JPS6140015B2 - - Google Patents

Info

Publication number
JPS6140015B2
JPS6140015B2 JP9600380A JP9600380A JPS6140015B2 JP S6140015 B2 JPS6140015 B2 JP S6140015B2 JP 9600380 A JP9600380 A JP 9600380A JP 9600380 A JP9600380 A JP 9600380A JP S6140015 B2 JPS6140015 B2 JP S6140015B2
Authority
JP
Japan
Prior art keywords
less
rolled steel
strength
sec
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9600380A
Other languages
Japanese (ja)
Other versions
JPS5723025A (en
Inventor
Kazutoshi Kunishige
Noriaki Nagao
Masashi Takahashi
Shoichi Tsunematsu
Katsuro Saiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9600380A priority Critical patent/JPS5723025A/en
Publication of JPS5723025A publication Critical patent/JPS5723025A/en
Publication of JPS6140015B2 publication Critical patent/JPS6140015B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高い強度とともに、すぐれた局部
延性をもち、したがつてプレス加工性のすぐれた
熱延鋼板の製造方法に関するものである。 近年、構造用材料としての鋼板類でも高強度化
の傾向が著しいが、熱延鋼板もその例外ではな
い。特に、自動車部品の素材として用いられる熱
延鋼板では、車体の薄肉軽量化が燃費向上の面か
ら強く要求されつつあり、かかる用途に対して
は、従来から使用されている鋼板と同等以上の加
工性を与えた上で高い強度を付与することが必要
とされる。 熱延鋼板の加工性は、一般には機械試験の延性
で評価される。しかし、延性には、一様延性と局
部延性とがある。前者は引張り試験でくびれを生
じるまでの試片全体の一様な伸びに関するもの
で、後者はくびれを生じた後破断するまでの伸び
に関するものである。熱延鋼板のプレス成形性
は、上記の延性のうち、特に局部延性によつて大
きく影響されることが知られており、また、一般
的に鋼の強度を上昇させれば、延性が劣化するこ
ともよく知られるところである。 この発明は、これに反し、高強度とすぐれた局
部延性を具備し、この結果薄肉軽量化を可能とす
ると共に、すぐれたプレス成形性を示す熱延鋼板
の製造法を提供するもので、重量%で、(以下%
は重量%を示す)、 C:0.01〜0.15%、 Si:1.5%以下、 so.A:0.1%以下、 S:0.005%以下、 Ca:0.0005〜0.01%、 を含有し、さらに必要に応じて、 Nb:0.01〜0.05%、 V:0.01〜0.05%、 Cr:0.1〜0.5%、 B:0.0005〜0.005%、 のうちの1種または2種以上を含有し、残りが
Feとその他の不可避不純物からなる組成を有す
る鋼を、 Ar3点以上870℃以下で仕上圧延し、 25℃/sec以上80℃/sec以下の速度で冷却し、 430℃未満350℃以上で巻取る、 ことによつて、微細パーライト組織および70%以
上の高降伏比を有し、この結果高強度とすぐれた
局部延性を具備するようになる熱延鋼板を製造す
る方法に特徴を有するものである。 なお、この発明の方法によつて製造された熱延
鋼板がすぐれた局部延性を示すのは、仕上圧延後
の冷却途上あるいは巻取後の徐冷期間中に変態し
たパーライト粒が微細に分散していると共に、パ
ーライトのラメラー間隔も非常に狭いことに原因
するものである。 つぎに、この発明の方法において、成分組成お
よび製造条件を上記の通りに限定した理由を説明
する。 (a) C C成分には、鋼板の強度を高める作用がある
が、その含有量が0.01%未満では所望の高強度を
確保することができず、一方その含有量が0.15%
を越えると、特に溶接部の硬さが上昇して脆化現
象が現われるようになることから、その含有量を
0.01〜0.15%と定めた。 (b) Si Si成分には、素地に固溶して、これを強化し、
かつ延性を向上させる作用があるが、その含有量
が1.5%を越えると、表面性状が劣化するように
なることから、その上限値を1.5%と定めた。 (c) Mn Mn成分には、焼入れ性を向上させ、かつパー
ライト粒の微細分散化に寄与して、局部延性を向
上させる作用があるが、その含有量が0.5%未満
では前記作用に所望の効果が得られず、一方その
含有量が2%を越えると製鋼の容易性が失なわれ
るようになることから、その含有量を0.5〜2%
と定めた。 (d) so.A so・A成分には、脱酸作用があるので、そ
の含有は避けられないが、その含有量が0.1%を
越えると非金属介在物の増大を招くようになるこ
とから、その上限値を0.1%と定めた。 (e) S S成分には、Mnと結合して非金属介在物を形
成し、鋼板の局部延性を劣化させるように働くこ
とから、できるだけ少ない方がよく、局部延性の
劣化が現われない上限値として0.005%を定め
た。 (f) Ca Ca成分には、非金属介在物、特にMnSの形状
を調整して、局部延性を向上させる作用がある
が、その含有量が0.0005%未満では、所望のすぐ
れた局部延性を確保することができず、一方その
含有量が0.01%を越えると、非金属介在物の総量
が増すようになり、かえつて延性が低下するよう
になることから、その含有量を0.0005〜0.01%と
定めた。 (g) Nb,V,CrおよびB これらの成分には、鋼板の強度を向上させる作
用があるので、より一層の高強度が要求される場
合に必要に応じて含有されるが、その含有量がそ
れぞれNb:0.01%未満、V:0.01%未満、Cr:
0.1%未満、およびB:0.0005%未満では、所望
の強度向上効果が得られず、一方それぞれが
Nb:0.05%、V:0.05%、Cr:0.5%、および
B:0.005%を越えて含有させても強度改善効果
は飽和するだけであることから、経済性を考慮し
て、その含有量を、それぞれNb:0.01〜0.05%、
V:0.01〜0.05%、Cr:0.1〜0.5%、およびB:
0.0005〜0.005%と定めた。 (h) 熱間圧延の仕上温度 その仕上温度が、Ar3点より低いと、フエライ
ト中に温間加工組織が混入して延性が低下するよ
うになるので、その仕上温度はAr3点以上としな
ければならない。一方、仕上温度の上限に格別の
制限を設ける必要はないが、この発明の方法にお
ける低温巻取りを行なうには、ホツトラインテー
ブルの水冷能力から、実操業上870℃が上限値と
なる。 (i) 仕上温度から巻取温度までの冷却速度 その冷却速度が25℃/sec未満の徐冷になる
と、鋼板の組織が粗大なフエライトとパーライト
からなるものとなり、このパーライト部からボイ
ドが発生しやすく、かつ局部延性の向上は得られ
なくなることから、25℃/sec以上の冷却速度と
しなければならない。一方、その冷却速度は、25
℃/sec以上であれば、いくら速くしても問題は
ないが、現行の実操業上からみると80℃/secが
上限である。 (j) 巻取り温度 巻取り温度が430℃以上になると、良好な局部
延性は得られるものの、強度が低く、一方350℃
未満の巻取り温度では、これとは逆に高強度は得
られるものの局部延性が低く、したがつて、高強
度とすぐれた局部延性を確保するためには、巻取
り温度を430℃未満350℃以上とする必要がある。 つぎに、この発明の方法を実施例により具体的
