JPH01119617A - Production of steel sheet - Google Patents
Production of steel sheetInfo
- Publication number
- JPH01119617A JPH01119617A JP27499087A JP27499087A JPH01119617A JP H01119617 A JPH01119617 A JP H01119617A JP 27499087 A JP27499087 A JP 27499087A JP 27499087 A JP27499087 A JP 27499087A JP H01119617 A JPH01119617 A JP H01119617A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- cooling
- toughness
- casting
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 38
- 239000010959 steel Substances 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000001816 cooling Methods 0.000 claims abstract description 19
- 238000005096 rolling process Methods 0.000 claims abstract description 12
- 238000005266 casting Methods 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract 4
- 239000012535 impurity Substances 0.000 claims abstract 3
- 229910052742 iron Inorganic materials 0.000 claims abstract 3
- 229910052802 copper Inorganic materials 0.000 claims abstract 2
- 229910052759 nickel Inorganic materials 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910001566 austenite Inorganic materials 0.000 abstract description 19
- 230000009466 transformation Effects 0.000 abstract description 10
- 229910052797 bismuth Inorganic materials 0.000 abstract 1
- 229910000859 α-Fe Inorganic materials 0.000 description 13
- 230000000694 effects Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 239000010953 base metal Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/02—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は鋳造ままあるいは鋳造後表面性状を整える程度
の軽圧下圧延で、優れた特性を有する鋼板の製造方法に
関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a steel plate having excellent properties by light reduction rolling to improve the surface properties of the steel plate as cast or after casting.
[従来の技術]
鋼板の製造技術においては製造コストの低減のため工程
の省略、簡略化や直行化が強く指向されてきている。再
加熱工程の省略による鋳造と熱間圧延の直結化、さらに
は製品の厚さの鋳片に鋳造することによる熱間圧延の省
略などの思想も、その一つのあられれである。[Prior Art] In the manufacturing technology of steel plates, there has been a strong trend toward omitting, simplifying, and directing processes in order to reduce manufacturing costs. One example of this is the idea of directly linking casting and hot rolling by omitting the reheating process, and even omitting hot rolling by casting into slabs of the thickness of the product.
しかしながら鋳造ままあるいは鋳造後表面性状を整える
程度の軽い圧延を施す鋼板は、圧延による材質の造り込
み、すなわち圧延再結晶によるオーステナイトの微細化
が不可能となる。通常は旧オーステナイト粒界がフェラ
イト変態の優先核生成サイトとなる。However, in steel plates that are subjected to light rolling to adjust the surface properties as cast or after casting, it is impossible to improve the material quality by rolling, that is, to refine the austenite by rolling recrystallization. Prior austenite grain boundaries are usually the preferred nucleation sites for ferrite transformation.
このため鋳造ままの粗大な凝固オーステナイト粒からの
変態組織は、旧オーステナイト粒界は粗大なアシキュラ
ーフェライトとなり、また旧オーステナイト粒内もかな
り粗大なフェライトとなる。For this reason, the transformed structure from coarse solidified austenite grains as cast is such that the prior austenite grain boundaries become coarse acicular ferrite, and the interior of the prior austenite grains also becomes considerably coarse ferrite.
このような組織を有する鋼板の特性は一般にあまり良好
ではなく、特に低温靭性に劣る傾向がある。The properties of steel sheets having such a structure are generally not very good, and in particular they tend to be poor in low-temperature toughness.
[発明が解決しようとする問題点]
本発明は強度、靭性の優れた鋼板の製造法を提供するも
のである。[Problems to be Solved by the Invention] The present invention provides a method for manufacturing a steel plate with excellent strength and toughness.
[問題点を解決するための手段]
本発明は上記のような従来法の欠点を排除し、鋳造まま
あるいは鋳造後表面性状を整える程度の軽い圧延で、優
れた特性を有する鋼板を製造する方法を提供しようとす
るものである。[Means for Solving the Problems] The present invention eliminates the drawbacks of the conventional methods as described above, and provides a method for manufacturing steel sheets with excellent properties either as cast or by light rolling to improve the surface properties after casting. This is what we are trying to provide.
