JPS59193187A - Adsorbing device for cobalt - Google Patents

Adsorbing device for cobalt

Info

Publication number
JPS59193187A
JPS59193187A JP58067008A JP6700883A JPS59193187A JP S59193187 A JPS59193187 A JP S59193187A JP 58067008 A JP58067008 A JP 58067008A JP 6700883 A JP6700883 A JP 6700883A JP S59193187 A JPS59193187 A JP S59193187A
Authority
JP
Japan
Prior art keywords
water
column
cobalt
reactor
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58067008A
Other languages
Japanese (ja)
Inventor
Koji Tanaka
孝二 田中
Yasuo Egashira
江頭 泰夫
Fumie Shimada
島田 ふみえ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58067008A priority Critical patent/JPS59193187A/en
Publication of JPS59193187A publication Critical patent/JPS59193187A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To remove efficiently the cobalt dissolved in water by providing magnetically held powder manganese ferrite between magnetic holders and a piping which is connected to the lower part of a hollow column and introduces water contg. cobalt into the column, etc. CONSTITUTION:The filtrate from a water cleaning up system of a nuclear reactor is introduced through a piping 12 and an opened automatic two-way valve 13 into an adsorption column 14 from the bottom thereof. Powder manganese ferrite 17 is magnetically held in the spaces between the magnetic holders 16 disposed uniformly in the column 14, and when the reactor water introduced into the column ascends in the adsorption column, the water contacts the magnetically held ferrite 17 and the cobalt ions in the reactor water are adsorbed and removed. The insoluble corrosive components in the reactor water are removed as well by the contact filtration. Since the ferrite 17 is thoroughly held magnetically, there is no outflow at all.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、原子力発成プラントの原子炉−次冷却水(以
下炉水と称す)に含まれる腐食生成物である溶存コバル
トを吸着除去する炉水浄化システムとしてのコバルト吸
着装置に関するものである。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a reactor for adsorbing and removing dissolved cobalt, which is a corrosion product contained in sub-reactor cooling water (hereinafter referred to as reactor water) of a nuclear power generation plant. This invention relates to a cobalt adsorption device as a water purification system.

〔発明の技術的背景と問題点〕[Technical background and problems of the invention]

コバルトは原子炉内で放射化され被曝の要因となるため
、炉水浄化システムが必要となる。従来の炉水浄化シス
テムはイオン交換樹脂法を用いており、炉水を熱交換器
および水冷却器に通し、樹脂の耐熱温度60°C以下ま
で冷却し、た後、イオン交換樹脂に通して浄化を行なっ
ている、従って従来の炉水浄化システムで(は、その流
量を増加させ′るとこれに比例してプラントの熱損失が
増加しまた熱交換器等の設備増強をともなう。
Since cobalt becomes radioactive within the reactor and becomes a source of radiation exposure, a reactor water purification system is required. Conventional reactor water purification systems use the ion exchange resin method, in which reactor water is passed through a heat exchanger and water cooler to cool it down to the resin's heat resistance temperature of 60°C or less, and then passed through an ion exchange resin. Therefore, if the flow rate is increased in a conventional reactor water purification system, the heat loss of the plant will increase proportionally, and equipment such as heat exchangers will need to be strengthened.

第1図は従来の沸騰水型原子炉プラントの炉水浄化シス
テムの系統図である。原子炉lの高温高圧炉水(280
°C1701cg/crl )は、分岐配管2がらクリ
ンアップボンプ3で吸引し、熱交換器4へ導入して冷却
後、さらに冷却水5を用いる水冷却器6によってイオン
交換樹脂の耐熱温度60”O以下まで冷却される。冷却
された炉水は配管7を経てイオン交換樹脂筒8に入り、
陽および陰イオン交換樹脂によってコバルトイオンなど
の陽イオンおよび塩素イオンなどの隔イオンが除去され
る。
FIG. 1 is a system diagram of a reactor water purification system for a conventional boiling water reactor plant. High-temperature, high-pressure reactor water of reactor I (280
°C1701cg/crl) is suctioned from the branch pipe 2 by the cleanup pump 3, introduced into the heat exchanger 4 and cooled. The cooled reactor water passes through piping 7 and enters ion exchange resin cylinder 8.
Cation and anion exchange resins remove cations such as cobalt ions and septa ions such as chloride ions.

