JPS646719B2 - - Google Patents

Info

Publication number
JPS646719B2
JPS646719B2 JP57053529A JP5352982A JPS646719B2 JP S646719 B2 JPS646719 B2 JP S646719B2 JP 57053529 A JP57053529 A JP 57053529A JP 5352982 A JP5352982 A JP 5352982A JP S646719 B2 JPS646719 B2 JP S646719B2
Authority
JP
Japan
Prior art keywords
capture
coolant
radioactive corrosion
conductive liquid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57053529A
Other languages
Japanese (ja)
Other versions
JPS58169096A (en
Inventor
Kimichika Fukushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57053529A priority Critical patent/JPS58169096A/en
Publication of JPS58169096A publication Critical patent/JPS58169096A/en
Publication of JPS646719B2 publication Critical patent/JPS646719B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、高速増殖炉の冷却材として用いられ
る液体ナトリウムや液体ナトリウムカリウム等の
導電性液体に含まれる放射性腐食生成物を捕獲す
る放射性腐食生成物捕獲装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a radioactive corrosion generation system that captures radioactive corrosion products contained in conductive liquids such as liquid sodium and liquid sodium potassium used as coolant in fast breeder reactors. Regarding object capturing devices.

〔発明の技術的背景〕[Technical background of the invention]

高速増殖炉においては、冷却材として、一般に
液体ナトリウムで代表される導電性のアルカリ液
体金属が用いられている。そして、このような液
体金属冷却材は、原子炉容器内の炉心で加熱され
た後、容器外に設けられた1次冷却系へと導びか
れ、再び原子炉容器内へと戻され、循環する。
In fast breeder reactors, a conductive alkaline liquid metal, typically liquid sodium, is generally used as a coolant. After being heated in the reactor core inside the reactor vessel, such liquid metal coolant is led to the primary cooling system installed outside the vessel, and then returned to the reactor vessel, where it is circulated. do.

ところで、高速増殖炉の場合、核燃料要素の被
覆管や炉心構造物は、通常、ステンレス鋼で構成
されるが、これ等の構成材料が中性子の照射をう
けると、上記構成材料に含まれている鉄、コバル
ト等が核反応を起し、マンガン―54、コバルト―
60、コバルト―58等の放射性核種が多量に生成さ
れる。一方、冷却材として前述の如くアルカリ液
体金属が用いられているので、上記構成材料であ
るステンレス鋼も腐食されることには変りない。
したがつて、上記の放射性核種を含んだいわゆる
放射性腐食生成物が冷却材へ混入することにな
る。
By the way, in the case of fast breeder reactors, the cladding tubes and core structures of the nuclear fuel elements are usually made of stainless steel, but when these constituent materials are irradiated with neutrons, they are Iron, cobalt, etc. cause a nuclear reaction, producing manganese-54 and cobalt-
Large amounts of radionuclides such as cobalt-60 and cobalt-58 are produced. On the other hand, since the alkali liquid metal is used as the coolant as described above, the stainless steel which is the constituent material mentioned above will still be corroded.
Therefore, so-called radioactive corrosion products containing the above-mentioned radionuclides are mixed into the coolant.

冷却材へ混入した放射性腐食生成物は冷却材の
流れにしたがつて、1次冷却系各部へと運ばれ、
この1次冷却系の壁面等に沈着する。このよう
に、1次冷却系の壁面等に沈着した放射性腐食生
成物の放射能はポンプ、熱交換器、バルブ、流量
計等の機器やこれ等の機器に接続された配管の保
守、補修等の作業に障害を与える。特に、マンガ
ン―54、コバルト―60、コバルト―58等は生成量
も多く、半減期も長いためにその影響が大きい。
The radioactive corrosion products mixed into the coolant are carried to each part of the primary cooling system according to the flow of the coolant.
It deposits on the walls of this primary cooling system. In this way, the radioactivity of radioactive corrosion products deposited on the walls of the primary cooling system can be removed by maintenance and repair of equipment such as pumps, heat exchangers, valves, flow meters, etc., and the piping connected to these equipment. impede the work of In particular, manganese-54, cobalt-60, cobalt-58, etc. are produced in large amounts and have long half-lives, so their effects are large.

