JPS6279820A - High-temperature filter - Google Patents

High-temperature filter

Info

Publication number
JPS6279820A
JPS6279820A JP22097685A JP22097685A JPS6279820A JP S6279820 A JPS6279820 A JP S6279820A JP 22097685 A JP22097685 A JP 22097685A JP 22097685 A JP22097685 A JP 22097685A JP S6279820 A JPS6279820 A JP S6279820A
Authority
JP
Japan
Prior art keywords
ferromagnetic
packed bed
raw water
permanent magnet
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22097685A
Other languages
Japanese (ja)
Inventor
Mitsushige Nakamura
中村 充栄
Miyuki Yanagisawa
柳沢 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
IHI Corp
Original Assignee
Toshiba Corp
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, IHI Corp filed Critical Toshiba Corp
Priority to JP22097685A priority Critical patent/JPS6279820A/en
Publication of JPS6279820A publication Critical patent/JPS6279820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To efficiently remove a corrosion product by magnetizing a packed bed of a ferromagnetic granular element with the fine particles of an adsorbent magnetically attached to its surface with a permanent magnet which can be freely inserted and drawn out and passing raw water through the packed bed. CONSTITUTION:The upper end of each permanent magnet 15 is set nearly at the position of a screen 8, the ferromagnetic granular element 11 at the lower part of the packed bed 12 is magnetized, then a water suspension wherein the fine particles of the adsorbent such as Fe3O4 are dispersed is passed through the packed bed 12 and the fine particles of the adsorbent are magnetically attached to the surface of the element 11. Subsequently, the position of the permanent magnet is successively changed and the fine particles of the adsorbent is magnetically attached to the whole surface of the packed bed 12. The high- temp. raw water is supplied into a vessel 1 from an inlet 2, the ionic corrosion products of Co<2+>-60, Co<2+>-58, etc., are adsorbed, the granular corrosion products are attracted and collected and the wash water is discharged from an outlet 3. The permanent magnet is again moved to demagnetize the element 11 and backwashing is carried out.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、高温の原水中に含まれる腐蝕生成物を除去す
る高温フィルタに係り、特に原子カプラントに用いるの
に好適な高温フィルタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a high-temperature filter for removing corrosion products contained in high-temperature raw water, and particularly to a high-temperature filter suitable for use in an atomic couplant.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

原子カプラントにおいては、炭素鋼やステンレス鋼が多
く使用されており、これらの全屈材料の腐蝕により発生
する腐蝕生成物は、プラント運転上砂々の悪影響を及ば
寸。例えば、これらの腐蝕生成物が原子炉炉心の中性子
用で放射化されて放射性物質となった場合には、炉心外
に出て放射線被溶等の問題を生じさせるJ3それがある
。特に、ステンレス鋼やステライト材等に含まれている
コバルトが放射化されるとコバルト60になり、これが
現在原子カプラントにおいて最も悪影廿の大きな放射性
物質となっている。したがって、コバルトおよびコバル
ト60を充分に離去することが重要な課題となっている
Carbon steel and stainless steel are often used in nuclear couplants, and the corrosion products generated by the corrosion of these completely bent materials can have a negative impact on plant operation. For example, when these corrosion products are activated by neutrons in a nuclear reactor core and become radioactive substances, they escape outside the core and cause problems such as radiation exposure. In particular, when cobalt contained in stainless steel, stellite materials, etc. is activated, it becomes cobalt-60, which is currently the most harmful radioactive substance in atomic couplants. Therefore, it is an important issue to sufficiently remove cobalt and cobalt-60.

従来、これらの物質を除去するためにイオン交換樹脂を
用いているが、イオン交換樹脂は、70℃程度以上の高
温水には使用できないため、原水を熱交換器で冷却して
常温にした後、イオン交換樹脂塔に通vJ:うにしてい
る。このため、コバルト、およびコバルト60等を充分
に除去する必要から処理容量を人にするには、設備が大
きくなるだけでなく熱損失が大となり、発電出力の減少
をもたらし、また放射性廃棄物の発生量が多くなる等の
問題がある。
Conventionally, ion exchange resins have been used to remove these substances, but since ion exchange resins cannot be used with high-temperature water of around 70°C or higher, raw water must be cooled to room temperature by cooling it with a heat exchanger. , the ion exchange resin tower is used. For this reason, increasing the processing capacity due to the need to sufficiently remove cobalt and cobalt-60, etc. not only increases the size of the equipment, but also increases heat loss, resulting in a decrease in power generation output, and the removal of radioactive waste. There are problems such as an increase in the amount generated.

