JPS6139127B2 - - Google Patents

Info

Publication number
JPS6139127B2
JPS6139127B2 JP56077349A JP7734981A JPS6139127B2 JP S6139127 B2 JPS6139127 B2 JP S6139127B2 JP 56077349 A JP56077349 A JP 56077349A JP 7734981 A JP7734981 A JP 7734981A JP S6139127 B2 JPS6139127 B2 JP S6139127B2
Authority
JP
Japan
Prior art keywords
value
pass
rolling
mill
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56077349A
Other languages
Japanese (ja)
Other versions
JPS57193217A (en
Inventor
Yoichi Naganuma
Masato Uchida
Sumitada Kakimoto
Tadakatsu Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP56077349A priority Critical patent/JPS57193217A/en
Publication of JPS57193217A publication Critical patent/JPS57193217A/en
Publication of JPS6139127B2 publication Critical patent/JPS6139127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/78Control of tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/08Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel having one or more protrusions, i.e. only the mandrel plugs contact the rolled tube; Press-piercing mills
    • B21B17/12Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel having one or more protrusions, i.e. only the mandrel plugs contact the rolled tube; Press-piercing mills in a discontinuous process, e.g. plug-rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/06Rolling hollow basic material, e.g. Assel mills
    • B21B19/10Finishing, e.g. smoothing, sizing, reeling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】 この発明は継目無鋼管の製造工程のプラグミル
圧延において、素管ごとにロール圧下位置を操作
して、プラグミル出側の素管の平均肉厚値を一定
とする平均肉厚制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention provides an average wall thickness control method in which the average wall thickness of the raw pipe at the exit side of the plug mill is kept constant by manipulating the roll reduction position for each raw pipe in plug mill rolling in the manufacturing process of seamless steel pipes. This invention relates to a thickness control method.

マンネスマン・プラグミル製管法における継目
無鋼管圧延工程の基本構成は、一般にビレツトを
穿孔圧延機で穿孔し、延伸機(小径サイズでは必
ずしも必要ではない)で延伸して素管を得る工程
と、この素管をプラグミルで普通2パス圧延して
伸張する工程と、得られた長尺素管の内面をリー
リングミルで磨管する工程と、必要に応じて再加
熱する再熱炉工程と、該素管の外径をそろえるた
めサイジングミルで絞り圧延する最終工程からな
つている。したがつて製品の外径および肉厚はサ
イジングミルの出側において最終的に決まること
になる。製品の肉厚を一定にすることは、品質の
向上および材料または製品の歩留りの向上等の理
由から重要なことである。ところがサイジングミ
ルは製品の外径を一定にすることはできるが、製
品の肉厚を一定にすることは、従来はできず、最
近は多少の範囲で制御できるようになつた程度な
ので、専らプラグミルで制御するように工夫され
てきた。
The basic structure of the seamless steel pipe rolling process in the Mannesmann Plug Mill pipe manufacturing method generally consists of the steps of perforating a billet with a piercing mill and stretching it with a drawing machine (not necessarily necessary for small diameter sizes) to obtain a blank pipe; A step of rolling and elongating the raw tube in two passes with a plug mill, a step of polishing the inner surface of the obtained long tube with a reeling mill, a reheating furnace step of reheating as necessary, and The final process consists of reduction rolling using a sizing mill to make the outer diameter of the raw tubes uniform. Therefore, the outer diameter and wall thickness of the product are ultimately determined on the exit side of the sizing mill. It is important to keep the wall thickness of a product constant for reasons such as improving quality and improving material or product yield. However, although sizing mills can make the outer diameter of the product constant, it has not been possible to make the wall thickness of the product constant, and recently it has only been possible to control it within a certain range, so plug mills are used exclusively. It has been devised to control the

従来のプラグミルにおける平均肉厚を一定にす
る工夫には以下のようなものがあり、それぞれ問
題点を持つている。
Conventional plug mills have the following methods to maintain a constant average wall thickness, each of which has its own problems.