従来技術と本発明の冶金的な差異は、フェライト変態の
挙動である。従来、旧オーステナイト粒界がフェライト
変態の優先核生成サイトになるといわれている。このた
め今までの多くの技術は、再結晶域圧延によりオーステ
ナイト粒を微細化し、さらに未再結晶域圧延によりオー
ステナイト粒を偏平にし、単位体積あたりのオーステナ
イト粒界面積を増加させることを目的としてきた。The metallurgical difference between the prior art and the present invention is the behavior of ferrite transformation. Conventionally, it has been said that prior austenite grain boundaries become preferential nucleation sites for ferrite transformation. For this reason, many technologies to date have aimed to refine the austenite grains by rolling in the recrystallization zone, and then flatten the austenite grains by rolling in the non-recrystallization zone to increase the austenite grain boundary area per unit volume. .
ところが鋳造ままあるいは鋳造後表面性状を整える程度
の軽い圧延を施した鋼板のオーステナイト粒は粗大で、
その粒界面積は小さ(、変態フェライトはおのずと粗大
になる。However, the austenite grains in steel sheets as cast or lightly rolled to improve the surface texture after casting are coarse.
The grain boundary area is small (transformed ferrite naturally becomes coarse.
本発明では以上のようなオーステナイト粒界からのフェ
ライト変態を抑制し、オーステナイト粒内からの変態を
有効に利用し微細な最終組織とするものである。The present invention suppresses the above-described ferrite transformation from the austenite grain boundaries and effectively utilizes the transformation from within the austenite grains to form a fine final structure.
以下、本発明について詳細に説明する。The present invention will be explained in detail below.
まず本発明鋼の成分の限定理由について述べる。First, the reasons for limiting the components of the steel of the present invention will be described.
Cは鋼を強化するために不可欠の元素であって、0.0
3%未満では所要の強度が得られず、また、0.25%
超では母材および溶接部の靭性が損なわれるので0.0
3%以上0.25%以下と限定した。C is an essential element for strengthening steel, and 0.0
If it is less than 3%, the required strength cannot be obtained, and if it is less than 0.25%,
0.0 because the toughness of the base metal and weld zone will be impaired if
It was limited to 3% or more and 0.25% or less.
Slは脱酸元素および鋼の強化元素として有効であり0
.01%以上添加するが0.5%超では、加工性の劣化
を生じ、また鋼板表面性状を損なう。Sl is effective as a deoxidizing element and a steel strengthening element.
.. If it is added in an amount of 0.01% or more, but in excess of 0.5%, workability deteriorates and the surface quality of the steel sheet is impaired.
Mnは鋼の強化に有効であるが0.3%未満ではその効
果がなく、1.8%超では加工性が劣化する。Mn is effective in strengthening steel, but if it is less than 0.3%, it has no effect, and if it exceeds 1.8%, workability deteriorates.
Agは脱酸元素として添加されるが0.05%超ではそ
の効果が飽和するので上限を0.05%と限定する。Ag is added as a deoxidizing element, but its effect is saturated if it exceeds 0.05%, so the upper limit is limited to 0.05%.
Cuは鋼の耐食性と強度の向上に有効であるが、過度の
添加は溶接金属の熱間割れを起こすので1.5%以下と
する。Cu is effective in improving the corrosion resistance and strength of steel, but excessive addition causes hot cracking of the weld metal, so the content is limited to 1.5% or less.
Niは鋼の強度と低温靭性を高めるが、過度の添加は経
済的効果が得にくいので5%以下とする。Although Ni increases the strength and low-temperature toughness of steel, excessive addition makes it difficult to obtain an economical effect, so it is limited to 5% or less.
Cr、Mo、Bは鋼の焼き入れ性を高め、本発明に特徴
的な旧オーステナイト粒内の組織の安定化に有効である
。しかしながら過度の添加は変態時の熱間割れを生ずる
のでCr、Moについてはそれぞれ1%以下、Bについ
ては0.0025%以下とする。Cr, Mo, and B improve the hardenability of steel and are effective in stabilizing the structure within prior austenite grains, which is characteristic of the present invention. However, excessive addition causes hot cracking during transformation, so Cr and Mo are each kept at 1% or less, and B at 0.0025% or less.