〔発明の目的〕[Purpose of the invention]

本発明はこのような点を考慮してなされたもので、原水
の温度を下げることなく原水中の腐蝕生成物を効率よく
除去することができる高温フィルタを提供することを目
的とする。
The present invention has been made in consideration of these points, and an object of the present invention is to provide a high-temperature filter that can efficiently remove corrosion products from raw water without lowering the temperature of the raw water.

〔発明の概要〕[Summary of the invention]

本発明は、容器内に形成された強磁性粒状ニレメン1〜
の充填層を、この充填層に対し挿脱可能な複数の永久磁
石により磁化するとともに、磁化された各強磁性粒状エ
レメントの表面に微粒子状吸着材を磁着し、この充填層
に高温の原水を通し、原水中のイオン状1@蝕生成物を
前記微粒子状吸着材で吸着するとともに、原水中の粒子
状腐蝕生成物を前記強磁性粒状エレメントで捕捉づるよ
うにし、もって高温の原水中から効率よく腐蝕生成物を
除去できるようにしたことを特徴とする。
The present invention provides ferromagnetic granular Nilemene 1 to 1 formed in a container.
The packed bed is magnetized by a plurality of permanent magnets that can be inserted into and removed from the packed bed, and a particulate adsorbent is magnetically attached to the surface of each magnetized ferromagnetic granular element, and hot raw water is applied to the packed bed. The ionic 1@corrosion products in the raw water are adsorbed by the fine particulate adsorbent, and the particulate corrosion products in the raw water are captured by the ferromagnetic particulate elements, thereby removing high-temperature raw water from the raw water. It is characterized by being able to efficiently remove corrosion products.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して本発明の一実施例について説明Jる
An embodiment of the present invention will be described below with reference to the drawings.

図において符号1は入口2および出口3を右する容器で
あり、前記入口2には、入口2から流入する原水の流れ
を分配するとともに、逆洗時に後述する強磁性粒子状エ
レメント11の流失を防止するための上部スクリーン4
が設置され、また前記出口3には、原水処理運転中に渦
が発生するのを防止するとともに逆洗水の分配を行なう
渦流防止兼邪魔板5が設置されている。
In the figure, reference numeral 1 denotes a container on the right side of an inlet 2 and an outlet 3, and the inlet 2 distributes the flow of raw water flowing in from the inlet 2, and also prevents the flow of ferromagnetic particulate elements 11, which will be described later, during backwashing. Upper screen to prevent 4
A vortex prevention/baffle plate 5 is installed at the outlet 3 to prevent eddies from being generated during raw water treatment operation and to distribute backwash water.

また前記容器1内には、第1図および第2図に示すよう
に入口2側と出口3側とを区分けするように格子板6が
設置されており、この格子板6の各升目内には、円筒状
をなすハウジング7が挿入されて格子板6から下方に突
出する状態で固定され、また格子板6の各格子部分の上
面には、円形をなすスクリーン8がそれぞれ設置されて
いる。
Furthermore, as shown in FIGS. 1 and 2, a lattice plate 6 is installed inside the container 1 to separate the inlet 2 side and the outlet 3 side. A cylindrical housing 7 is inserted and fixed to protrude downward from the lattice plate 6, and a circular screen 8 is installed on the upper surface of each lattice portion of the lattice plate 6.

そしてこのス々リーン8が設置された領域の外周部には
、第1図および第2図に示す−ように格子板6から円筒
状に立上がる充填層仕切9が設けられている。
At the outer periphery of the area where the screen 8 is installed, a packed bed partition 9 is provided which rises in a cylindrical shape from the lattice plate 6, as shown in FIGS. 1 and 2.