第1の工夫はプラグミル出側の熱間オンライン
肉厚計で直接素管の肉厚を測定して、フイードバ
ツクまたはフイードフオワードにてロール圧下位
置を制御する方法がある。この方法は現在まだ熱
間のオンライン肉厚計が実用化されていないので
研究開発段階に留まつている。その理由は、肉厚
計は放射線透過方式が有力であるが、高速度圧延
に反応するための時定数の確保、線源容量と遮蔽
装置、安全対策の設計、取付場所および素管の振
動等による計測精度の低下等の数多くの問題点を
持つているためである。
The first method is to directly measure the wall thickness of the raw pipe with a hot online wall thickness gauge at the exit side of the plug mill, and control the roll rolling position using feedback or feedback. This method remains at the research and development stage because hot online wall thickness gauges have not yet been put into practical use. The reason for this is that although the radiographic method is most likely to be used as a wall thickness gauge, it is necessary to ensure a time constant to respond to high-speed rolling, source capacity and shielding equipment, design of safety measures, installation location, and vibration of the raw tube. This is because there are many problems such as a decrease in measurement accuracy due to

第2の工夫は肉厚計の替りにパス毎に素管の長
さを計測して、平均肉厚値の代わりに断面積特性
値(例えば素管の単位長さの重量値)を使用する
制御において、ストリツプ圧延における板厚制御
方法を取り込んだ圧延荷重値とミルスプリング値
を組み合せて行う方法がある。現在、この方法が
主流であるが、問題点は圧延荷重値が圧延しない
と知ることができない要因であつて、一般にロー
ル圧下位置を計算する数式にそのまま取り入れる
ことができないことおよびフイードバツク制御す
るにも、最近の高速度圧延では3〜5秒の圧延時
間ではほとんど価値がないことである。それをカ
バーするために、圧延荷重値をすでに圧延された
実績値、素管の温度計測値や鋼種および圧延速度
等の圧延条件等を要因として予測する方法が検討
されており、諸々の予測式が提案されているもの
のいずれも数多くの要因を含んだ複雑な式の割り
に精度が出ないのが現状である。その理由は以下
のように指摘できる。
The second idea is to measure the length of the raw pipe for each pass instead of using a wall thickness gauge, and use the cross-sectional area characteristic value (for example, the weight value of the unit length of the raw pipe) instead of the average wall thickness value. For control, there is a method that combines the rolling load value and mill spring value, which incorporates the plate thickness control method in strip rolling. Currently, this method is the mainstream, but the problem is that the rolling force value cannot be known without rolling, so it cannot be directly incorporated into the formula for calculating the roll reduction position, and it is also difficult to use for feedback control. In recent high-speed rolling, a rolling time of 3 to 5 seconds is of little value. In order to cover this, methods are being considered to predict the rolling load value using factors such as actual rolled values, temperature measurement values of the raw pipe, rolling conditions such as steel type and rolling speed, etc., and various prediction formulas are being considered. Although these methods have been proposed, the current situation is that none of them are accurate considering the complex formulas that include many factors. The reason for this can be pointed out as follows.

本来この方法は板(ストリツプ)の板厚制御を
そのまま鋼管圧延に当てはめようとするものであ
り、次元が異なるものをそう簡単に結びつけがた
いこと、圧延理論が3次元の複雑な加工のため、
現在もほとんど使用段階にないこと、最も重要な
要因である圧延中の温度は素管の全長に亘つて計
測することが困難であり、また適切な代表値が選
択しずらいので、前工程出側の測定値を用いて圧
延中の温度を推定することにて代替したりしてい
ること、プラグミルスタンドのミルスプリング値
は板と違い、定義もむずかしく、かつ測定も困難
であり、かつそのミルスプリング値は定めること
ができたとしても、実際には一定値ではなく、カ
リバー径により異なり、複数カリバーロールなら
ば使用カリバー位置によつても異なり、およびロ
ール径によつても異なると言う複雑な値であるこ
と等枚挙にいとまがない状況である。
Originally, this method was intended to directly apply plate (strip) thickness control to steel pipe rolling, and it was difficult to connect items with different dimensions so easily, and since rolling theory involved three-dimensional and complex processing,
Currently, it is hardly in use, and the most important factor, the temperature during rolling, is difficult to measure over the entire length of the raw tube, and it is difficult to select an appropriate representative value. The mill spring value of a plug mill stand is different from that of a plate, and is difficult to define and measure. Even if the mill spring value can be determined, it is actually not a constant value and varies depending on the caliber diameter, and if multiple caliber rolls are used, it also varies depending on the position of the caliber used, and it also varies depending on the roll diameter. In this situation, there are too many examples of such values.