に説明する。 通常の溶解炉を用い、それぞれ第1表に示され
る成分組成をもつた溶鋼を溶製し、この溶鋼を連
続鋳造法にて厚さ:250mmのスラブに鋳造し、つ
いで、このスラブに同じく第1表に示される条件
で熱間圧延を行なつて板厚:2mmの熱延鋼板を製
造することによつて本発明法1〜17および比較法
1〜8をそれぞれ実施した。
The present invention relates to a method for producing a hot-rolled steel sheet that has high strength, excellent local ductility, and therefore excellent press workability. In recent years, there has been a remarkable trend toward higher strength in steel sheets used as structural materials, and hot-rolled steel sheets are no exception. In particular, there is a strong demand for hot-rolled steel sheets used as materials for automobile parts to be made thinner and lighter for car bodies in order to improve fuel efficiency. It is necessary to impart high strength in addition to imparting properties. The workability of a hot rolled steel sheet is generally evaluated by the ductility of a mechanical test. However, ductility includes uniform ductility and local ductility. The former relates to the uniform elongation of the entire specimen until constriction occurs in a tensile test, and the latter concerns the elongation after constriction occurs until it breaks. It is known that the press formability of hot-rolled steel sheets is greatly affected by the above-mentioned ductility, especially local ductility, and generally speaking, if the strength of the steel is increased, the ductility will deteriorate. This is also well known. The present invention, on the contrary, provides a method for manufacturing a hot rolled steel sheet that has high strength and excellent local ductility, and as a result, can be made thin and lightweight, and also exhibits excellent press formability. %, (hereinafter %
indicates weight%), C: 0.01 to 0.15%, Si: 1.5% or less, so. Contains A: 0.1% or less, S: 0.005% or less, Ca: 0.0005 to 0.01%, and further contains, if necessary, Nb: 0.01 to 0.05%, V: 0.01 to 0.05%, Cr: 0.1 to 0.5%, B: 0.0005 to 0.005%, containing one or more of the following, with the remainder being
Steel with a composition consisting of Fe and other unavoidable impurities is finish rolled at 3 or more Ar points and 870°C or less, cooled at a rate of 25°C/sec or more and 80°C/sec or less, and rolled at less than 430°C and 350°C or more. It is characterized by a method for producing a hot rolled steel sheet having a fine pearlite structure and a high yield ratio of 70% or more, resulting in high strength and excellent local ductility. be. The hot rolled steel sheet produced by the method of the present invention exhibits excellent local ductility because pearlite grains transformed during the cooling process after finish rolling or during the slow cooling period after coiling are finely dispersed. This is due to the fact that the lamellar spacing of pearlite is also very narrow. Next, the reason why the component composition and manufacturing conditions are limited as described above in the method of the present invention will be explained. (a) C The C component has the effect of increasing the strength of the steel plate, but if the content is less than 0.01%, the desired high strength cannot be secured; on the other hand, if the content is less than 0.15%
If the content exceeds the
It was set at 0.01-0.15%. (b) Si The Si component is dissolved in solid solution in the base material to strengthen it.
It also has the effect of improving ductility, but if its content exceeds 1.5%, the surface quality deteriorates, so the upper limit was set at 1.5%. (c) Mn The Mn component has the effect of improving hardenability and contributing to fine dispersion of pearlite grains to improve local ductility, but if its content is less than 0.5%, the desired effect is not achieved. However, if the content exceeds 2%, the ease of steel manufacturing will be lost, so the content should be reduced to 0.5 to 2%.