そこで、このような不具合を解消するために、
最近では、ニツケルが高温の液体金属ナトリウム
中でマンガン―54、コバルト―60等の放射性核種
を効率よく捕獲する性質を有していることを利用
した放射性腐食生成物梅獲装置を原子炉容器内に
設置することが考えられている。この放射性腐食
生成物捕獲装置は、炉心の冷却材出口に対向させ
て、つまり炉心上方に前記ニツケル等の捕獲材を
収容した要素を複数配置し、炉心から流出した冷
却材を上記捕獲材に直接接触させることによつ
て、放射性核種を捕獲するようにしている。
Therefore, in order to eliminate such problems,
Recently, a device for harvesting radioactive corrosion products has been installed inside the reactor vessel, taking advantage of the property of nickel to efficiently capture radionuclides such as manganese-54 and cobalt-60 in high-temperature liquid metal sodium. It is considered to be installed in This radioactive corrosion product capture device has a plurality of elements containing capture materials such as nickel placed opposite the coolant outlet of the reactor core, that is, above the core, and directs the coolant flowing out from the core to the capture materials. By contacting them, radionuclides are captured.

〔背景技術の問題点〕[Problems with background technology]

前記のように装置にあつて、効率よく放射性腐
食生成物の核種を捕獲するには、捕獲材と冷却材
との接触面積をある程度以上大きくするとともに
すべての冷却材を上記捕獲材に均一に接触させる
ことが必要である。
As mentioned above, in order to efficiently capture the nuclides of radioactive corrosion products in the equipment, the contact area between the capture material and the coolant must be increased to a certain extent, and all the coolant must come into uniform contact with the capture material. It is necessary to do so.

しかしながら、冷却材が捕獲材間を流れる場合
には、冷却材の粘性作用により、捕獲材の表面近
傍に層流をなす、いわゆる境界層が形成される。
この境界層を形成している冷却材と境界層の外側
を流れる冷却材との間の位置交換は少い。したが
つて、捕獲材間に形成された流路の中央部を流れ
る冷却材が捕獲材に接触する確率は小さい。この
ため、中央部を流れる冷却材中の放射性腐食生成
物は、専ら前記境界層を拡散して上記捕獲材に吸
着されることになるが、上記境界層中での放射性
腐食生成物の拡散速度は非常に遅く、このため、
捕獲効率が低く、結局装置全体の効率が低いとい
う問題があつた。
However, when the coolant flows between the capture materials, a so-called boundary layer, which forms a laminar flow near the surface of the capture materials, is formed due to the viscous effect of the coolant.
There is little exchange of position between the coolant forming this boundary layer and the coolant flowing outside the boundary layer. Therefore, the probability that the coolant flowing through the center of the channel formed between the capture materials comes into contact with the capture materials is small. Therefore, the radioactive corrosion products in the coolant flowing through the center diffuse exclusively through the boundary layer and are adsorbed by the trapping material, but the diffusion rate of the radioactive corrosion products in the boundary layer is is very slow and because of this,
There was a problem that the capture efficiency was low, resulting in a low efficiency of the entire device.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたも
ので、その目的とするところは、捕獲材間を通流
する液体ナトリウム等の導電性液体の流れを強制
的に乱すことができ、これによつて境界層の薄膜
化および剥離化を図れ、もつて、導電性液体に含
まれている放射性腐食生成物を効率よく捕獲でき
る放射性腐食生成物捕獲装置を提供することにあ
る。
The present invention was made in view of the above circumstances, and its purpose is to forcibly disturb the flow of conductive liquid such as liquid sodium flowing between the capture materials, and to Therefore, it is an object of the present invention to provide a radioactive corrosion product capturing device that can reduce the thickness and exfoliation of the boundary layer, and can efficiently capture radioactive corrosion products contained in a conductive liquid.

〔発明の概要〕[Summary of the invention]

本発明の放射性腐食生成物捕獲装置は、捕獲材
間を通流する液体ナトリウム等の導電性液体に流
れ方向と直交する方向の磁界を印加するとともに
流れ方向と平行する方向の電流を流し、この電流
と磁界との相互作用で導電性液体の流れを強制的
に乱すようにしたことを特徴としている。
The radioactive corrosion product capture device of the present invention applies a magnetic field in a direction perpendicular to the flow direction to a conductive liquid such as liquid sodium flowing between capture materials, and also flows a current in a direction parallel to the flow direction. The feature is that the flow of conductive liquid is forcibly disturbed by the interaction between electric current and magnetic field.