Nb、Vは本発明においては圧延後の冷却過程において
、微細な炭窒化物として析出して鋼の強度を高めるが、
過度の添加は低温靭性を損なうので、それぞれ0.2%
以下、0.5%以下とする。In the present invention, Nb and V precipitate as fine carbonitrides in the cooling process after rolling and increase the strength of the steel.
Excessive addition impairs low-temperature toughness, so add 0.2% each.
Hereinafter, it shall be 0.5% or less.
TIはNb、Vと同様の効果以外に、凝固冷却過程にお
いて生成するTIの酸化物や窒化物が、オーステナイト
粒内からのフェライト変態の核として有効に作用する。In addition to the same effects as Nb and V, TI oxides and nitrides generated during the solidification and cooling process effectively act as nuclei for ferrite transformation from within the austenite grains.
しかしながら0.05%を超えると靭性の劣化が著しく
なるため上限を0.05%とする。However, if it exceeds 0.05%, the toughness deteriorates significantly, so the upper limit is set at 0.05%.
次に製造方法についてのべる。Next, we will talk about the manufacturing method.
本発明においては、以上述べたような、成分を満たした
溶鋼を、鋳造ままあるいは鋳造後表面性状を整える程度
の軽い圧延を施した後、その冷却途上で800℃から8
00℃以下までの間を2℃/秒以上50℃/秒以下の冷
却速度で冷却する。In the present invention, the molten steel that satisfies the above-mentioned composition is subjected to light rolling to adjust the surface properties as it is cast or after casting, and then rolled from 800°C to 80°C during cooling.
Cooling is performed at a cooling rate of 2° C./second or more and 50° C./second or less until the temperature reaches 00° C. or lower.
この冷却過程においてオーステナイト粒内から微細なフ
ェライトが変態するのである。ここで変態核となるのは
StやMnの酸化物、Mn51さらにTIを添加してい
る鋼については、TIの酸化物や窒化物などの単体ある
いは複合体である。。During this cooling process, fine ferrite is transformed from within the austenite grains. Here, the transformation nuclei are oxides of St and Mn, Mn51, and for steels to which TI is added, oxides or nitrides of TI, either alone or in combination. .
800℃以下の冷却速度は、大きすぎると組織が粗大な
ベイナイト化あるいはマルテンサイト化し、また小さす
ぎると粗大なフェライト・パーライト組織となり、本発
明の目的とするオーステナイト粒内に微細なフェライト
を生成させることができない。If the cooling rate of 800°C or less is too high, the structure will become coarse bainite or martensite, and if it is too low, it will become a coarse ferrite/pearlite structure, producing fine ferrite within the austenite grains that are the object of the present invention. I can't.
このため800℃から600℃以下までの間の冷却速度
を2℃/秒以上50℃/秒以下と限定する。For this reason, the cooling rate from 800°C to 600°C or less is limited to 2°C/second or more and 50°C/second or less.
[実 施 例]
第1表に示す成分の本発明鋼および比較鋼について実験
を行った結果を第2表に示す。[Example] Table 2 shows the results of experiments conducted on the invention steel and comparative steel having the components shown in Table 1.
なお表中アンダーラインを引いたものは本発明の条件に
合致しないものである。Note that the underlined items in the table do not meet the conditions of the present invention.
第1表において鋼A〜鋼Fは本発明鋼である。In Table 1, Steel A to Steel F are steels of the present invention.
鋼G、鋼HはそれぞれC,Stが過剰な比較鋼である。Steel G and Steel H are comparative steels with excessive C and St, respectively.
第2表の1〜8は本発明鋼であり優れた強度靭性を示し
ている。Steels 1 to 8 in Table 2 are the steels of the present invention and exhibit excellent strength and toughness.