It was determined that (d) so. Since the A so A component has a deoxidizing effect, its inclusion is unavoidable, but if its content exceeds 0.1%, it will lead to an increase in nonmetallic inclusions, so its upper limit should be set. It was set at 0.1%. (e) S The S component combines with Mn to form non-metallic inclusions and acts to deteriorate the local ductility of the steel sheet, so it is better to have as little as possible, and the upper limit value that does not cause deterioration of the local ductility. 0.005% was set as (f) Ca Ca component has the effect of adjusting the shape of nonmetallic inclusions, especially MnS, and improving local ductility, but if its content is less than 0.0005%, the desired excellent local ductility is ensured. On the other hand, if the content exceeds 0.01%, the total amount of nonmetallic inclusions will increase, and the ductility will decrease. Established. (g) Nb, V, Cr, and B These components have the effect of improving the strength of steel sheets, so they are included as necessary when even higher strength is required. are respectively Nb: less than 0.01%, V: less than 0.01%, Cr:
If B: less than 0.1% and B: less than 0.0005%, the desired strength improvement effect cannot be obtained;
Even if the content exceeds Nb: 0.05%, V: 0.05%, Cr: 0.5%, and B: 0.005%, the strength improvement effect will only be saturated. , respectively Nb: 0.01~0.05%,
V: 0.01-0.05%, Cr: 0.1-0.5%, and B:
It was set at 0.0005-0.005%. (h) Finishing temperature of hot rolling If the finishing temperature is lower than the Ar 3 point, the warm worked structure will be mixed into the ferrite and the ductility will decrease, so the finishing temperature should be the Ar 3 point or higher. There must be. On the other hand, although there is no need to set a particular upper limit on the finishing temperature, in order to perform low-temperature winding in the method of the present invention, the upper limit in actual operation is 870° C. due to the water cooling capacity of the hot line table. (i) Cooling rate from finishing temperature to coiling temperature If the cooling rate is slow cooling below 25℃/sec, the structure of the steel sheet will consist of coarse ferrite and pearlite, and voids will occur from this pearlite part. Therefore, the cooling rate must be 25° C./sec or higher. On the other hand, its cooling rate is 25
There is no problem no matter how fast the speed is as long as it is at least ℃/sec, but from the perspective of current actual operation, 80℃/sec is the upper limit. (j) Coiling temperature When the coiling temperature is 430℃ or higher, good local ductility is obtained, but the strength is low;
On the contrary, if the winding temperature is lower than 430℃, the local ductility will be low although high strength will be obtained. It is necessary to do more than that. Next, the method of the present invention will be specifically explained using examples. Molten steel having the composition shown in Table 1 is melted using an ordinary melting furnace, and this molten steel is cast into a slab with a thickness of 250 mm using the continuous casting method. Methods 1 to 17 of the present invention and comparative methods 1 to 8 were carried out by hot rolling under the conditions shown in Table 1 to produce hot rolled steel sheets having a thickness of 2 mm.