最近設置され始めたシングルカリバー方式のプ
ラグミルではスタンドの剛性値が高いので、圧延
荷重値の変化が肉厚にあまり影響しなくなり、圧
延荷重値を使用しない方法が注目されてきた。
In single-caliber plug mills that have recently begun to be installed, the stand has a high rigidity value, so changes in the rolling load value have little effect on wall thickness, and methods that do not use the rolling load value have been attracting attention.

この発明は上記事情に鑑みて、工夫されたもの
であつて、主に剛性値の高いスタンドを持つプラ
グミルを対象にして、圧延荷重値を使用せずに計
測しやすい要因にて、パス毎に出側の素管の平均
肉厚値を目標値とするロール圧下位置を計算し、
プラグミルに指令することを主旨とするプラグミ
ルの平均肉厚制御方法である。
This invention has been devised in view of the above circumstances, and is mainly aimed at plug mills with stands with high rigidity values, and it is possible to easily measure each pass without using the rolling force value. Calculate the roll reduction position using the average wall thickness value of the raw pipe on the exit side as the target value,
This is a plug mill average wall thickness control method whose main purpose is to give commands to the plug mill.

すなわち、本発明方法は、マンネスマン・プラ
グミル製管法のプラグミル出側の素管の平均肉厚
を一定とする制御法において、1パス目は前工程
であるエロンゲータミルでのロール圧下位置実績
値と該ミル出側の素管の断面積特性値の実績値
と、前回プラグミルで圧延された素管の圧延実績
値と、当該1パス出側の素管の断面積特性値の目
標値とを用いて、2パス目は1パス出側の素管の
断面積特性値の実績値と前回プラグミルで圧延さ
れた素管の圧延実績値と当該2パス出側の素管の
断面積特性値の目標値とを用いて、プラグミルで
今回圧延すべき素管の各パス出側の素管の平均肉
厚値が一定となるように各パスのロール圧下位置
を算出して設定することを特徴とするプラグミル
における管の平均肉厚制御方法である。
In other words, the method of the present invention is a control method in which the average wall thickness of the raw pipe on the outlet side of the plug mill in the Mannesmann plug mill pipe manufacturing method is kept constant, and the first pass is based on the actual value of the roll reduction position in the elongate mill, which is the previous process. and the actual value of the cross-sectional area characteristic value of the raw pipe on the exit side of the mill, the actual rolling value of the raw pipe rolled in the previous plug mill, and the target value of the cross-sectional area characteristic value of the raw pipe on the exit side of the first pass. The second pass is based on the actual value of the cross-sectional area characteristic value of the raw pipe on the exit side of the first pass, the actual rolling value of the raw pipe rolled in the previous plug mill, and the cross-sectional area characteristic value of the raw pipe on the exit side of the second pass. It is characterized by calculating and setting the roll rolling position of each pass using the target value so that the average wall thickness value of the raw pipe on the exit side of each pass of the raw pipe to be rolled this time in the plug mill is constant. This is a method for controlling the average wall thickness of pipes in plug mills.

第1図にこの発明の一実施例に係るフローチヤ
ート図を示す。素管の平均肉厚値の代わりに用い
る断面積特性値は素管の重量値と各ミルにおける
素管の長さ値の各実測値より算出した単位長さ当
りの重量(以下単位重量と略す)で表わす。素材
または素管は加熱炉1から出た後、1本ずつ秤量
機にて秤量され、秤量された重量Wは該素材また
は素管の番号と対応させて計算機2に入力され記
憶される。穿孔された該素管がプラグミル管4の
前工程であるエロンゲータミル3で圧延されたと
き、そのときのエロンゲータミル3のロール圧下
位置の実績値S0および圧延後出側の素管の長さ実
績値L1が計算機2に入力され記憶される。従つ
てプラグミルの前工程であるエロンゲータミル3
出側の単位重量は(W/L0)で表わされる。
FIG. 1 shows a flowchart according to an embodiment of the present invention. The cross-sectional area characteristic value used instead of the average wall thickness value of the raw pipe is the weight per unit length (hereinafter abbreviated as unit weight) calculated from the weight value of the raw pipe and each actual measurement value of the length value of the raw pipe at each mill. ). After the raw materials or raw tubes come out of the heating furnace 1, they are weighed one by one using a weighing machine, and the weighed weight W is input into the calculator 2 and stored in correspondence with the number of the raw material or raw tube. When the perforated raw pipe is rolled in the elongate mill 3 which is a pre-process of the plug mill pipe 4, the actual value S 0 of the roll rolling position of the elongate mill 3 at that time and the raw pipe on the exit side after rolling are The actual length value L1 is input to the computer 2 and stored. Therefore, the Elongate Mill 3, which is the pre-process of the plug mill,
The unit weight on the exit side is expressed as (W/L 0 ).