9、11は800〜600℃以下の冷却速度が速すぎて
、組織が粗大なベイナイトあるいはマルテンサイトにな
ったため靭性が著しく劣っている。10゜12は逆に水
冷停止温度が高く冷却速度が遅すぎるため組織は旧オー
ステナイト粒界からのフェライト変態が主となった粗大
なフェライト・パーライトとなっており、靭性は悪い。In Nos. 9 and 11, the cooling rate at 800 to 600° C. or less was too fast, resulting in coarse bainite or martensite structure, resulting in significantly poor toughness. On the other hand, in the case of 10°12, the water cooling stop temperature is high and the cooling rate is too slow, so the structure is coarse ferrite/pearlite mainly caused by ferrite transformation from prior austenite grain boundaries, and the toughness is poor.
13.14はCあるいはSlが過剰な比較鋼の結果であ
るが靭性がかなり劣っている。13.14 is the result of comparative steel with excess C or Sl, but the toughness is considerably inferior.
以上のように9〜14は満足な強靭性かえられていない
。このように各条件のうちひとつでも本発明の範囲を逸
脱するときは、本発明の目的は達成されない。As mentioned above, samples 9 to 14 did not have satisfactory toughness. As described above, if even one of the conditions deviates from the scope of the present invention, the object of the present invention will not be achieved.
[発明の効果コ
以上述べたように本発明によれば、粗大な凝固オーステ
ナイト粒の粒内から微細な変態組織を生成させることに
よって、鋳造ままあるいは鋳造後表面性状を整える程度
の軽い圧延で、優れた特性を有する鋼板を製造すること
ができるので産業上極めて有用である。[Effects of the Invention] As described above, according to the present invention, by generating a fine transformed structure from within the grains of coarse solidified austenite grains, it is possible to improve It is extremely useful industrially because it allows the production of steel sheets with excellent properties.
代 理 人 弁理士 茶野木 立 夫手続補正書(
自発)
昭和63年2月19日Agent Patent Attorney Tatsuo Chanoki Procedural Amendment (
Voluntary) February 19, 1988
Claims (2)
るいは鋳造後表面性状を整える程度の軽圧下圧延を行っ
た後、その冷却途上において800℃から600℃以下
までの間を、2℃/秒以上50℃/秒以下の冷却速度で
冷却することを特徴とする鋼板の製造方法。(1) Steel consisting of C: 0.03 to 0.25%, Si: 0.01 to 0.5%, Mn: 0.3 to 1.8%, the balance being iron and unavoidable impurities in weight percent, After performing light reduction rolling to adjust the surface properties as cast or after casting, during the cooling process, the product is cooled from 800°C to 600°C at a cooling rate of 2°C/second or more and 50°C/second or less. A method of manufacturing a steel plate, characterized by the following.
純物よりなる鋼を、鋳造ままあるいは鋳造後表面性状を
整える程度の軽圧下圧延を行った後、その冷却途上にお
いて800℃から600℃以下までの間を、2℃/秒以
上50℃/秒以下の冷却速度で冷却することを特徴とす
る鋼板の製造方法。(2) C: 0.03-0.25%, Si: 0.01-0.5%, Mn: 0.3-1.8%, further Ag: ≦0.5%, Cu: ≦1.5%, Ni: ≦5%, Cr: ≦1%, Mo: ≦1%, Nb: ≦0.2%, Ti: ≦0.05%, V: ≦0.5%, B: ≦0.0025% of steel containing one or more of the following, with the balance consisting of iron and unavoidable impurities, as cast or after being lightly rolled to the extent that the surface texture is adjusted, and during cooling. A method for manufacturing a steel plate, characterized by cooling from 800°C to 600°C at a cooling rate of 2°C/second to 50°C/second.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27499087A JPH01119617A (en) | 1987-10-30 | 1987-10-30 | Production of steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27499087A JPH01119617A (en) | 1987-10-30 | 1987-10-30 | Production of steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01119617A true JPH01119617A (en) | 1989-05-11 |
Family
ID=17549367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27499087A Pending JPH01119617A (en) | 1987-10-30 | 1987-10-30 | Production of steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01119617A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995001459A1 (en) * | 1993-06-29 | 1995-01-12 | The Broken Hill Proprietary Company Limited | Strain-induced transformation to ultrafine microstructure in steel |
