JP3618463B2 - Product cross-sectional shape automatic control device for steel bar rolling equipment - Google Patents

Product cross-sectional shape automatic control device for steel bar rolling equipment Download PDF

Info

Publication number
JP3618463B2
JP3618463B2 JP13313296A JP13313296A JP3618463B2 JP 3618463 B2 JP3618463 B2 JP 3618463B2 JP 13313296 A JP13313296 A JP 13313296A JP 13313296 A JP13313296 A JP 13313296A JP 3618463 B2 JP3618463 B2 JP 3618463B2
Authority
JP
Japan
Prior art keywords
cross
rolling
sectional dimension
steel bar
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13313296A
Other languages
Japanese (ja)
Other versions
JPH09314210A (en
Inventor
龍彦 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13313296A priority Critical patent/JP3618463B2/en
Publication of JPH09314210A publication Critical patent/JPH09314210A/en
Application granted granted Critical
Publication of JP3618463B2 publication Critical patent/JP3618463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,棒鋼圧延設備の製品断面形状自動制御装置に係り,詳しくは,水平及び垂直圧延スタンドを交互に配置し,棒鋼を上記圧延スタンドに取り付けられたロールによって段階的に圧延する棒鋼圧延設備で,上記棒鋼が希望の断面形状となるように上記各ロールの間隙を自動制御する棒鋼圧延設備の製品断面形状自動制御装置に関するものである。
【0002】
【従来の技術】
棒鋼を圧延して希望の断面形状を有する製品に仕上げるために使用されている棒鋼圧延設備としては,水平及び垂直圧延スタンドを交互に配置し,棒鋼を上記圧延スタンドに取り付けられたロールによって段階的に圧延する,いわゆるタンデム圧延機が一般的である。そのタンデム圧延機を使用した棒鋼の圧延工程において,目標とする断面寸法の製品を得るために従来とられている方法は次のようなものである。
(1)まず,試圧延材を1〜2本圧延し,製品断面寸法をノギス等で測定する。
(2)上記製品断面寸法と目標断面寸法との差異を修正するために,オペレータが経験的に知り得た知識に基づいてロール間隙を修正する圧延スタンドとその修正量を決め,ロール間隙の修正を行う。その際,オペレータは幅広がり量を予測し,該幅広がり量を打ち消すために複数の圧延スタンドのロール間隙を修正しなければならない。
(3)上記(1),(2)の工程を,製品断面寸法と目標断面寸法との差異がなくなるまで,少なくとも1回,多いときには3〜4回繰り返し行う。
また,上記のようなオペレータの手作業による方法ではなく,圧延スタンドの様々な操作量を自動制御することによって希望の断面形状の製品を得るための断面寸法自動制御装置が提案されている。
例えば,特公昭50─39067号公報に提案されている装置は,操作対象とする圧延スタンド(最終の1スタンド,或いは最終の2スタンド)の入側及び出側に各々断面寸法測定装置を配置し,上記入側の断面寸法測定装置の測定結果に基づいて上記操作対象圧延スタンドを予測制御するとともに,出側の断面寸法測定装置の測定結果によって上記操作対象圧延スタンドの補正制御を行うものである。
また,特公昭61─32088号公報に提案されている装置は,例えば,最終の水平圧延スタンドの直後に断面寸法測定装置を配置し,ロール間隙量や圧延荷重からゲージメータ式により求めた天地寸法,上記断面寸法測定装置の測定結果,及び目標断面寸法を用いて,上記最終の水平圧延スタンドのロール間隙を修正することによって天地寸法を制御し,幅寸法については,上記断面寸法測定装置の測定結果を用いて,上記最終スタンド直前の垂直圧延スタンドの回転数の調整による張力制御によって調整するというものである。