〔発明の効果〕〔Effect of the invention〕

このような構成であると、捕獲材間を通流する
液体ナトリウム等の導電性液体は磁界と電流との
相互作用によつてその流れが強制的に乱される。
このため、捕獲材の表面近傍に形成される境界層
も乱れ、この境界層が薄くなつたり、剥離したり
する。したがつて、捕獲材間の中央部を流れる導
電性液体中の放射性腐食生成物が捕獲材に接触す
る確率を大きくすることができ、また、境界層を
薄くできるので、上記中央部を流れる冷却材中の
放射性腐食生成物の核種が上記境界層を拡散して
上記捕獲材に到達するまでの時間を短縮すること
ができる。それ故、上記中央部を流れる冷却材中
の放射性腐食生成物の核種も効率よく上記捕獲材
にて捕獲させることができ、結局、冷却材中に混
入した放射性腐食生成物のほぼ全量を捕獲させる
ことができる。したがつて、この捕獲装置を高速
増殖炉の原子炉容器における冷却材出口に設ける
ことによつて放射性腐食生成物が1次冷却系まで
流れるのを防止でき、この系の保守・補修等の作
業の容易化に寄与できる。
With such a configuration, the flow of a conductive liquid such as liquid sodium flowing between the capture materials is forcibly disturbed by the interaction between the magnetic field and the current.
For this reason, the boundary layer formed near the surface of the capture material is also disturbed, and this boundary layer becomes thin or peels off. Therefore, it is possible to increase the probability that the radioactive corrosion products in the conductive liquid flowing in the center between the capture materials will come into contact with the capture materials, and the boundary layer can be made thinner, so that the cooling that flows in the center between the capture materials can be increased. The time required for the nuclide of the radioactive corrosion product in the material to diffuse through the boundary layer and reach the capture material can be shortened. Therefore, the nuclides of the radioactive corrosion products in the coolant flowing through the central part can be efficiently captured by the trapping material, and in the end, almost all of the radioactive corrosion products mixed into the coolant can be captured. be able to. Therefore, by installing this capture device at the coolant outlet of the reactor vessel of a fast breeder reactor, it is possible to prevent radioactive corrosion products from flowing to the primary cooling system, making maintenance and repair work of this system easier. It can contribute to making it easier.

〔発明の実施例〕[Embodiments of the invention]

図は本発明の一実施例に係る放射性腐食生成物
捕獲装置の概略構成図である。この放射性腐食生
成物捕獲装置は、大きく分けて、内部に高速増殖
炉の冷却材である液体ナトリウム、液体ナトリウ
ムカリウム等の導電性液体Pが通流する流路、た
とえばステンレス鋼製の配管1と、この配管1内
に配置された放射性核種捕獲用の捕獲体2と、上
記配管1の外側から上記捕獲体2が位置する部分
に上記配管1を横断する方向の磁界を印加する磁
界発生装置、つまり電磁石3と、上記捕獲体2の
部分を流れる導電性液体Pにこの導電性液体Pの
流れ方向と平行する向きの電流を通流させる電流
供給装置4とで構成されている。
The figure is a schematic diagram of a radioactive corrosion product capture device according to an embodiment of the present invention. This radioactive corrosion product capture device is roughly divided into a flow path through which a conductive liquid P such as liquid sodium, liquid sodium potassium, etc., which is a coolant for a fast breeder reactor, flows inside, for example, a stainless steel pipe 1. , a capture body 2 for capturing radionuclides disposed within the pipe 1, and a magnetic field generator that applies a magnetic field in a direction across the pipe 1 from the outside of the pipe 1 to a portion where the capture body 2 is located; In other words, it is composed of an electromagnet 3 and a current supply device 4 that allows a current to flow in a direction parallel to the flow direction of the conductive liquid P through the conductive liquid P flowing through the capture body 2.

前記捕獲体2は、たとえば多数の薄いニツケル
板で形成された捕獲材5を格子状に組合せ構成さ
れたもので、上記捕獲材5で形成された柱状間隙
6を導電性液体Pの通流方向に平行させた状態で
リング状の止め具7によつて配管1の内面に固定
されている。
The trapping body 2 is constructed by combining trapping materials 5 formed of a large number of thin nickel plates in a lattice shape, and the columnar gaps 6 formed by the trapping materials 5 are arranged in the direction of flow of the conductive liquid P. It is fixed to the inner surface of the pipe 1 by a ring-shaped stopper 7 in a state parallel to the pipe 1 .

前記電磁石3は、配管1の捕獲体2が位置する
部分をその磁極面間で挟持するように配置された
コ字形の鉄心8と、この鉄心8に巻装されたコイ
ル9と、このコイル9に直流電流を通流させる直
流電源10とで構成されている。
The electromagnet 3 includes a U-shaped iron core 8 arranged so as to sandwich the portion of the pipe 1 where the capture body 2 is located between its magnetic pole faces, a coil 9 wound around the iron core 8, and a coil 9 wound around the iron core 8. and a DC power supply 10 that passes a DC current through.