前記ハウジング7内には、第1図に示すように下端が容
器1の底面を水密に貫通し上端が格子板6から上方に突
出する上端閉塞の内f510が遊貫通されており、前記
充填層仕切9の下半内部には、この内筒10が埋没する
程度の層厚で強磁性粒状エレメント11が充填されて充
填層12を形成している。
Inside the housing 7, as shown in FIG. 1, an upper end closing part f510 is loosely penetrated, the lower end of which penetrates the bottom surface of the container 1 in a watertight manner and the upper end of which protrudes upward from the lattice plate 6. The inside of the lower half of the partition 9 is filled with ferromagnetic granular elements 11 to a thickness such that the inner tube 10 is buried therein to form a packed layer 12 .

この強磁性粒状エレメント11は、通常は強磁性ステン
レス鋼製の直径はぼ1胴の球状体で形成されるが、これ
に限らず耐蝕性を有づ゛るものであれば他の強磁性材料
でもよく、またその形状、大きさ等も適宜変更できる。
The ferromagnetic granular element 11 is usually formed of a spherical body made of ferromagnetic stainless steel and has a diameter of approximately 1 cylinder, but is not limited to this, and may be made of other ferromagnetic materials as long as it has corrosion resistance. The shape, size, etc. can also be changed as appropriate.

この強磁性粒状エレメント11の充填層12の上部には
、第1図および第2図に示すように格子状の整流兼偏り
防止板13が設置されでおり、この整流兼偏り防止板1
3は、入口2から流入づ゛る原水の整流機能と、充填層
12の逆洗時に流動化した強磁性粒状エレメント11が
逆洗停止後に偏りなく落ちついて再び均等な充填層12
を形成するようにづるための偏り防止機能とを右してい
る。
As shown in FIGS. 1 and 2, a lattice-shaped rectifying/unbalancing plate 13 is installed above the packed layer 12 of the ferromagnetic granular elements 11.
3 has a rectification function of the raw water flowing in from the inlet 2, and the ferromagnetic granular elements 11 that are fluidized during backwashing of the packed bed 12 settle evenly after the backwashing is stopped, and the packed bed 12 becomes uniform again.
It has an anti-bias function and is designed to form the right shape.

また前記各内筒10の格子板6から一1方に突出する部
分には、第1図および第2図に示すようにキャップ状の
内筒外管14が冠着され、内局10と格子板6との間か
らの強磁性粒子状エレメント11の落下を防止するよう
になっている。
Further, as shown in FIGS. 1 and 2, a cap-shaped inner tube/outer tube 14 is attached to a portion of each inner tube 10 that protrudes in one direction from the lattice plate 6. This prevents the ferromagnetic particulate element 11 from falling from between the plate 6 and the plate 6.

一方各内筒10内には、第1図に示づように約300℃
の原子炉炉水温度に耐えかつ′fA麻係数の小さな永久
磁石15が上下動可能に挿入されており、これら各永久
磁石15は、前記容器1の下方に配したテを降台16に
Dラド1フを介して′&結されている。そして前記昇降
台16は、第1図に示ずようにウオームギヤジヤツキ1
8によりガイド19にそって昇降移動するようになって
いる。
On the other hand, the temperature inside each inner cylinder 10 is approximately 300°C as shown in FIG.
Permanent magnets 15 that can withstand the reactor water temperature of '& is connected via Rad 1F. The lifting platform 16 is mounted on a worm gear jack 1 as shown in FIG.
8 to move up and down along a guide 19.