【0003】
【発明が解決しようとする課題】
ところが,上記従来行われている方法は,人手に頼った試行錯誤によるものであり,問題点も多い。オペレータは,対象とする断面形状,棒鋼の材質,幅広がり量等の様々な条件を考慮し,しかも多数の圧延スタンドを修正対象としてロール間隙の修正を行わなければならないため,特別な技術や経験を必要とする。さらに,試圧延の繰り返しによって材料や時間の無駄が生じ,歩留り,稼働率が低下するという問題点もある。
また,上記いくつかの例を示した断面寸法自動制御装置については,下記のような問題点のために実用化されていないのが実状である。
上記特公昭50─39067号公報に提案されている装置では,スタンド間での断面寸法を測定しているが,圧延後の断面寸法測定に比べてスタンド間での断面寸法測定は不安定要素が多く,精度面で問題がある。さらに,この装置では幅広がりを考慮していないため,他スタンドの圧延との干渉によって目標断面寸法を得ることができない。
また,上記特公昭61─32088号公報に提案されている装置では,上述したように幅寸法の制御をスタンド間の張力制御によって行っている。本来,スタンド間張力は無張力であることが理想であり,この張力制御による断面寸法の制御方法では,正確な断面寸法制御ができない。
更に,上記特公昭50─39067号公報,及び上記特公昭61─32088号公報に提案されている両装置に共通する問題点としては,棒鋼の材料温度,材質等の材料条件を考慮していないという点が挙げられる。材料条件の違いによって製品断面寸法も変わってくるため,正確な断面形状制御を実現するためには該材料条件を考慮することが不可欠である。
本発明は,上記のようなさまざまな問題点を解決すべくなされたものであり,その目的とするところは,測定精度が不安定なスタンド間での断面寸法測定を行うことなく,またスタンド間張力制御による断面寸法修正を行うことなく,更に棒鋼の材料条件及び幅広がりを考慮して,正確に製品断面形状が目標断面形状と一致するようにロール間隙量を自動制御することによって,試圧延の繰り返しによる歩留り並びに稼働率の低下を改善し,特別な技術を持った熟練オペレータを必要としない棒鋼圧延設備の製品断面形状自動制御装置を提供することである。
【0004】
【課題を解決するための手段】
上記目的を達成するために本発明は,水平及び垂直圧延スタンドを交互に配置し,棒鋼を上記圧延スタンドに取り付けられたロールによって段階的に圧延する棒鋼圧延設備で,上記棒鋼が希望の断面形状となるように上記各ロールの間隙を自動制御する棒鋼圧延設備の製品断面形状自動制御装置において,製品の断面形状を規定する寸法項目毎に,圧延直後の棒鋼の断面寸法を測定する製品断面寸法測定手段と,上記寸法項目毎の棒鋼の目標断面寸法を設定する目標断面寸法設定手段と,上記寸法項目毎の上記目標断面寸法と上記製品断面寸法との差異を修正するための修正要領をルール化した修正ルールを記憶する修正ルール記憶手段と,上記目標断面寸法設定手段によって設定された目標断面寸法と,上記製品断面寸法測定手段によって測定された製品断面寸法との差異に基づいて,上記修正ルール記憶手段に記憶された修正ルールから,制御すべき圧延スタンドとそのロール間隙に関する修正要領を選定する修正要領選定手段と,上記修正要領に基づいて上記制御すべき圧延スタンドのロール間隙の修正量を計算し,上記制御すべき圧延スタンドに対してロール間隙の修正の指示を行うロール間隙調整手段とを具備してなることを特徴とする棒鋼圧延設備の製品断面形状自動制御装置として構成されている。
上記ロール間隙調整手段におけるロール間隙の修正量の計算は,影響係数を用いて行うのが良いが,更にその影響係数が,材料断面寸法測定手段によって得られる圧延前の棒鋼の断面寸法,材料温度測定手段によって得られる圧延前の棒鋼の温度,製品温度測定手段によって得られる圧延直後の棒鋼の温度,材質設定手段によって入力される棒鋼の材質,及び圧延スタンド毎の定数であるミル定数を考慮して演算されたものであれば,より高精度の制御を行うことが可能である。また,上記材料断面寸法,製品断面寸法,材料温度,製品温度,棒鋼の材質,及びミル定数それぞれの条件に対応した影響係数を,影響係数記憶手段に記憶させておくこともできる。そして,上記ロール間隙の修正量及び該修正によって得られた製品断面寸法を用いて影響係数を計算し,該計算値によって上記影響係数記憶手段に記憶された影響係数を更新することによって,該影響係数の精度を上げていくことが可能である。