【表】【table】

【表】【table】

【表】 なお、比較法1〜8は、いずれも成分組成およ
び製造条件のうちのいずれかの条件(第1表に※
印を付した条件)がこの発明の範囲から外れたも
のである。 つぎに、上記本発明法1〜17によつて得られた
熱延鋼板(以下本発明鋼板1〜17という)および
上記比較法1〜8によつて得られた熱延鋼板(以
下比較鋼板1〜8という)について、強度を評価
する目的で降伏強さ、引張強さ、および降伏比を
測定し、さらに局部延性を評価する目的で、全伸
びと巾絞りを測定した。これらの測定結果を第2
表に示した。 第2表に示される結果から、本発明法1〜17に
よつて製造された熱延鋼板は、いずれも高強度と
すぐれた局部延性を有し、特に微細なパーライト
組織を有するので、70%を越える高降比を示すこ
とが明らかである。 これに対して、比較法1〜8で製造された熱延
鋼板に見られるように、成分組成および製造条件
のうちのいずれかの条件でもこの発明の範囲から
外れると、強度および局部延性のうちの少なくと
もいずれかの特性が劣つたものになり、強度と局
部延性の両方を満足して具備する熱延鋼板は得ら
れないことがわかる。 上述のように、この発明の方法によれば、高強
度とすぐれた局部延性を有する熱延鋼板を製造す
ることができ、したがつて、この結果得られた熱
延鋼板によれば、製品の薄肉軽量化が可能とな
り、かつすぐれたプレス成形性を確保することが
できるのである。
[Table] Comparative methods 1 to 8 all have component compositions and manufacturing conditions (*in Table 1).
Conditions marked) are outside the scope of this invention. Next, the hot rolled steel sheets obtained by the above-mentioned methods 1 to 17 of the present invention (hereinafter referred to as the present invention steel sheets 1 to 17) and the hot rolled steel sheets obtained by the above comparative methods 1 to 8 (hereinafter referred to as comparative steel sheets 1) ~8), the yield strength, tensile strength, and yield ratio were measured for the purpose of evaluating the strength, and the total elongation and width reduction were also measured for the purpose of evaluating the local ductility. These measurement results are
Shown in the table. From the results shown in Table 2, the hot rolled steel sheets manufactured by methods 1 to 17 of the present invention all have high strength and excellent local ductility, and have a particularly fine pearlite structure, so that 70% It is clear that it exhibits a high drop ratio exceeding . On the other hand, as seen in the hot-rolled steel sheets manufactured by Comparative Methods 1 to 8, if any of the chemical compositions and manufacturing conditions deviate from the scope of this invention, the strength and local ductility deteriorate. It can be seen that at least one of the properties of the hot rolled steel sheet deteriorates, and a hot rolled steel sheet having both strength and local ductility cannot be obtained. As described above, according to the method of the present invention, it is possible to produce a hot-rolled steel sheet having high strength and excellent local ductility. This makes it possible to reduce the thickness and weight, and ensure excellent press formability.

Claims (1)