該素管がプラグミル前に達すると(例えばプラ
グミルパスラインにキツクインされるタイミング
にて)、すでに記憶されている情報とプラグミル
1パス出側の素管の単位重量の目標値(W/L)お よび該素管が使用するプラグにてすでに圧延され
た素管の単位重量の実績値を用い、1パス出側の
素管の単位重量が目標値となる1パス目のロール
圧下位置の計算値(S1)を算出して設定する。
When the raw tube reaches the front of the plug mill (for example, at the timing when it is inserted into the plug mill pass line), the already stored information and the target value of the unit weight of the raw tube at the exit side of the first pass of the plug mill (W/L 1 ) and the actual value of the unit weight of the raw pipe that has already been rolled by the plug used by the raw pipe, calculate the roll rolling position of the first pass where the target value is the unit weight of the raw pipe on the exit side of the first pass. Calculate and set the value (S 1 ).

S1 (i)=a1(W/L(i)+b1(W/L(i)+d1S0 (
i)
+c1 (i-1) …(1) ここで、c1は1パスの定数項、iは同一使用プラ
グでの圧延番号、ε(i-1)はすでに同一使用プラ
グで圧延された素管に関する補正項であり、例え
ば以下のように定義される。
S 1 (i) =a 1 (W/L 1 ) (i) +b 1 (W/L 0 ) (i) +d 1 S 0 (
i)
+c 1 + 1 (i-1) ...(1) where c 1 is a constant term for one pass, i is the rolling number with the same plug used, and ε (i-1) is the rolling number with the same plug used already. This is a correction term related to the original pipe, and is defined, for example, as follows.

その他 (i-1)=ε (i-1) (i-1)=α・ (i-1) 等数多くの形が考えられる。 Many other forms are possible, such as 1 (i-1) = ε 1 (i-1) , 1 (i-1) = α・1 (i-1) , etc.

(1)式における各係数a1,b1,c1,d1は(1)式の各
要因の実績値を重回帰分析にかけて求まる値を基
準にして決定される。また適応制御を用いて、上
記各係数は圧延毎に修正する場合にはさほど厳密
に決定しなくても良いので、さほど気をつかわな
くても良い。(1)式には定数項を含んでいることお
よび積分要素を取り込みたいこと等を考えて実際
には前回圧延時の実績値を取り入れた次の(3)式の
形で使用することが好ましい。
Each coefficient a 1 , b 1 , c 1 , and d 1 in equation (1) is determined based on the value obtained by subjecting the actual values of each factor in equation (1) to multiple regression analysis. Further, when each of the above coefficients is modified for each rolling using adaptive control, it is not necessary to determine them very strictly, so there is no need to be very careful. Considering that equation (1) includes a constant term and that we want to incorporate an integral element, it is actually preferable to use the following equation (3), which incorporates the actual values from the previous rolling. .