AU694990B2 (en) * | 1993-06-29 | 1998-08-06 | Broken Hill Proprietary Company Limited, The | Strain induced transformation to ultrafine microstructure in steel |
CN107236903A (en) * | 2017-06-28 | 2017-10-10 | 安徽华飞机械铸锻有限公司 | A kind of casting technique of alloy steel casting |
CN108486455A (en) * | 2018-04-25 | 2018-09-04 | 三明市金圣特种钢有限公司 | A kind of production method of steel-casting |
IT202000014629A1 (en) | 2020-06-18 | 2021-12-18 | Eni Spa | COMPOSITION OF PLASTIC MATERIAL AND PROCEDURE FOR THE TREATMENT OF PLASTIC MATERIALS TO FORM SUCH COMPOSITION. |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54127827A (en) * | 1978-03-28 | 1979-10-04 | Sumitomo Metal Ind Ltd | Production of low temperature steel |
-
1987
- 1987-10-30 JP JP27499087A patent/JPH01119617A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54127827A (en) * | 1978-03-28 | 1979-10-04 | Sumitomo Metal Ind Ltd | Production of low temperature steel |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995001459A1 (en) * | 1993-06-29 | 1995-01-12 | The Broken Hill Proprietary Company Limited | Strain-induced transformation to ultrafine microstructure in steel |
AU694990B2 (en) * | 1993-06-29 | 1998-08-06 | Broken Hill Proprietary Company Limited, The | Strain induced transformation to ultrafine microstructure in steel |
CN107236903A (en) * | 2017-06-28 | 2017-10-10 | 安徽华飞机械铸锻有限公司 | A kind of casting technique of alloy steel casting |
CN108486455A (en) * | 2018-04-25 | 2018-09-04 | 三明市金圣特种钢有限公司 | A kind of production method of steel-casting |
CN108486455B (en) * | 2018-04-25 | 2020-05-15 | 三明市金圣特种钢有限公司 | Production method of steel casting |
IT202000014629A1 (en) | 2020-06-18 | 2021-12-18 | Eni Spa | COMPOSITION OF PLASTIC MATERIAL AND PROCEDURE FOR THE TREATMENT OF PLASTIC MATERIALS TO FORM SUCH COMPOSITION. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6155572B2 (en) | ||
JPS605647B2 (en) | Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability | |
JPH0573803B2 (en) | ||
JPH01119617A (en) | Production of steel sheet | |
JPS625216B2 (en) | ||
JPS63235431A (en) | Manufacture of steel plate excellent in strength and toughness and reduced in acoustic anisotropy | |
JPH0225968B2 (en) | ||
JP3635803B2 (en) | Method for producing high-tensile steel with excellent toughness | |
JPS582570B2 (en) | Manufacturing method of non-tempered tough high tensile strength steel | |
JPS642647B2 (en) | ||
JPH03249128A (en) | Production of tough thick steel plate | |
JPH05295432A (en) | Production of steel plate having high strength and high toughness by online thermomechanical treatment | |
JPH0583607B2 (en) | ||
JPS6337166B2 (en) | ||
JPH0619109B2 (en) | Method for producing straight-rolled thick steel plate having excellent characteristics at low pressure reduction ratio | |
JPH0362501B2 (en) | ||
JPH0445223A (en) | Production of thick tough steel plate free from segregation | |
JP2832025B2 (en) | Manufacturing method of high-strength steel plate with excellent toughness | |
JPS586936A (en) | Production of hot-rolled high-tensile steel plate for working | |
JPH0757885B2 (en) | Manufacturing method of steel plate with excellent low temperature toughness | |
JPS5896819A (en) | Production of low ni alloy steel plate having excellent low-temperature toughness | |
JPS61157660A (en) | Nonageable cold rolled steel sheet for deep drawing and its manufacture | |
JPS61190016A (en) | Production of steel for large heat input welded construction | |
JPH01136929A (en) | Manufacture of thick steel plate having excellent low temperature toughness | |
JPS6259166B2 (en) |