前記内筒10は、その内側に永久磁石15が接触しつつ
移動することから、永久磁石15の強磁性体接触による
接触減磁を避けるため、例えば非磁性のステンレス鋼で
形成されている。また永久磁石15による磁束が強磁性
粒状エレメント11の磁化に有効に作用するようにする
ため、前記内fE10はもとよりスクリーン8、充填層
仕切9、整流兼偏り防止板13、内筒外管14、J3よ
びロッド17も、例えば非磁性のステンレス鋼で形成さ
れ、また格子板6およびハウジング7は例えば強磁性の
ステンレス鋼で形成されている。そしてハウジング7の
良さは、第1図に示ずように永久磁石15よりも若干長
いj法に設定され、永久磁石15をハウジング7内に引
込んだ際に永久磁石15の磁束がハウジング7外に漏れ
ないように考虞されている。
The inner cylinder 10 is made of, for example, non-magnetic stainless steel in order to avoid contact demagnetization caused by contact of the permanent magnet 15 with a ferromagnetic material, since the inner cylinder 10 moves while being in contact with the permanent magnet 15 inside thereof. In addition, in order to ensure that the magnetic flux generated by the permanent magnet 15 effectively acts on the magnetization of the ferromagnetic granular element 11, the inner fE 10 as well as the screen 8, the packed bed partition 9, the rectifying/unbiasing plate 13, the inner cylinder and outer tube 14, J3 and the rod 17 are also made of, for example, non-magnetic stainless steel, and the grid plate 6 and the housing 7 are made of, for example, ferromagnetic stainless steel. The advantage of the housing 7 is that, as shown in FIG. There are concerns that this will not be leaked.

このように永久磁石15により磁化された充填層12に
は、原水の処理に先立って微粒子状吸着材(図示せず)
を分散した懸濁水が循環通水され、微粒子状吸M ’1
4が各強磁性粒状エレメント11の表面に均一にvIi
着されるようになっている。
The packed bed 12 magnetized by the permanent magnet 15 is filled with a particulate adsorbent (not shown) before the raw water is treated.
The suspended water in which the
vIi uniformly on the surface of each ferromagnetic granular element 11
It is designed to be worn.

この微粒子状吸着材としては、FC3304゜MnFC
204rrの強磁性フェライト微粒子、あるいはα−F
0203等の常磁性または非磁性金属酸化物微粒子が、
単独または混合して用いられるようになっている。
As this particulate adsorbent, FC3304゜MnFC
204rr ferromagnetic ferrite fine particles or α-F
Paramagnetic or non-magnetic metal oxide fine particles such as 0203,
They can be used alone or in combination.

次に本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

原水処理に際しては、まずウオーム1!ヤジヤツキ18
により各永久磁石15の磁極上端をほぼスクリーン8の
位置に設定し、充填層12の下層部の強磁性粒状エレメ
ント11を磁化させる。
When treating raw water, first of all, warm it! Yajiyatsuki 18
As a result, the upper end of the magnetic pole of each permanent magnet 15 is set approximately at the position of the screen 8, and the ferromagnetic granular elements 11 in the lower layer of the filled layer 12 are magnetized.

次いで、微粒子状吸着材を分散した懸濁水を入口2から
充填層12に通して出口3に循環通水する。すると、微
粒子状吸着材は充填層12の下層部の強磁性粒状エレメ
ント11の表面に磁着される。
Next, the suspended water in which the particulate adsorbent is dispersed is passed through the packed bed 12 from the inlet 2 and circulated to the outlet 3. Then, the particulate adsorbent is magnetically attached to the surface of the ferromagnetic particulate element 11 in the lower layer of the packed bed 12.

次いで、ウオームギヤジヤツキ18により各永久磁石1
5の位置をやや上Hさせ、前記同様微粒子状吸着材を分
散した懸濁水を充填層12に通水する。すると、微粒子
状吸着材は充填層12の下端からやや上層の部分の強磁
性粒状エレメント11の表面に磁着される。この操作を
各永久磁石15を少しずつ上昇させながら繰返し、充填
層12の全層にわたって微粒子状吸着材を磁着させる。
Next, each permanent magnet 1 is connected by the worm gear jack 18.
The position 5 is slightly raised H, and suspended water in which particulate adsorbent is dispersed is passed through the packed bed 12 in the same manner as described above. Then, the particulate adsorbent is magnetically attracted to the surface of the ferromagnetic particulate element 11 in a portion slightly above the lower end of the packed bed 12. This operation is repeated while raising each permanent magnet 15 little by little, so that the particulate adsorbent is magnetically attached to the entire layer of the packed bed 12.