S1 (i)−S1 (i-1)=a1{(W/L(i)−(W/L(
i-1)
} +b1{(W/L(i)−(W/L(i-1)} +d1{S0 (i)−S0 (i-1)}+ (i-1) …(3) ここでS1 (i-1)は前素管のロール圧下位置の実績
値、iは同一使用プラグについての圧延連番号で
あり、それは最近のプラグ自動交換装置の付いた
プラグミルでは普通2セツトのプラグを使用して
おり、プラグのセツトにより圧延特性が異なるの
で、時系列分布を見ると第2図のようになり、単
なる圧延順で見ると変動が大きいがプラグセツト
毎にみると安定しているためである。
S 1 (i) −S 1 (i-1) = a 1 {(W/L 1 ) (i) −(W/L 1 ) (
i-1)
} +b 1 {(W/L 0 ) (i) −(W/L 0 ) (i-1) } +d 1 {S 0 (i) −S 0 (i-1) }+ 1 ( i-1) ...(3) Here, S 1 (i-1) is the actual value of the roll rolling position of the front blank pipe, i is the rolling serial number for the same plug used, and it is the same as that of the recent automatic plug changing device. Plug mills with attached plugs usually use two sets of plugs, and the rolling characteristics differ depending on the set of plugs, so if you look at the time series distribution, it will look like Figure 2.If you look at the simple rolling order, there will be large fluctuations, but the rolling characteristics will differ depending on the set of plugs. This is because each set is stable.

(3)式はロールやプラグの摩耗および摩擦係数の
経時変化はフイードバツク的に処理し、圧延状況
の変化には適応制御による係数の修正にて対応で
きるので精度高く、かつ高い稼動率を得ることが
できる。1パス圧延後、ロール圧下位置の実績値
(S1)および1パス出側の素管の長さ実績値
(L1)は計算機に入力し (i-1)を更新する。
Equation (3) handles wear of the rolls and plugs and changes in the friction coefficient over time in a feedback manner, and can respond to changes in rolling conditions by modifying the coefficient through adaptive control, making it possible to obtain high accuracy and high operating rates. I can do it. After 1-pass rolling, the actual value of the roll reduction position (S 1 ) and the actual length value of the raw pipe on the 1-pass exit side (L 1 ) are input into the computer and 1 (i-1) is updated.

2パス目は1パス出側の単位重量の実績値
(W/L(i)と2パス出側の単位重量の目標値(W
/L) および該素管が使用するプラグにてすでに圧延さ
れた素管の単位重量の実績値を用いて、2パス目
のロール圧下位置の計算値(S2)を算出して設定
する。
For the second pass, the actual value of the unit weight on the output side of the first pass (W/L 1 ) (i) and the target value of the unit weight on the output side of the second pass (W
/L 2 ) and the actual value of the unit weight of the raw pipe that has already been rolled with the plug used by the raw pipe, calculate and set the calculated value (S 2 ) of the roll rolling position for the second pass. .

S2 (i)=a2(W/L(i)+b2(W/L(i)+c2
(i-1) …(4) S2 (i)−S2 (i-1)=a2{(W/L(i)−(W/L
(i-1)} +b2{(W/L(i)−(W/L(i-1)} + (i-1) …(5) ここでi, (i-1)は1パス目の場合と同様の
方法により算出される補正項 1パス目の場合と同様の理由により、実際には(5)
式の形で使用することが好ましい。2パス圧延
後、ロール圧下位置の実績値(S2)および2パス
出側の素管の長さ実績値(L2)を計算機に入力し
て記憶しておく。
S 2 (i) =a 2 (W/L 2 ) (i) +b 2 (W/L 1 ) (i) +c 2
+ 2 (i-1) …(4) S 2 (i) −S 2 (i-1) =a 2 {(W/L 2 ) (i) −(W/L 2
) (i-1) } +b 2 {(W/L 1 ) (i) −(W/L 1 ) (i-1) } + 2 (i-1) …(5) Here, i, 2 (i -1) is a correction factor calculated using the same method as the first pass.For the same reason as the first pass, it is actually (5)
Preferably used in formula form. After two-pass rolling, the actual value of the roll reduction position (S 2 ) and the actual length value (L 2 ) of the raw pipe on the exit side of the two-pass are input into a computer and stored.

このような制御を繰り返す内、コンソールより
プラグ交換のタイミングとその時の使用プラグ径
の設定値が計算機に送られてくると、前述の補正
(i-1)および (i-1)をリセツトすると共
に前使用プラグと次の使用プラグの径差を計算
し、零でない場合には、その径差に従つてロール
圧下位置の計算値を修正する。
While repeating this kind of control, when the timing of plug replacement and the set value of the plug diameter to be used at that time are sent from the console to the computer, the above-mentioned correction terms 1 (i-1) and 2 (i-1) are added. At the same time as resetting, the diameter difference between the previously used plug and the next used plug is calculated, and if it is not zero, the calculated value of the roll reduction position is corrected according to the diameter difference.