【特許請求の範囲】 1 C:0.1〜0.15%、 Si:1.5%以下、 Mn:0.5〜2%、 so.A:0.1%以下、 S:0.005%以下、 Ca:0.0005〜0.01%、 を含有し、残りがFeとその他の不可避不純物か
らなる組成物(以上重量%)を有する鋼を、 Ar3点以上870℃以下で仕上圧延し、 25℃/sec以上80℃/sec以下の速度で冷却し、 430℃未満350℃以上で巻取る、 ことを特徴とする微細パーライト組織を有する局
部延性のすぐれた高強度熱延鋼板の製造法。 2 C:0.01〜0.15%、 Si:1.5%以下、 Mn:0.5〜2%、 so.A:0.1%以下、 S:0.005%以下、 Ca:0.0005〜0.01%、 を含有し、さらに、 Nb:0.01〜0.05%、 V:0.01〜0.05%、 Cr:0.1〜0.5%、 B:0.0005〜0.005%、 のうちの1種または2種以上を含有し、残りが
Feとその他の不可避不純物からなる組成物(以
上重量%)を有する鋼を、 Ar3点以上870℃以下で仕上圧延し、 25℃/sec以上80℃/sec以下の速度で冷却し、 430℃未満350℃以上で巻取る、 ことを特徴とする微細パーライト組織を有する局
部延性のすぐれた高強度熱延鋼板の製造法。
[Claims] 1 C: 0.1 to 0.15%, Si: 1.5% or less, Mn: 0.5 to 2%, so. A: 0.1% or less, S: 0.005% or less, Ca: 0.0005 to 0.01%, and the rest is Fe and other unavoidable impurities. ℃ or less, cooled at a rate of 25℃/sec or more and 80℃/sec or less, and coiled at a temperature of less than 430℃ or more than 350℃.High strength with excellent local ductility and a fine pearlite structure. A method for manufacturing hot rolled steel sheets. 2 C: 0.01-0.15%, Si: 1.5% or less, Mn: 0.5-2%, so. Contains A: 0.1% or less, S: 0.005% or less, Ca: 0.0005~0.01%, and further contains Nb: 0.01~0.05%, V: 0.01~0.05%, Cr: 0.1~0.5%, B: 0.0005~ 0.005%, contains one or more of the following, and the rest is
A steel having a composition (wt%) consisting of Fe and other unavoidable impurities is finish rolled at 3 or more Ar points and 870°C or less, cooled at a rate of 25°C/sec or more and 80°C/sec or less, and then heated to 430°C. A method for producing a high-strength hot-rolled steel sheet having a fine pearlite structure and excellent local ductility, characterized by: coiling at a temperature of less than 350°C or more.
JP9600380A 1980-07-14 1980-07-14 Manufacture of hot-rolled high tensile steel plate having excellent local ductility Granted JPS5723025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9600380A JPS5723025A (en) 1980-07-14 1980-07-14 Manufacture of hot-rolled high tensile steel plate having excellent local ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9600380A JPS5723025A (en) 1980-07-14 1980-07-14 Manufacture of hot-rolled high tensile steel plate having excellent local ductility

Publications (2)

Publication Number Publication Date
JPS5723025A JPS5723025A (en) 1982-02-06
JPS6140015B2 true JPS6140015B2 (en) 1986-09-06

Family

ID=14152937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9600380A Granted JPS5723025A (en) 1980-07-14 1980-07-14 Manufacture of hot-rolled high tensile steel plate having excellent local ductility

Country Status (1)

Country Link
JP (1) JPS5723025A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811734A (en) * 1981-07-15 1983-01-22 Nippon Steel Corp Production of high-strength hot-rolled steel plate of superior workability and weldability
JPS60184630A (en) * 1984-02-29 1985-09-20 Nippon Steel Corp Manufacture of hot-rolled high-tension steel sheet having superior workability
JPS60184628A (en) * 1984-02-29 1985-09-20 Nippon Steel Corp Manufacture of hot-rolled high-tension steel sheet having superior workability
JPS6173829A (en) * 1984-09-17 1986-04-16 Nippon Steel Corp Manufacture of high tensile steel composed of ultrafine structure
JPH075970B2 (en) * 1989-12-18 1995-01-25 住友金属工業株式会社 High carbon steel sheet manufacturing method
CN101265553B (en) 2007-03-15 2011-01-19 株式会社神户制钢所 High strength hot rolled steel sheet with excellent press workability and method of manufacturing the same

Also Published As

Publication number Publication date
JPS5723025A (en) 1982-02-06

Similar Documents

Publication Publication Date Title
JP4644076B2 (en) High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof
JPH0127128B2 (en)
JP5045074B2 (en) High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JPH04337026A (en) Production of hot rolled high strength steel plate excellent in fatigue strength and fatigue crack propagation resistance
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH06145894A (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JPS6140015B2 (en)
JP4265582B2 (en) Hot-rolled steel sheet with excellent impact properties after quenching and method for producing the same
JPH0987798A (en) High tensile strength hot rolled steel plate, having superfine grain and excellent in ductility, toughness, fatigue characteristic, and strength-ductility balance, and its production
CN114086084A (en) Hot-rolled dual-phase steel and preparation method thereof
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JPH0225968B2 (en)
JPH11286742A (en) Manufacture of tapered steel plate
JPS6115929B2 (en)
JPWO2019203251A1 (en) Hot rolled steel sheet
JPS6411088B2 (en)
JPS63179020A (en) Production of steel sheet having excellent strength and toughness and small difference in sectional hardness in thickness direction of sheet
JPH01119617A (en) Production of steel sheet
JPS638164B2 (en)
JP4153580B2 (en) High-strength hot-rolled steel sheet with extremely excellent fatigue characteristics and method for producing the same
JP3366661B2 (en) Manufacturing method of high tensile cold rolled steel sheet with excellent deep drawability
JPH10287949A (en) (400 to 800) n/mm2 class high strength hot rolled steel plate, excellent in toughness and workability, and its production
JPS58130221A (en) Manufacture of hot rolling high tension steel plate for working