これにより、微粒子状吸着材が充I11層12の表層部
のみにta着されることなく、全層にわたって均一にT
l41着きれる。
As a result, the particulate adsorbent is not deposited only on the surface layer of the full layer 12, but is distributed uniformly over the entire layer.
I can arrive at l41.

次いで、入口2から原水を容器1内に供給し、充填層1
2を通して出口3から排出する。りると、2+ 「;ミ水中に含まれるGo  −60,Co” −58
等のイAン状腐蝕生成物は、微粒子状吸着材に吸着され
、また金属酸化物等の粒子状腐蝕生成物は、強磁性粒状
エレメント11に磁力により吸引補足される。
Next, raw water is supplied into the container 1 from the inlet 2, and the packed bed 1
2 and discharged from outlet 3. Then, 2+ "; Go -60, Co" contained in the water -58
Ion-like corrosion products such as those are adsorbed by the particulate adsorbent, and particulate corrosion products such as metal oxides are attracted and captured by the ferromagnetic particulate element 11 by magnetic force.

充填層12に捕集されたこれら腐蝕生成物を取出す場合
には、出口3がら洗浄水を容器1内に供給し、充填層1
2を通して入口1から排出するとともに、ウオームギヤ
ジヤツキ18により各永久磁石15を充填層12から引
き下げてハウジング7内に移動させ、強磁性粒状エレメ
ント11の磁化を解除する。すると、強磁性粒状エレメ
ント11に捕獲されていた腐蝕生成物および微粒子状吸
着材は、強磁性粒状エレメント11の消磁により釈放さ
れ、洗浄水とともに入口2からtJl出される。
When taking out these corrosion products collected in the packed bed 12, washing water is supplied into the container 1 from the outlet 3, and
2 and discharged from the inlet 1, each permanent magnet 15 is pulled down from the packed bed 12 and moved into the housing 7 by the worm gear jack 18, and the ferromagnetic granular elements 11 are demagnetized. Then, the corrosion products and particulate adsorbent trapped in the ferromagnetic granular element 11 are released by demagnetization of the ferromagnetic granular element 11, and are discharged from the inlet 2 along with the cleaning water.

一方、充填層12は、上向きの洗浄水により流動化し、
その撹拌作用により強磁性粒状エレメント11の表面は
充分に洗浄される。そして整流兼偏り防止板13により
、逆洗停止後は陥りなく落ちついて再び均等な充填層1
2を形成することになる。。
On the other hand, the packed bed 12 is fluidized by the upward washing water,
Due to the stirring action, the surface of the ferromagnetic granular element 11 is sufficiently cleaned. Then, due to the rectification and unbalance prevention plate 13, after the backwashing is stopped, the filling layer 1 is evenly distributed again without falling.
2 will be formed. .

このように、永久磁石15により磁化された強磁性粒状
ニレメン1−11の表面に微粒子状吸着材を均一に磁着
し、その俊原水を充填層12に通水して腐蝕生成物を捕
集除去するようにしているので、原水を高温のまま処理
でき、熱損失が少なくなるとともに、熱交換器等を必要
としない。また微粒子状吸着材を用いているので、吸M
’+4の分散表面積が人で腐蝕生成物と接触する機会が
多くなリ、効率よく腐蝕生成物を除去できる。また、微
粒子状吸着材の出は、強磁性粒状エレメント11の表面
に磁着されるだけの吊で足りうるので、放射性廃棄物の
発生間が少ない。また、万一電源喪失事故が発生しても
、永久磁石15により磁化された強磁性粒状エレメント
11の磁力により微粒子状吸着材および腐蝕生成物が保
持されているので、流出することがなく、安全性、信頼
性が高い。
In this way, the particulate adsorbent is uniformly magnetized on the surface of the ferromagnetic granular Niremen 1-11 magnetized by the permanent magnet 15, and the Toshihara water is passed through the packed bed 12 to collect corrosion products. Since the raw water is removed, the raw water can be treated at a high temperature, reducing heat loss and eliminating the need for a heat exchanger or the like. In addition, since fine particulate adsorbent is used, the absorption of M
The dispersion surface area of '+4 means that there are many opportunities for people to come into contact with corrosion products, so corrosion products can be removed efficiently. In addition, since the fine particulate adsorbent can be suspended by simply being magnetically attached to the surface of the ferromagnetic particulate element 11, radioactive waste is generated less frequently. In addition, even if a power loss accident occurs, the particulate adsorbent and corrosion products are retained by the magnetic force of the ferromagnetic granular element 11 magnetized by the permanent magnet 15, so they will not flow out and be safe. High performance and reliability.