一方、前記電流供給装置4は、配管1の外周面
で前記捕獲体2の位置を基準にして、上流側位置
と下流側位置とにそれぞれ装着されたリング状の
電極11,12と、これら電極11,12に交流
電流を通流させる交流電源13とで構成されてい
る。
On the other hand, the current supply device 4 includes ring-shaped electrodes 11 and 12 mounted at upstream and downstream positions, respectively, with respect to the position of the capture body 2 on the outer peripheral surface of the pipe 1, and these electrodes. 11 and 12, and an AC power supply 13 that causes an AC current to flow through them.

このような構成であると、直流電源10および
交流電源13を投入した状態で導電性液体Pとし
て、高速増殖炉の冷却材である液体ナトリウムを
配管1内に図中矢印で示すように通流させると、
この液体ナトリウムは、捕獲材5で形成された柱
状間隙6を流れることになるが、このとき、捕獲
体2が設けられている位置において、電磁石3に
よつて流れ方向と直交する方向の磁界を受け、ま
た、電流供給装置4によつて流れ方向と平行する
交流電流の供給を受ける。このため、捕獲体2が
設けられている位置を流れる液体ナトリウムはフ
レミングの左手の法則にしたがう電磁力を受け、
この力によつて流れが強制的に乱されることにな
る。したがつて、捕獲材5の表面近傍に形成され
る境界層も必然的に乱され、薄くなつたり、剥離
されたりする。このため、液体ナトリウム中に混
入している放射性腐食生成物の核種は、捕獲体2
を形成する捕獲材5に効率よく捕獲される。した
がつて、この装置を原子炉容器の冷却材出口に設
けておけば、炉心で生成された放射性腐食生成物
が1次冷却系まで流れるのを防止できるので、こ
の系の保守、補修等の作業の容易化に寄与でき
る。
With such a configuration, with the DC power supply 10 and the AC power supply 13 turned on, liquid sodium, which is the coolant for the fast breeder reactor, is passed through the pipe 1 as the conductive liquid P as shown by the arrow in the figure. If you let
This liquid sodium will flow through the columnar gap 6 formed by the capture material 5, but at this time, a magnetic field in a direction perpendicular to the flow direction is applied by the electromagnet 3 at the position where the capture body 2 is provided. It is also supplied with an alternating current parallel to the flow direction by the current supply device 4. Therefore, the liquid sodium flowing at the location where the capture body 2 is installed is subjected to an electromagnetic force according to Fleming's left hand rule,
This force forces the flow to be disturbed. Therefore, the boundary layer formed near the surface of the capture material 5 is also inevitably disturbed, becoming thinner or peeled off. Therefore, the nuclides of the radioactive corrosion products mixed in the liquid sodium are absorbed by the capture body 2.
It is efficiently captured by the capture material 5 that forms a . Therefore, if this device is installed at the coolant outlet of the reactor vessel, it will be possible to prevent the radioactive corrosion products generated in the reactor core from flowing to the primary cooling system, making maintenance and repairs of this system easier. It can contribute to making work easier.

特に、本実施例では、多数の柱状間隙6が形成
されるように多数の捕獲材5を格子状に組立てる
ことによつて捕獲体2を構成しているので、捕獲
材5と冷却材との接触面積を増大させることが可
能であり、上述した捕獲作用をより効果的に行な
わせることができる。
In particular, in this embodiment, since the capture body 2 is constructed by assembling a large number of capture materials 5 in a lattice shape so that a large number of columnar gaps 6 are formed, the capture material 5 and the coolant are It is possible to increase the contact area, and the above-mentioned trapping action can be performed more effectively.

また、電極11,12をリング状に形成してい
るので、配管1内の流れの全断面においてより均
一な電流密度とすることができ、流れの全断面に
おいてより均一な捕獲効果を得ることができる。
Furthermore, since the electrodes 11 and 12 are formed into a ring shape, it is possible to obtain a more uniform current density over the entire cross section of the flow in the pipe 1, and a more uniform trapping effect can be obtained over the entire cross section of the flow. can.