またパス毎の出側の素管の単位重量の目標値の
差 {(W/L(i)−(W/L(i-1)}および{(W
/L(i)−(W/L(i-1 ) } は普通零であるが、サイジングミルにおける制御
との結合および定尺材圧延において、長さ確保を
重点にする場合には零でない値とすることもあ
る。
In addition, the difference in the target value of the unit weight of the raw pipe on the exit side for each pass {(W/L 1 ) (i) −(W/L 1 ) (i-1) } and {(W
/L 2 ) (i) −(W/L 2 ) (i-1 ) } is normally zero, but when securing the length is the priority in combination with control in a sizing mill and rolling of fixed length material, may be a non-zero value.

なおプラグミルでの圧延パス回数は通常は2回
であるが、3パスの場合も2パスの場合と同様の
方法により3パス目のロール圧下位置の算出と設
定を行うことができる。
Note that the number of rolling passes in a plug mill is usually two, but even in the case of three passes, the roll rolling position for the third pass can be calculated and set by the same method as in the case of two passes.

第3図および第4図は、実際の圧延データを用
いて前述の(1)式および(4)式の妥当性を検証した結
果を示す図表である。第3図の横軸はプラグミル
1パス出側の単位長さ当り重量の実測値であり、
縦軸は(1)式の右辺第1項を除く他の項に実績デー
タを代入して右辺第1項のW/L1を逆算して求
めた値である。図中のプロツトは、外径257mmの
パイプの実測単位重量に対応する計算単位重量を
示すものであり、角度45゜の中央線に対する偏差
が実測単位重量と計算単位重量の偏差を示す。こ
の図の意味するところは、(1)式の右辺第1項W/
L1に1パス出側の目標単位重量を与えて算出し
たロール圧下位置S1により圧延して得られる実測
単位重量は、目標単位重量に対して第3図に示さ
れる程度の偏差の範囲内に収まることを表わすも
のである。すなわち本発明の制御方法を適用しな
い場合に、1パス出側の実測単位重量が約4Kg/
m(46.5〜50.5Kg)の範囲に変動するのに対し
て、本発明の制御方法を適用した場合は実測単位
重量の変動範囲が約2Kg/m以下(図中破線で示
す偏差内)に収まることを意味しており、(1)式の
妥当性はこれによつて証明される。
FIG. 3 and FIG. 4 are charts showing the results of verifying the validity of the above-mentioned equations (1) and (4) using actual rolling data. The horizontal axis in Figure 3 is the actual measured value of weight per unit length on the outlet side of one pass of the plug mill.
The vertical axis is the value obtained by substituting the actual data into the terms other than the first term on the right side of equation (1) and back calculating W/L 1 in the first term on the right side. The plot in the figure shows the calculated unit weight corresponding to the measured unit weight of a pipe with an outer diameter of 257 mm, and the deviation from the center line at an angle of 45° shows the deviation between the measured unit weight and the calculated unit weight. What this figure means is that the first term on the right side of equation (1) W/
The actual unit weight obtained by rolling with the roll reduction position S 1 calculated by giving the target unit weight on the 1-pass exit side to L 1 is within the range of deviation from the target unit weight as shown in Figure 3. This means that it falls within the range of . In other words, when the control method of the present invention is not applied, the actual measured unit weight on the output side of one pass is approximately 4 kg/
m (46.5 to 50.5 Kg), whereas when the control method of the present invention is applied, the fluctuation range of the actual measured unit weight is within the range of approximately 2 Kg/m or less (within the deviation indicated by the broken line in the figure). This means that the validity of equation (1) is proved by this.