また、流動化し易い微粒子状吸着材を用いているので、
充填層12の再生を含む全システム運転の自動化、無人
化を容易に実施できる。
In addition, since it uses a particulate adsorbent that is easy to fluidize,
The entire system operation including regeneration of the packed bed 12 can be easily automated and unmanned.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、容器内に形成された強磁
性粒状エレメントの充填層を、この充填層に対し挿脱可
能な複数の永久磁石により磁化するとともに、磁化され
た各磁性粒状エレメントの表面に微粒子状吸着材をta
着し、この充填層に高温の原水を通し、原水中のイオン
状腐触牛成物を前記微粒子状吸着材で吸着するとともに
、原水中の微粒子状lIg蝕生酸生成物記強磁性粒状ニ
レメン1〜で捕捉づるにうにしているので、原水の渇庶
を下げることなく原水中の腐蝕生成物を効率よく除去す
ることができる。
As explained above, the present invention magnetizes a packed layer of ferromagnetic granular elements formed in a container using a plurality of permanent magnets that can be inserted into and removed from the packed layer, and also magnetizes each magnetized magnetic granular element. Apply particulate adsorbent to the surface.
The high-temperature raw water is passed through this packed bed, and the ionic rotten substances in the raw water are adsorbed by the fine particulate adsorbent, and the particulate lIg caries acid products in the raw water are absorbed into the ferromagnetic granular Nilemene. 1 to 3, it is possible to efficiently remove corrosion products from raw water without reducing the raw water shortage.

【図面の簡単な説明】 第1図は本発明の一実施例を示す高温フィルタのMi断
面図、第2図は第1図の充填層の十ド部の構成を示ター
横断面図である。 1・・・容器、2・・・入口、3・・・出口、6・・・
格子板、7・・・ハウジング、8・・・スクリーン、9
・・・充j眞層仕切、10・・・内筒、11・・・強磁
性粒状ニレメン1〜.12・・・充填層、13・・・整
流兼偏り防止板、1/I・・・内筒外管、15・・・永
久磁石、18・・・つ4−ムギセジt?ツキ。 出願人代理人  佐  藤  −雄 61 図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a cross-sectional view of Mi of a high-temperature filter showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the structure of the dot portion of the packed bed in FIG. 1. . 1... Container, 2... Inlet, 3... Outlet, 6...
Lattice plate, 7... Housing, 8... Screen, 9
...Full layer partition, 10...Inner cylinder, 11...Ferromagnetic granular Niremen 1~. 12... Filled bed, 13... Rectifier and anti-bias plate, 1/I... Inner cylinder/outer tube, 15... Permanent magnet, 18... 4-Mugisejit? Moon. Applicant's agent Mr. Sato 61 Figure

Claims (1)