浄化された炉水は熱交換器4に入り、熱交換により昇温
された後、配管9を通り給水系配管10にて給水と合流
し、もとの原子炉1内へ戻される。
The purified reactor water enters the heat exchanger 4, is heated by heat exchange, passes through the pipe 9, joins the water supply in the water supply system pipe 10, and is returned to the reactor 1.

このような従来の炉水浄化システムでは、前述の如く、
処理流量の増加はプラントの熱損失に直接影響を与える
ため、コバルトの被曝低減化には限界がある。
In such a conventional reactor water purification system, as mentioned above,
There are limits to reducing cobalt exposure because increasing the processing flow rate directly affects heat loss in the plant.

したがって、炉水中のコバルトを従来のごとく冷却する
ことなく、高温高圧のま\炉水を浄化できる即ち熱損失
をともなわず浄化流雷を増加できる高温コバルト吸着装
置が要望されている。
Therefore, there is a need for a high-temperature cobalt adsorption device that can purify high-temperature, high-pressure reactor water without cooling the cobalt in the reactor water as in the conventional method, that is, can increase the amount of purified lightning without heat loss.

高温コバルト吸着装置、における吸着材は、有機材に代
り耐熱性の無機材が適用され、例えばリン酸ジルコニウ
ム、酸化ジルコニウム、酸化チタニウムなどが有望であ
るとされている。
As the adsorbent in the high-temperature cobalt adsorption device, a heat-resistant inorganic material is used instead of an organic material, and for example, zirconium phosphate, zirconium oxide, titanium oxide, etc. are said to be promising.

本発明者らは上記に鑑み、多数の無機材候補について、
コバルト吸着性能、熱水安定性などを比較調査した結果
、高温コバルト吸着拐としてマンガンフェライトが最も
優れた実用性をもつことを見出した。
In view of the above, the present inventors have made a number of inorganic material candidates.
As a result of comparative research on cobalt adsorption performance, hydrothermal stability, etc., we found that manganese ferrite has the best practical use as a high-temperature cobalt adsorbent.

今まで、有望であるとされている無機吸着材は微粉末状
であるためそれ自身に機械的強度がなく高温コバルト吸
着装置へ直接戸材として適用できないとされ、固形化(
粒状、線状、ブロック状など)を必要としていた。
Up until now, inorganic adsorbents that have been considered promising are in the form of fine powders, so they lack mechanical strength and cannot be applied directly to high-temperature cobalt adsorption equipment as door materials.
granular, linear, block-like, etc.).

この固形化のだめの第1の方法として、バインダーを添
加したり焼結処理を行なうことで固形化する方法、第2
の方法として、担体を用い、含浸や焼成処理により押体
表面にコーティングする方法、第3の方法としてれ状や
繊維状金属を用い化学処理などにより表面に該金属の酸
化物皮膜(吸着材の機能を有する)を形成する方法など
がある。
The first method to prevent this solidification is to solidify by adding a binder or performing a sintering process, and the second method is to solidify by adding a binder or performing a sintering process.
One method is to use a carrier and coat the surface of the pressed body through impregnation or sintering, and the third method is to coat the surface of the pressed body by using a thin or fibrous metal and chemically treating the surface with an oxide film of the metal (adsorbent material). There are several methods for forming (having a function).

しかし、上記方法によって粉末状無機吸着材を固形化す
る場合、次の問題が生じる。すなわち、バインダー添加
や焼結処理を行なうと、有効表面積の減少や、吸着活性
の劣化が生じ、粉末に比ベコバルト吸着能の劣化が避け
られない。また固形化された無機吸着材は、粉末のよう
に全量が反応するのではなく、内部は吸着に関与しない
ので大量の放射性廃棄物が生ずるおそれがある。更に固
形化された無機吸着材は、粉末の如き流動体として取扱
いができないため、一般にカー) IJソジ方式によっ
て装置への据付け、取外しを行なわなければならず、高
圧容器作業の信頼性からこれを無人で行なうことは極め
て困難である。
However, when solidifying the powdered inorganic adsorbent by the above method, the following problem occurs. That is, when a binder is added or a sintering treatment is performed, the effective surface area decreases and the adsorption activity deteriorates, and the cobalt adsorption ability of the powder inevitably deteriorates. In addition, the solidified inorganic adsorbent does not react in its entirety like a powder, and the inside does not participate in adsorption, so there is a risk that a large amount of radioactive waste will be generated. Furthermore, since solidified inorganic adsorbents cannot be handled as a fluid such as powder, they must be installed and removed from equipment using the IJ Soji method, which is not recommended for reliability when working in high-pressure vessels. It is extremely difficult to carry out this process unattended.

