率良く行なわれるものとなり、流体循環路にお
けるクラツド相互の磁着による堆積、及びこれに
基づく不具合現象の発生を防止し、配管路の健全
性を向上させることができる。
As explained above, according to the cladding demagnetization device according to the present invention, the cladding contained in the fluid is
The clad is sent into a high-frequency magnetic field together with the fluid and is magnetized, and the rotation of the clad during magnetization is suppressed based on the viscosity of the fluid, so the clad is not rotated at high speed by the high-frequency magnetic field. The AC magnetization of the cladding is promoted, and since the demagnetizing pipe is made of a non-magnetic material, the AC magnetization of the cladding is less likely to be impaired.Then, as the fluid flows, the cladding is moved away from the high frequency magnetic field and demagnetized. By doing so, the demagnetization of the cladding can be carried out efficiently, preventing the cladding from being deposited due to mutual magnetism in the fluid circulation path and the occurrence of problems caused by this, and improving the integrity of the piping path. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す概略構成図、
第2図は第1図a〜g位置の磁場の変化の説明
図、第3図は磁場と磁束との関係説明図である。 1……原子炉圧力容器、2……主蒸気管、3…
…発電用タービン、4……復水器、5……給水ポ
ンプ、6……給水管、7……消磁装置、8……消
磁管路、9……電磁コイル、10……高周波電
源。
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention;
FIG. 2 is an explanatory diagram of changes in the magnetic field at positions a to g in FIG. 1, and FIG. 3 is an explanatory diagram of the relationship between the magnetic field and magnetic flux. 1...Reactor pressure vessel, 2...Main steam pipe, 3...
... Power generation turbine, 4 ... Condenser, 5 ... Water supply pump, 6 ... Water supply pipe, 7 ... Demagnetization device, 8 ... Demagnetization pipe, 9 ... Electromagnetic coil, 10 ... High frequency power supply.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 流体の循環路の途中に配設され非磁性体よりな
る消磁管路と、該消磁管路の周囲に配設され消磁
管路を流れる流体中のクラツドに高周波磁界を及
ぼし流体の粘性によるクラツドの回転抑制により
クラツドの交流磁化と消磁とを行なうための電磁
コイルとから構成されることを特徴とするクラツ
ドの消磁装置。
A high-frequency magnetic field is applied to a demagnetizing pipe made of a non-magnetic material disposed in the middle of a fluid circulation path, and to the crud in the fluid disposed around the demagnetizing conduit and flowing through the demagnetizing pipe to reduce the crud due to the viscosity of the fluid. 1. A demagnetizing device for a cladding, comprising an electromagnetic coil for AC magnetizing and demagnetizing the cladding by suppressing rotation.
JP1983061212U 1983-04-23 1983-04-23 Clad's degaussing device Granted JPS59166199U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983061212U JPS59166199U (en) 1983-04-23 1983-04-23 Clad's degaussing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983061212U JPS59166199U (en) 1983-04-23 1983-04-23 Clad's degaussing device

Publications (2)

Publication Number Publication Date
JPS59166199U JPS59166199U (en) 1984-11-07
JPH0438320Y2 true JPH0438320Y2 (en) 1992-09-08

Family

ID=30191428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983061212U Granted JPS59166199U (en) 1983-04-23 1983-04-23 Clad's degaussing device

Country Status (1)

Country Link
JP (1) JPS59166199U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5494299B2 (en) * 2010-07-06 2014-05-14 デクセリアルズ株式会社 Method for demagnetizing magnetic powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968298A (en) * 1972-11-07 1974-07-02
JPS5567117A (en) * 1978-11-14 1980-05-21 Nippon Seiko Kk Demagnetizer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968298A (en) * 1972-11-07 1974-07-02
JPS5567117A (en) * 1978-11-14 1980-05-21 Nippon Seiko Kk Demagnetizer

Also Published As

Publication number Publication date
JPS59166199U (en) 1984-11-07

Similar Documents

Publication Publication Date Title
US3539509A (en) Method for electromagnetic removal of iron-oxides from liquids
US4395746A (en) Method and device for magnetically transporting
US4842812A (en) Reactor coolant crud control by particulate scavenging and filtration
Mehdizadeh et al. Interaction forces between soft magnetic particles in uniform and non-uniform magnetic fields
Bachmann et al. Finite element modeling of an alternating current electromagnetic weld pool support in full penetration laser beam welding of thick duplex stainless steel plates
Miyazaki et al. MHD pressure drop of NaK flow in stainless steel pipe
JPH0438320Y2 (en)
JPS60175515A (en) Particle collection and receiving method and filter apparatus
US2622937A (en) Prevention of erosion in pipe lines
US4528096A (en) Device for high gradient magnetic separation
US4460464A (en) Electromagnetic filter
Song et al. A study on a magnetic separation of radioactive corrosion products from NPP using permanent magnets
SHINMURA et al. The development of magnetic-abrasive finishing and its equipment by applying a rotating magnetic field
Kawaguchi et al. Deposition of model crud on boiling zircaloy surfaces at high temperature
Dolle et al. Extraction of insoluble corrosion products from the water circuits of nuclear power stations by electromagnetic filtration
Kong et al. Application of electromagnetic fields to improve the removal rate of radioactive corrosion products
Baker Design of an Eddy-Current Brake for a Sodium-Cooled Nuclear Power Reactor
Zheng et al. Superconducting magnet design for a vertical-ring high gradient magnetic separation system
JPS55134650A (en) Collecting apparatus for magnetic powder and particle
JPS5927224B2 (en) Transfer device for magnetic powder and granules
JPH0236159Y2 (en)
JPS59107505A (en) Demagnetizing method of magnetized powder
JPS6140957B2 (en)
Guo et al. Root Cause Analysis of Nonrelevant Indication of Magnetic Particle Test on 18MND5 Steel Welded Joints in the Steam Generator of a Nuclear Power Project
SU549330A1 (en) Apparatus for controlling a flux containing ferromagnetic particles