【特許請求の範囲】 1、容器内に形成されて容器の入口と出口とを区分けす
る強磁性粒状エレメントの充填層と、この充填層内に挿
脱可能に挿入されて充填層を磁化する複数の永久磁石と
、永久磁石により磁化された各強磁性粒状エレメントの
表面に磁着される微粒子状吸着材とを備え、前記入口か
ら容器内に供給される高温の原水を前記充填層に通し、
原水中のイオン状腐蝕生成物を前記微粒子状吸着材で吸
着するとともに、原水中の粒子状腐蝕生成物を前記強磁
性粒状エメレントで捕捉することを特徴とする高温フィ
ルタ。 2、微粒子状吸着材として、強磁性フェライト微粒子、
常磁性金属酸化物微粒子、あるいは非磁性金属酸化物微
粒子を単独または混合して用いることを特徴とする特許
請求の範囲第1項記載の高温フィルタ。
[Claims] 1. A packed layer of ferromagnetic granular elements formed in the container to separate the inlet and outlet of the container, and a plurality of ferromagnetic granular elements that are removably inserted into the packed layer to magnetize the packed layer. a permanent magnet, and a particulate adsorbent magnetically attracted to the surface of each ferromagnetic particulate element magnetized by the permanent magnet, the high-temperature raw water supplied into the container from the inlet is passed through the packed bed,
A high-temperature filter characterized in that ionic corrosion products in raw water are adsorbed by the particulate adsorbent, and particulate corrosion products in the raw water are captured by the ferromagnetic particulate emerent. 2. As particulate adsorbent, ferromagnetic ferrite fine particles,
The high-temperature filter according to claim 1, characterized in that paramagnetic metal oxide fine particles or non-magnetic metal oxide fine particles are used alone or in combination.
JP22097685A 1985-10-03 1985-10-03 High-temperature filter Pending JPS6279820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22097685A JPS6279820A (en) 1985-10-03 1985-10-03 High-temperature filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22097685A JPS6279820A (en) 1985-10-03 1985-10-03 High-temperature filter

Publications (1)

Publication Number Publication Date
JPS6279820A true JPS6279820A (en) 1987-04-13

Family

ID=16759515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22097685A Pending JPS6279820A (en) 1985-10-03 1985-10-03 High-temperature filter

Country Status (1)

Country Link
JP (1) JPS6279820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585410U (en) * 1992-04-20 1993-11-19 ティーディーケイ株式会社 Filter device
JP2009119421A (en) * 2007-11-16 2009-06-04 Niigata Univ Magnetic separation apparatus
CN106423559A (en) * 2015-08-13 2017-02-22 白连福 Novel electric precipitator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585410U (en) * 1992-04-20 1993-11-19 ティーディーケイ株式会社 Filter device
JP2009119421A (en) * 2007-11-16 2009-06-04 Niigata Univ Magnetic separation apparatus
CN106423559A (en) * 2015-08-13 2017-02-22 白连福 Novel electric precipitator

Similar Documents

Publication Publication Date Title
US5652190A (en) Method for regenerating magnetic polyamine-epichlorohydrin resin
JP2521334B2 (en) Method for reducing the deposition rate of colloidal corrosion products
JPS59120219A (en) Magnetic separtor
JP4750110B2 (en) Radioactive waste disposal method
JPS6279820A (en) High-temperature filter
Nishijima et al. Study on decontamination of radioactive cesium from soil by HTS magnetic separation system
CA1158567A (en) Removable coil electromagnetic filter
JPH02273559A (en) Electromagnetic dust collection apparatus
Emory Radionuclide removal from reactor wastes by HGMF
JPS5910263B2 (en) Magnetic powder collection device
JPS58133809A (en) Electromagnetic filter for system water
Dubourg Review of advanced methods for treating radioactive contaminated water
JPS6193994A (en) Device for removing impurity in liquid metal
JP2000038623A (en) Separation of radio active particles, separation system and apparatus for separation
JPS58102194A (en) Magnetic filter for reactor coolant
CN211004708U (en) Industrial wastewater uses guiding device
Ozawa et al. Uranium Extraction from Sea Water with Composite Adsorbents,(III) Magnetic Properties of Composite Hydrous Titanium (IV)-Iron (II) Oxides and their Magnetic Separation
Dolle et al. Extraction of insoluble corrosion products from the water circuits of nuclear power stations by electromagnetic filtration
JPS6327061B2 (en)
JPS6229047Y2 (en)
RU2064693C1 (en) Method for purifying water of used heat-release blocks storage cans
JP2962669B2 (en) Corrosion product removal equipment for sodium cooled reactor
RU2465663C1 (en) Magnetically controlled sorbent to remove radioactive contaminations and heat neutrons
KR20240082271A (en) Magnetic Radiation Air Purifier
Verdoni et al. The French program on electromagnetic filtration