なお、本発明は上述した実施例に限定されるも
のではない。実施例では磁界として直流磁界を用
い、電流として交流電流を用いたが、この関係を
逆関係としてもよい。また、実施例では捕獲材と
してニツケルを用いたが、ニツケル合金、表面に
ニツケルメツキが施されたステンレス鋼、表面に
ニツケルメツキが施されたニツケル合金、又はそ
れ等を組合せたものであつてもよい。さらに、捕
獲体の構造も特に限定されるものではない。
Note that the present invention is not limited to the embodiments described above. In the embodiment, a direct current magnetic field was used as the magnetic field and an alternating current was used as the current, but this relationship may be reversed. Further, in the embodiment, nickel was used as the capture material, but it may be a nickel alloy, stainless steel with a nickel plating on the surface, a nickel alloy with a nickel plating on the surface, or a combination thereof. Furthermore, the structure of the capture body is not particularly limited either.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例に係る放射性腐食生成物
捕獲装置を一部切欠して示すす概略構成図であ
る。 1…配管、2…捕獲体、3…電磁石、4…電流
供給装置、5…捕獲材、8…鉄心、9…コイル、
10…直流電源、11,12…電極、13…交流
電源、P…導電性液体。
The figure is a partially cutaway schematic configuration diagram showing a radioactive corrosion product capture device according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Piping, 2... Capture body, 3... Electromagnet, 4... Current supply device, 5... Capture material, 8... Iron core, 9... Coil,
10... DC power supply, 11, 12... Electrode, 13... AC power supply, P... Conductive liquid.

Claims (1)

【特許請求の範囲】[Claims] 1 放射性腐食生成物の混入した導電性液体を案
内する流路と、この流路内に配置され前記放射性
腐食生成物の核種を吸着捕獲する捕獲体と、少な
くとも前記流路内の前記捕獲体が位置する領域に
前記導電性液体の流れ方向とは直交する方向の磁
界を印加する手段と、少くとも前記捕獲体が位置
する部分を流れる導電性液体に上記流れ方向と平
行する向きでかつ前記磁界と作用して上記導電性
液体の流れを強性的に乱させる電流を通流する手
段とを具備してなることを特徴とする放射性腐食
生成捕獲装置。
1. A channel for guiding a conductive liquid mixed with radioactive corrosion products, a capture body disposed within the channel to adsorb and capture nuclides of the radioactive corrosion products, and at least the capture body in the channel means for applying a magnetic field in a direction perpendicular to the flow direction of the conductive liquid to a region where the conductive liquid is located; A radioactive corrosion generation and capture device comprising means for passing an electric current that acts on the conductive liquid to strongly disturb the flow of the conductive liquid.
JP57053529A 1982-03-31 1982-03-31 Radioactive corrosion product catching device Granted JPS58169096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57053529A JPS58169096A (en) 1982-03-31 1982-03-31 Radioactive corrosion product catching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57053529A JPS58169096A (en) 1982-03-31 1982-03-31 Radioactive corrosion product catching device

Publications (2)

Publication Number Publication Date
JPS58169096A JPS58169096A (en) 1983-10-05
JPS646719B2 true JPS646719B2 (en) 1989-02-06

Family

ID=12945331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57053529A Granted JPS58169096A (en) 1982-03-31 1982-03-31 Radioactive corrosion product catching device

Country Status (1)

Country Link
JP (1) JPS58169096A (en)

Also Published As

Publication number Publication date
JPS58169096A (en) 1983-10-05

Similar Documents

Publication Publication Date Title
Comley The significance of corrosion products in water reactor coolant circuits
JPS631888B2 (en)
JPS646719B2 (en)
Choi et al. Technical requirements of the chemical decontamination for the PHWRs system
JPS58219496A (en) Radioactive corrosion product capturing device
JPS58219495A (en) Radioactive corrosion product capturing device
JPS6064295A (en) Fuel aggregate
JPS60179687A (en) Fuel aggregate
JPS60178385A (en) Fuel aggregate
JPS5954995A (en) Radioactive corrosion product capturing device
JPS5954994A (en) Radioactive corrosion product capturing device
JPS6345552B2 (en)
JPS60168080A (en) Fuel aggregate
Keddy et al. Development of high-temperature liquid-metal heat pipes for isothermal irradiation assemblies
Naitoh et al. Optimization of control area ventilation systems for Japanese PWR plants
Lassau et al. Reduction of radiation fields in the cooling water circuits of PWRs: a one-step or a multistep process
Secker et al. Methods for Evaluating Crud Induced Axial Power Shift
JPS58169095A (en) Radioactive corrosion product catching device
Berge et al. Water Chemistry in EDF PWRs
Lane et al. A Study of Problems Associated with Release of Fission Products from Ceramic Fuels in Gas-Cooled Reactors
Simon et al. THE PERFORMANCE OF BASE-FORM ION EXCHANGERS FOR pH CONTROL AND REMOVAL OF FISSION PRODUCTS FROM PRESSURIZED WATER REACTORS
Shaw et al. Controlling radiation exposures in nuclear plants
JPS5923285A (en) Nuclear fuel element for fbr
JPS59178398A (en) Radioactive corrosion product catching device
Nagase et al. Methods and effects of reducing dose rates in BWRs