本発明者は、粉末無機吸着材はその捷\ではF拐として
用いることはできないが、前記の如く高温コバルト吸着
材としで見出したマンガンフェライトが強磁性体である
ことに着目し、M記背景技術の問題点を解決すべく本発
明をなしたものである。
The present inventor has focused on the fact that manganese ferrite, which was discovered as a high-temperature cobalt adsorbent as mentioned above, is a ferromagnetic material, although the powdered inorganic adsorbent cannot be used as an F adsorbent due to its properties. The present invention has been made to solve technical problems.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、粉末マンガンフェライトを固形化する
ことなく、粉末が有する優れた吸着能および作業性を最
大に生かし粉末マンガンフェライト吸着材を直接吸着カ
ラムへ充填保持し、炉水の高温浄化処理を町詣としたコ
バルト吸着装置を提供することにある。
The purpose of the present invention is to directly fill and hold powdered manganese ferrite adsorbent into an adsorption column by making the most of the powder's excellent adsorption ability and workability without solidifying the powdered manganese ferrite, and to perform high-temperature purification of reactor water. The purpose of the present invention is to provide a cobalt adsorption device that can be used for commercial purposes.

〔発明の概要〕[Summary of the invention]

本発明によるコバルト吸着装置は中空状のカラムと、と
のカラム内に重力方向に削ってほぼ平行でかつ有効磁気
領域内の間隔を保って配置された複数本の磁気保持体と
、これら磁気保持体間に磁気保持された粉末マンガンフ
ェライトと、前記カラムの下部に連結しこのカラム内に
コバルトヲ含む水を導入する配管と、前記カラムの上部
に連結しコバルト吸渚後の水を導出させる配管とを備え
粉末マンカンコバルトにょる炉水の高温浄化処理を行う
ものである。
The cobalt adsorption device according to the present invention includes a hollow column, a plurality of magnetic holding bodies that are cut in the direction of gravity and arranged at intervals within the effective magnetic region, and a plurality of magnetic holding bodies that are arranged in the column in the direction of gravity and spaced apart within the effective magnetic region. Powdered manganese ferrite magnetically held between the bodies, piping connected to the lower part of the column to introduce water containing cobalt into the column, and piping connected to the upper part of the column to lead out the water after absorbing cobalt. This equipment performs high-temperature purification of reactor water using powdered manganese cobalt.

〔発明の実施名・l) 以下に本発明を図面に示す一実施例を参照して詳i’J
]に説明する。第2図は本発明の一実施例を示す高温コ
バルト除去装置の系統図である。
[Embodiment name of the invention/l] The present invention will be described in detail below with reference to an embodiment shown in the drawings.
]. FIG. 2 is a system diagram of a high-temperature cobalt removal apparatus showing one embodiment of the present invention.