第4図も第3図と同様な表し方であり、横軸は
プラグミル2パス出側の単位長さ当り重量の実測
値であり、縦軸は(4)式の右辺第1項を除く他の項
に実績データを代入して右辺第1項のW/L2
逆算して求めた値である。図中のプロツトは、第
3図のものと同一のパイプの実測単位重量に対応
する計算単位重量を示すものであり、角度45゜の
中央線に対する偏差が実測単位重量と計算単位重
量の偏差を示す。この図の意味するところは、(4)
式の右辺第1項のW/L2に2パス出側の目標単
位重量を与えて算出したロール圧下位置S2により
圧延して得られる実測単位重量は、目標単位重量
に対して第4図に示される程度の偏差の範囲内に
収まることを表すものである。すなわち本発明の
制御方法を適用しない場合に2パス出側の実測単
位重量が約2Kg/m(44.5〜46.5Kg/m)の範囲
に変動するのに対して、本発明の制御方法を適用
した場合は実測単位重量の変動範囲が約1Kg/m
以下(図中1点鎖線で示す偏差内)に収まること
を意味しており、(4)式の妥当性はこれによつて証
明される。
Figure 4 is expressed in the same way as Figure 3, the horizontal axis is the actual measured value of weight per unit length on the plug mill 2-pass exit side, and the vertical axis is the weight excluding the first term on the right side of equation (4). This is the value obtained by substituting the actual data into the term and back calculating W/L 2 of the first term on the right side. The plot in the figure shows the calculated unit weight corresponding to the measured unit weight of the same pipe as in Figure 3, and the deviation from the center line at an angle of 45° is the deviation between the measured unit weight and the calculated unit weight. show. What this diagram means is (4)
The measured unit weight obtained by rolling with the roll reduction position S 2 calculated by giving the target unit weight on the 2-pass exit side to W/L 2 in the first term on the right side of the equation is as shown in Figure 4 with respect to the target unit weight. This means that the deviation is within the range shown in . In other words, when the control method of the present invention is not applied, the measured unit weight on the 2-pass outlet side fluctuates in the range of approximately 2 kg/m (44.5 to 46.5 Kg/m), whereas when the control method of the present invention is applied. In this case, the variation range of the actual measured unit weight is approximately 1Kg/m
This means that the deviation is within the following (within the deviation indicated by the dashed-dotted line in the figure), and the validity of equation (4) is thus proven.

以上述べた如く、本発明によれば、把握し難い
圧延荷重値を用いることなく、容易に入手でき
る、即ち計測しやすい要因を用いてロール圧下位
置を算出設定することによつて、平均肉厚値を一
定とする制御を高精度に行うことができるもので
ある。
As described above, according to the present invention, the average wall thickness is This allows highly accurate control to keep the value constant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による制御のフローチヤートで
あり、第2図はプラグ毎の圧延特性を説明するた
めの図、第3図および第4図は本発明の実施例で
用いた目標単位重量とロール圧下位置の関係式の
妥当性を示す実績データの例である。 1…加熱炉、2…計算機、3…エロンゲータミ
ル、4…プラグミル。
Fig. 1 is a flowchart of control according to the present invention, Fig. 2 is a diagram for explaining the rolling characteristics of each plug, and Figs. 3 and 4 show the target unit weight and This is an example of actual data showing the validity of the relational expression for the roll reduction position. 1...Heating furnace, 2...Calculator, 3...Elongate mill, 4...Plug mill.

Claims (1)