更に,上記ロール間隙調整手段において,幅広がりを考慮してロール間隙の修正量を計算することによって,より高精度の制御を行うことが可能である。
【0005】
【作用】
本発明に係る棒鋼圧延設備の製品断面形状自動制御装置では,まず圧延直後の棒鋼の寸法項目毎の断面寸法が製品断面寸法測定手段によって測定される。測定精度が不安定なスタンド間での断面寸法測定は行っていない。また目標断面寸法設定手段では,寸法項目毎の目標断面寸法が入力されており,修正要領設定手段において,上記目標断面寸法と上記製品断面寸法との差異を求める。修正ルール記憶手段には,上記寸法項目毎の上記目標断面寸法と上記製品断面寸法との差異を修正するための修正要領をルール化した修正ルールが記憶されている。上記修正要領は,従来の人手に頼った試行錯誤による方法の中で,オペレータが経験によって蓄積してきたものである。上記修正要領設定手段は,上記寸法差異に基づいて,上記修正ルール記憶手段に記憶された修正ルールから,制御すべき圧延スタンドとそのロール間隙に関する修正要領を選定する。断面寸法の修正は全てこのロール間隙の修正によって行い,スタンド間張力修正による断面寸法修正は行わない。影響係数記憶手段には,材料断面寸法,製品断面寸法,材料温度,製品温度,棒鋼の材質,及び圧延スタンド毎の定数であるミル定数それぞれの条件に対応した影響係数が記憶されている。ロール間隙調整手段は,上記修正要領に基づいて,材料温度測定手段から得た材料温度,材料断面寸法測定手段から得た材料断面寸法,製品温度測定手段から得た製品温度,及び上記目標断面寸法設定手段によって設定された棒鋼の材質,上記ミル定数の各条件に対応する影響係数を上記影響係数記憶手段から取り出し,該影響係数を用いて,更に幅広がり量を考慮しながら上記制御すべき圧延スタンドに対するロール間隙修正量を計算する。このように,棒鋼の材料条件及び幅広がりを考慮して,ロール間隙修正量を計算している。更に上記ロール間隙調整手段は,上記制御すべき圧延スタンドとそれに対するロール間隙修正量に基づいて,ロール間隙修正の指示を行う。更に上記ロール間隙修正量,及びその修正によって得られた製品断面寸法を用いて影響係数が計算され,上記影響係数記憶手段に記憶された影響係数が更新される。
【0006】
【発明の実施の形態】
以下添付図面を参照して,本発明の実施の形態及び実施例につき説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係る棒鋼圧延設備の製品断面形状自動制御装置の概略構成を示すブロック図,図2は本発明の実施の形態に係る棒鋼圧延設備の製品断面形状自動制御装置の処理フローを示す図,図3は寸法項目の分類の一例を示す図,図4は天地寸法を修正寸法項目とする場合の修正要領を示す図,図5は板厚,ロール間隙と,圧延荷重の関係を表す図,図6は幅広がりの状態を示す図,図7は幅広がり量を計算する篠倉の式を示す図である。
まず図1を用いて,本実施の形態に係る棒鋼圧延設備の製品断面形状自動制御装置の概略構成を説明する。
【0007】
本実施の形態において製品断面形状自動制御装置を適用する棒鋼圧延設備は,水平圧延スタンド1H,垂直圧延スタンド2V,...,水平圧延スタンド11Hまで,水平,垂直圧延スタンドを交互に配置したタンデム圧延設備である。各圧延スタンドにはそれぞれ,ロール間隙の測定を行うロール間隙測定部12,及び後述するロール間隙調整部28の指示によってロール間隙の変更を行うロール間隙変更部13が取り付けられている。加熱炉14から抽出された棒鋼材料15は,上記水平圧延スタンド1Hから順次圧延され,最終の水平圧延スタンド11Hから製品棒鋼16となって出てくる。上記水平圧延スタンド1Hの直前には,圧延前の棒鋼材料15の温度を測定する材料温度測定部21と,圧延前の棒鋼材料15の断面寸法を測定する材料断面寸法測定部23が配置されている。また,上記最終水平圧延スタンド11Hの直後には,製品棒鋼16の温度を測定する製品温度測定部22と,製品棒鋼16の断面寸法を測定する製品断面寸法測定部24が配置されている。上記材料断面寸法測定部23や製品断面寸法測定部24には,光学式の検出部を測定対象物回りに回転させることによって精度よく断面寸法を測定することができる回転式寸法測定装置等を用いることができる。上記製品断面寸法測定部24によって測定された製品棒鋼16の断面寸法は,修正要領選定部25において,設定部(目標断面寸法設定手段の一例)27によって設定された目標断面寸法と比較され,寸法差異が求められる。