第2図において、14はステンレス製の圧力容器による
吸着カラムで内部には複数の磁気保持体16が設けられ
る。この磁気保持体16は、ステンレス、チタン、ある
いはジルカロイなどの機械的強度が良効で、耐熱・耐食
性の非磁性碍管(約10mmφ程度)内に炉水温度(2
80″C)でも磁性劣化が少ない熱安定性の永久磁石ブ
ロック(MK鋼、 N K S鋼などのアルニコ磁石、
その他)15を、全長にわノヒリ均質な磁場が得られる
ように伸大積重ね、かつ、この碍管の両yiA!を密封
したも0’fある。丑たこの磁気保持体16は、カラム
14内において車力の方向とほぼ平行で、かつ有効磁気
・頭載以内の間隔缶iEjい−CJ/=1等に1記11
ヱ固定きれる。23は逆洗用水配管で加速ポンプ24、
自動2方弁25を介し−Cカフム14内上部の散水管2
6に連通ずる。27は粉末マンガンノエライトスラリ液
訂槽で攪拌機28を備えており、加速ポンプ24および
自動2方弁31?介して散水管26と連結する。前記貯
槽27内の粉末マンガンフェライト吸着材スラリ液29
)ま刀うム■4内−上部の散水管26から圧入光填し粉
末マンガンフェライ117を磁気保持体16間の全空間
にわたり均一に磁気保持はせる。−またカラム14rよ
配管12.19によつ−C第1図の破線で示す如く、炉
水浄化系と連結する。なお、13.18,20゜21は
自動2方弁、22は逆洗液排出管である。
In FIG. 2, reference numeral 14 denotes an adsorption column made of a stainless steel pressure vessel, and a plurality of magnetic holding bodies 16 are provided inside. This magnetic holder 16 is made of stainless steel, titanium, or Zircaloy, which has good mechanical strength, and is placed inside a heat-resistant and corrosion-resistant non-magnetic insulator tube (approximately 10 mmφ) at the reactor water temperature (2
80″C) thermally stable permanent magnet block with little magnetic deterioration (alnico magnets such as MK steel, NKS steel, etc.)
15) are stacked in an expanded manner to obtain a homogeneous magnetic field along the entire length, and both yiA of this insulator tube! Even if it is sealed, there is 0'f. The magnetic holding body 16 of the octopus is arranged in the column 14 almost parallel to the direction of the vehicle force, and at a distance within the effective magnetic field of the head.
ヱIt can be fixed. 23 is the backwash water pipe and the acceleration pump 24.
Through the automatic two-way valve 25 - the water sprinkling pipe 2 in the upper part of the C cuff 14
It connects to 6. 27 is a powdered manganese noelite slurry liquid tank equipped with an agitator 28, an acceleration pump 24 and an automatic two-way valve 31? It is connected to the water sprinkler pipe 26 through the water pipe. Powdered manganese ferrite adsorbent slurry liquid 29 in the storage tank 27
) Inside the chamber 4 - Light is press-fitted from the upper water sprinkling pipe 26, and powdered manganese ferrite 117 is magnetically held uniformly over the entire space between the magnetic holding bodies 16. - Column 14r is also connected to the reactor water purification system by piping 12.19, as shown by the broken line in Figure 1. Note that 13, 18 and 20° 21 are automatic two-way valves, and 22 is a backwash liquid discharge pipe.

上記構成において、原子炉水浄化系からの炉水は配v1
2を通り、開となっている自動2方弁13を経て下方よ
り吸着カラム14に導入−きれる。
In the above configuration, the reactor water from the reactor water purification system is distributed to v1.
2, and is introduced into the adsorption column 14 from below via the automatic two-way valve 13 which is open.

吸着力ラム14内部には均等に配置された磁気保持体1
6の相互空間内に粉末マンガンフェライト17が磁気保
持されており、導入された炉水が吸着カラムを一ト昇す
る際、磁気保持されている粉末マンガンノエライト17
と接触し、炉水中のコバルトイオンが吸着除去される。
Magnetic holding bodies 1 are evenly arranged inside the attraction ram 14.
Powdered manganese ferrite 17 is magnetically held in the mutual space of 6, and when the introduced reactor water moves up the adsorption column, the powdered manganese ferrite 17 is held magnetically.
Cobalt ions in the reactor water are adsorbed and removed.

この際炉水中の不″ζ1′;性腐食生成分(クラッド)
も接触−過によって除力)れる。々お吸着処理中p材で
ある粉末マンガンフェライト17は充分磁気保持されて
いるので流出は全くない。浄化された炉水は吸着カラム
14の上方から開となっている自励2方弁18を経て原
子炉内に戻きれる。この際、自動2方弁20.21,2
5.31は閉になっている。以上が炉水の浄化(匹哩工
保である。
At this time, non-corrosive components (crud) in the reactor water
The force is also removed by contact. During the adsorption process, the powdered manganese ferrite 17, which is the p-material, is sufficiently magnetically held, so there is no outflow at all. The purified reactor water is returned to the reactor through the self-excited two-way valve 18 which is opened from above the adsorption column 14. At this time, automatic two-way valves 20, 21, 2
5.31 is closed. The above is the purification of reactor water.