【特許請求の範囲】[Claims] 1 マンネスマン・プラグミル製管法のプラグミ
ル出側の素管の平均肉厚を一定とする制御法にお
いて、1パス目は前工程であるエロンゲータミル
でのロール圧下位置実績値と該ミル出側の素管の
断面積特性値の実績値と、同一プラグを使用して
前回プラグミルで圧延された素管の圧延実績値
と、当該1パス出側の素管の断面積特性値の目標
値とを用いて、2パス目は1パス出側の素管の断
面積特性値と同一プラグを使用して前回プラグミ
ルで圧延された素管の圧延実績値と当該2パス出
側の素管の断面積特性値の目標値とを用いて、プ
ラグミルで今回圧延すべき素管の各パス出側の素
管の平均肉厚値が一定となるように各パスのロー
ル圧下位置を算出して設定することを特徴とする
プラグミルにおける管の平均肉厚制御方法。
1 In the Mannesmann plug mill pipe manufacturing method, in which the average wall thickness of the raw pipe on the exit side of the plug mill is kept constant, the first pass is based on the actual value of the roll reduction position in the elongate mill, which is the previous process, and the actual value of the roll reduction position on the exit side of the mill. The actual value of the cross-sectional area characteristic value of the raw pipe, the actual rolling value of the raw pipe rolled in the plug mill last time using the same plug, and the target value of the cross-sectional area characteristic value of the raw pipe on the output side of the first pass. The second pass uses the characteristic value of the cross-sectional area of the raw pipe on the exit side of the first pass, the actual rolling value of the raw pipe rolled in the plug mill last time using the same plug, and the cross-sectional area of the raw pipe on the exit side of the second pass. Using the target value of the characteristic value, calculate and set the roll rolling position of each pass so that the average wall thickness value of the raw pipe on the exit side of each pass of the raw pipe to be rolled this time in the plug mill is constant. A method for controlling the average wall thickness of a pipe in a plug mill, which is characterized by:
JP56077349A 1981-05-23 1981-05-23 Mean thickness controlling method of pipe in plug mill Granted JPS57193217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56077349A JPS57193217A (en) 1981-05-23 1981-05-23 Mean thickness controlling method of pipe in plug mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56077349A JPS57193217A (en) 1981-05-23 1981-05-23 Mean thickness controlling method of pipe in plug mill

Publications (2)

Publication Number Publication Date
JPS57193217A JPS57193217A (en) 1982-11-27
JPS6139127B2 true JPS6139127B2 (en) 1986-09-02

Family

ID=13631431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56077349A Granted JPS57193217A (en) 1981-05-23 1981-05-23 Mean thickness controlling method of pipe in plug mill

Country Status (1)

Country Link
JP (1) JPS57193217A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137516A (en) * 1983-12-26 1985-07-22 Kawasaki Steel Corp Method of controlling thickness of tube stock in piercing rolling mill

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633117A (en) * 1979-08-28 1981-04-03 Kawasaki Steel Corp Automatic controlling method for wall thickness of seamless steel pipe
JPS5633118A (en) * 1979-08-28 1981-04-03 Kawasaki Steel Corp Automatic controlling method for wall thickness of seamless steel pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633117A (en) * 1979-08-28 1981-04-03 Kawasaki Steel Corp Automatic controlling method for wall thickness of seamless steel pipe
JPS5633118A (en) * 1979-08-28 1981-04-03 Kawasaki Steel Corp Automatic controlling method for wall thickness of seamless steel pipe

Also Published As

Publication number Publication date
JPS57193217A (en) 1982-11-27

Similar Documents

Publication Publication Date Title
CN100354053C (en) Method of manufacturing seamless tube.
JPS6139127B2 (en)
CN101264483B (en) Rolling control method for mandrel mill, rolling control device
JP2007050413A (en) Method and apparatus for controlling steel sheet width
US3468145A (en) Billet mill wherein the rolling gap is controlled during the penultimate pass and fixed during the final pass
JP7294228B2 (en) Rolling support model generation method, rolling support method, seamless steel pipe manufacturing method, machine learning device, and rolling support device
RU2189875C2 (en) Device for automatic control of strip flatness
JPH0665402B2 (en) Rolling method for raw pipe by mandrel mill
JPS6111686B2 (en)
JPS6059047B2 (en) Automatic wall thickness control method for seamless steel pipes
JPS6111128B2 (en)
JP2001179340A (en) Method for correcting tube by tube corrector with roller system
JPS6043805B2 (en) Outer diameter control method for pipe forming machine
JPS6357122B2 (en)
JPS5994514A (en) Method for controlling outer diameter in seizer
JP7311776B2 (en) Estimation method and calculation device for material properties in cold rolling, control method and control device, manufacturing method and manufacturing equipment for cold-rolled plate
JPS6150686B2 (en)
JPH08187504A (en) Manufacture of tapered steel sheet
JPS6115761B2 (en)
JP3618463B2 (en) Product cross-sectional shape automatic control device for steel bar rolling equipment
JP2950182B2 (en) Manufacturing method of tapered steel plate
JP3350294B2 (en) Control method and control device for tandem mill
JP2734308B2 (en) Rolling control method for seamless pipe
JPS60261614A (en) Thickness controlling method of seamless pipe
JPS6139125B2 (en)