次に浄化処理によって破過に達した粉末マンガンフェラ
イト17の離脱操作を行なう。まず自動2方升13,1
8を閉として炉水の導入を停市した後、吸着カラム14
および内部滞留水が常温になるまで放冷する。冷却後自
動2方弁20.21を開にし吸着カラム14内の滞留水
全量を下部より自動2方弁20を経て逆洗液排水管22
から排出させる。この際大気開放と々つている自動2方
弁21を通って吸着カラム14へ空気が流入する。
Next, an operation is performed to remove the powdered manganese ferrite 17 that has reached breakthrough through the purification process. First, automatic 2-square 13,1
After stopping the introduction of reactor water by closing the adsorption column 14
And allow the internal water to cool until it reaches room temperature. After cooling, the automatic two-way valve 20.21 is opened and the entire amount of water accumulated in the adsorption column 14 is drained from the bottom through the automatic two-way valve 20 and backwash liquid drain pipe 22.
discharge from. At this time, air flows into the adsorption column 14 through the automatic two-way valve 21 which is open to the atmosphere.

次に自動2方弁25を開、加速ポンプ24をONとして
逆洗用水配管23から逆洗水の一定量を散水管26を通
して噴出させた後、自動2方弁25を閉、加速ポンプを
01i”F’とする。注入逆洗水は吸着カラム14内に
配置された磁気保持体16間の空間を上から下へ一直線
に落下し、その急速な落下衝撃によって磁気保持体16
表面に磁気付着している粉末マンガンフェライトを剥離
し洗い流す。
Next, the automatic two-way valve 25 is opened, the acceleration pump 24 is turned on, and a certain amount of backwash water is spouted from the backwash water pipe 23 through the sprinkler pipe 26, and then the automatic two-way valve 25 is closed and the acceleration pump is turned on. The injected backwash water falls in a straight line from top to bottom in the space between the magnetic holding bodies 16 arranged in the adsorption column 14, and the rapid falling impact causes the magnetic holding bodies 16 to fall in a straight line.
Peel off the powdered manganese ferrite that is magnetically attached to the surface and wash it away.

逆洗排液は自動2方升20を通って逆洗液排水配管22
から排出される。逆洗排液の排出終了後、再び自動2方
弁25を開、加速ポンプ24をONとして一定性の逆洗
水を住人し、前記の同様の操作で逆洗を行なう。この逆
洗操作を便用済粉末マンガンフェライトが完全に排出さ
れるまで繰返し行ない、排出終了後自動2方弁20.2
5を閉、加速ポンプ24をOFFとする。以上が吸着カ
ラムの使用済粉末マンガンフェライトの離脱工程である
The backwashing liquid flows through an automatic two-way square 20 to the backwashing liquid drainage pipe 22.
is discharged from. After the discharge of the backwash liquid is completed, the automatic two-way valve 25 is opened again, the acceleration pump 24 is turned on, a constant amount of backwash water is supplied, and backwash is performed in the same manner as described above. This backwashing operation is repeated until the used powdered manganese ferrite is completely discharged, and after the discharge is completed, the automatic two-way valve 20.2
5 is closed and the acceleration pump 24 is turned off. The above is the process of removing spent powdered manganese ferrite from the adsorption column.

次に新らしい粉末マンガンフェライト吸着材を吸着カラ
ム14へ磁気保持させる吸着祠保持操作を行なう。捷ず
あらかじめ吸屑カラム14は磁気1、h4持体16の下
端レベルまで水を満たしておき、自動2方弁31をし”
Iとし、攪拌機28によって均゛−に分Q’lされた規
定濃度の粉末マンガンフェライト吸着材スラリ液29を
スラリ液貯槽27からスラリポンプ30をONとして吸
着カラム14の磁気保持体16上限レベル以内の一定量
を散水管26を通して注入する。注入されたスラリ液の
粉末マンガンフェライト(ハ、水中で磁気保持体16間
の全空間へ均一に磁気保持17されるう注入が終了した
ら、スラリポンプ30をOFF 、 自動2方弁31を
閉とし、次いで自動2方弁25を開、加速ポンプ24を
ONにして逆洗用配管23から用水を散水管26を経て
吸着カラム14へ注入満水としたら、加速ポンプ24を
OF’F’、自動2方弁25および21を閉とする。以
上が吸着カラム14の粉末マンガンフェライト吸着材磁
気保持工程である。
Next, an adsorption hoist holding operation is performed to magnetically hold the new powdered manganese ferrite adsorbent in the adsorption column 14. Fill the waste suction column 14 with water up to the lower end level of the magnetic 1 and H4 holder 16 in advance without separating it, and then close the automatic two-way valve 31.
I, the powdered manganese ferrite adsorbent slurry 29 with a specified concentration is evenly divided by the stirrer 28 from the slurry liquid storage tank 27, and the slurry pump 30 is turned on to within the upper limit level of the magnetic support 16 of the adsorption column 14. A certain amount is injected through the water sprinkler pipe 26. The powdered manganese ferrite in the injected slurry liquid (c) will be uniformly magnetically held 17 in the entire space between the magnetic holding bodies 16 under water. When the injection is completed, turn off the slurry pump 30 and close the automatic two-way valve 31. Next, open the automatic two-way valve 25, turn on the acceleration pump 24, inject water from the backwash piping 23 through the sprinkler pipe 26 into the adsorption column 14, and then turn the acceleration pump 24 OF'F' and the automatic 2-way valve 25. The valves 25 and 21 are closed. The above is the process of magnetically holding the powdered manganese ferrite adsorbent in the adsorption column 14.

この工程が終了してから自動2方弁12ふ・よび19を
開とし、前記した・炉水の浄化処理工程に入る。
After this process is completed, the automatic two-way valves 12 and 19 are opened, and the reactor water purification process described above begins.

このように、炉水浄化処理工程と吸/n後の使用済粉末
マンガンフェライトの離脱工程お、1: ヒ新M粉末マ
ンガンフェライト吸着材の保持工程を繰返すことにより
、連続的に炉水中のコバルトイオンが除去できる。
In this way, cobalt in the reactor water is continuously removed by repeating the reactor water purification process, the removal process of spent manganese ferrite powder after adsorption/n, and the holding process of 1: New M powdered manganese ferrite adsorbent. Ions can be removed.

〔発明の効果〕〔Effect of the invention〕

本発明の高幅コバルト除去装置(,F、次の効果を持つ
っ (1)吸着活性に優れ、かつ表面積の大きな粉末マンガ
ンフェライトを粉末の−ま\直接1商用でさるため、装
定した高いコバルト除去性能が得られる。
The high-width cobalt removal device of the present invention (1) has the following effects: Cobalt removal performance is obtained.

(,2) 反応し易い微粒子状吸着材を用いるrcめ、
未反応部分がなく放射性廃棄物を大幅に減少できる。
(,2) RC using easily reactive particulate adsorbent,
There are no unreacted parts and radioactive waste can be significantly reduced.

(3)粉末保持は固形物より空隙率を任意に、かつ犬き
くすることができるため、装置の圧力損失が少なく、有
効吸着層を長くすることができる。
(3) Powder holding allows the porosity to be made more arbitrary and tighter than solid material, so the pressure loss of the device is small and the effective adsorption layer can be lengthened.

(4)  流動化する粉末を用いるため、吸着材の離脱
および充填工程の自動化が容易で、装置の完全罪人運転
ができる。
(4) Since a fluidized powder is used, it is easy to automate the adsorbent removal and filling process, and the device can be operated completely.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な弊騰水型原子炉プラントの炉水沖化ノ
ステムの系統図、第2図は本発明によるコバルト吸着装
置の一実施例を示す系統図である。 1・・・・ 原子炉      3・・・・ クリンア
ッグボンプ4・・・・ 熱交換器    6・・・・水
冷却器8・・・・ イオン交換樹脂筒 14・・・吸着
カラム16・・・ 磁気保持体   24・・・加速ポ
ンプ27・・・ 粉末マンガンフェライト吸着材スラリ
液貯槽30・・・ スラリボ゛ンプ
FIG. 1 is a system diagram of the reactor water removal system of a general water reactor plant, and FIG. 2 is a system diagram showing an embodiment of the cobalt adsorption apparatus according to the present invention. 1... Nuclear reactor 3... Cleanag bomb 4... Heat exchanger 6... Water cooler 8... Ion exchange resin cylinder 14... Adsorption column 16... Magnetic holding body 24... Acceleration pump 27... Powdered manganese ferrite adsorbent slurry liquid storage tank 30... Slurry pump

Claims (2)

【特許請求の範囲】[Claims] (1)  中空状のカラムと、このカラム内に重力方向
に削ってほぼ平行でかつ有効磁気領域内の間隔を保って
配置された複数本の磁気保持体と、これら磁気保持体間
に磁気保持された粉末マンガンフェライトと、前記カラ
ムの下部に連結しこのカラム内にコバルトを含む水を導
入する配管と、前記カラムの上部に連結しコバルト吸着
後の水を導出させる配管とを備えたコバルト吸着装置。
(1) A hollow column, a plurality of magnetic holding bodies cut in the direction of gravity and arranged approximately parallel to each other and spaced apart within the effective magnetic region, and a magnetic holding body between these magnetic holding bodies. Cobalt adsorption comprising powdered manganese ferrite, a pipe connected to the lower part of the column to introduce cobalt-containing water into the column, and a pipe connected to the upper part of the column to lead out the water after adsorbing cobalt. Device.
(2)磁気保持体として、耐熱耐食性材料による非磁性
碍管内に、熱安定性永久磁石ブロックを密封状態で収容
したものを用いたことを特徴とする特許請求の範囲第1
項記載のコバルト吸着装置。
(2) Claim 1, characterized in that the magnetic holder is a thermostable permanent magnet block sealed in a non-magnetic insulator made of a heat-resistant and corrosion-resistant material.
Cobalt adsorption device as described in section.
JP58067008A 1983-04-18 1983-04-18 Adsorbing device for cobalt Pending JPS59193187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58067008A JPS59193187A (en) 1983-04-18 1983-04-18 Adsorbing device for cobalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58067008A JPS59193187A (en) 1983-04-18 1983-04-18 Adsorbing device for cobalt

Publications (1)

Publication Number Publication Date
JPS59193187A true JPS59193187A (en) 1984-11-01

Family

ID=13332459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58067008A Pending JPS59193187A (en) 1983-04-18 1983-04-18 Adsorbing device for cobalt

Country Status (1)

Country Link
JP (1) JPS59193187A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055895A (en) * 2012-09-13 2014-03-27 Jfe Mineral Co Ltd Adsorbent for radioactive material, reproduction method therefor, and purification method for radioactive contaminated material
CN104107756A (en) * 2014-06-20 2014-10-22 曾明 Magnetic powder dust-absorbing air purifier
CN105355250A (en) * 2015-10-16 2016-02-24 华东理工大学 Method for treating nuclear power plant radioactive waste liquid based on birnessite in-situ reaction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055895A (en) * 2012-09-13 2014-03-27 Jfe Mineral Co Ltd Adsorbent for radioactive material, reproduction method therefor, and purification method for radioactive contaminated material
CN104107756A (en) * 2014-06-20 2014-10-22 曾明 Magnetic powder dust-absorbing air purifier
CN105355250A (en) * 2015-10-16 2016-02-24 华东理工大学 Method for treating nuclear power plant radioactive waste liquid based on birnessite in-situ reaction

Similar Documents

Publication Publication Date Title
RU2541474C2 (en) Nanocomposite solid material of hexa- and octacyanometallates, method for preparing it and method for fixing mineral contaminants using above material
US5397477A (en) Ion exchange resin having dual morphology
KR970004356B1 (en) Reactor coolant crud control by particulate scavenging and filtration
JPS59193187A (en) Adsorbing device for cobalt
JP2001133594A (en) Method of removing radionuclide from reactor cooling water
JPS5815016B2 (en) How to clean ion exchange resin
JPS6311041B2 (en)
CN218100715U (en) Novel medium-low level radioactive waste metal treatment device
JPH0814639B2 (en) Fluid polishing decontamination method and device for removing radioactive corrosion products and radioactive contaminants firmly adhered to the inner surface of a pipe by means of fine particle abrasives
CN218100714U (en) Modified vermiculite filter
JPS5819452A (en) Refining method for liquid metal
JPH01206294A (en) Fluid purifier
JPS62198794A (en) Coolant purifier for nuclear reactor
RU2123213C1 (en) Method for metal plating of radioactive graphite removed from operating or decommissioned nuclear power plants
JPS6279820A (en) High-temperature filter
RU2064693C1 (en) Method for purifying water of used heat-release blocks storage cans
JPS58166292A (en) Cobalt removal device
JPS6024404Y2 (en) electromagnetic filter
JPS582255B2 (en) Impurity collection device
JP2002018433A (en) Ion exchanger
JPS63291637A (en) Water collection device of treatment tower
KR101468378B1 (en) Adsorbent of radioactivity materials including ettringite with magnetic powder and treatment method of radioactivity materials using it
JPS59154398A (en) Method of recovering radioactive deconamination liquid waste
JPS6140957B2 (en)
RU2091U1 (en) DEVICE FOR REGENERATION AND CLEANING FILTER FILLERS