また修正要領選定部25には,上記目標断面寸法と上記製品断面寸法との差異を修正するための修正要領をルール化した修正ルールを記憶する修正ルール記憶部26が繋がれており,上記修正要領選定部25は,上記寸法差異に対応する修正要領(制御すべき圧延スタンドとそのロール間隙)を該修正ルール記憶部26から選定し,ロール間隙調整部28に送る。上記ロール間隙調整部28には,上記材料温度測定部21,材料断面寸法測定部23,製品温度測定部22が繋がれており,それらから得た材料温度,材料断面寸法,製品温度,及び上記設定部27によって設定された棒鋼の材質,各圧延スタンドの定数であるミル定数の各条件に対応する影響係数を,影響係数記憶部29から取り出し,上記制御すべき圧延スタンドに対するロール間隙修正量を計算する。そして,制御すべき圧延スタンドのロール間隙変更部13に対して,ロール間隙修正の指示を行う。
【0008】
次に,本製品断面形状自動制御装置の主要部を構成する,上記修正ルール記憶部26に記憶される修正ルール,及び上記影響係数記憶部29に記憶される影響係数とそれを用いたロール間隙修正量の計算方法についてそれぞれ説明する。
まず,上記修正ルールについて説明する。上述したように,従来の棒鋼の圧延工程においては,目標とする断面寸法の製品を得るために,オペレータが多数の圧延スタンドを修正対象としてロール間隙の修正を行っている。オペレータは,目標とする断面寸法と試圧延結果の断面寸法を,例えば天地寸法,幅寸法,コーナ寸法といった寸法項目毎に比較する。オペレータは,差異のある寸法項目毎に,その差異を修正するのに有効な修正要領,即ちどの圧延スタンドのロール間隙量をどのように修正すれば上記差異を修正できるかというノウハウを経験的に持っており,上記寸法比較によってある寸法項目に差異が見つかれば,上記修正要領に従って手動で修正作業を行う。この,オペレータの持つ修正要領のノウハウ即ち寸法項目毎にその差異を修正するのに有効な修正要領(寸法項目毎の差異とその差異を修正するために指定される圧延スタンドとそのロール間隙の修正量に関する知識)をルール化したものが上記修正ルール記憶部26に記憶される修正ルールである。
上記寸法項目の分類の一例を図3に示す。製品形状ごとに16の寸法項目に分類している。
【0009】
次に上記修正要領の例として,例えば修正寸法項目が天地寸法である場合について説明する。図4に示すように,現状hの天地寸法を目標値hに修正するためには,ロール間隙量を修正する圧延スタンドとして最終圧延スタンド11Hを選択するのが,熟練オペレータの知識である。そして,選択された最終圧延スタンド11Hのロール間隙量をSからSに修正(修正量△Sの計算方法については後述する)することによって天地寸法hを目標値hに修正することが知られている。したがって,上記修正ルール記憶部26に記憶されている修正ルールの天地寸法の項目には,ロール間隙量を修正する圧延スタンドとしての最終圧延スタンド11H,及び,ロール間隙量をSからSへ修正するための手法が記憶されている。
上記天地寸法以外の寸法項目の場合も,すべてロール間隙量の修正によって寸法差異を修正することができる。一例として,コーナRの修正(コーナRが目標寸法よりも大きい)の場合の修正要領は,例えば,ロール間隙量を修正する圧延スタンドとして最終のひとつ前の圧延スタンド10Vとその2つ手前の圧延スタンド8Vを選択すること,及び,上記圧延スタンド10Vのロール間隙量を小さくし,上記圧延スタンド8Vのロール間隙量を大きくすることが修正ルール記憶部26に記憶されており,それぞれの圧延スタンドのロール間隙の修正量がロール間隙調整部28で演算され,それに基づいてロール間隙を修正することで,目標のコーナRにすることができる。
【0010】
次に,上記天地寸法の修正の場合を取り上げて,上記影響係数記憶部29に記憶される影響係数とそれを用いた上記ロール間隙調整部28におけるロール間隙修正量の計算方法について説明する。
まず,板厚(ロール入側,出側),ロール間隙量,圧延荷重の間には,図5に示すような関係がある。図5において,M,Qはそれぞれミル定数,材料の塑性定数のグラフであり,傾きm,qがそれぞれミル定数,塑性定数を表している。また,M,Qと横軸との交点は,それぞれロール間隙量,ロール入側板厚を示し,MとQの交点の横軸値がロール出側板厚を示している。図5は,ロール入側板厚一定(Q固定)で,ロール間隙量をSからSまで△S変化させたとき,ロール出側板厚がhからhまで△h変化することを示している。その関係を式で表すと,
△P=q×△h
△P=m×(△S−△h)
となり,上記2式より,
△S=((q+m)/m)×△h
という関係が導出される。上式はロール出側板厚変化量△hとロール間隙変化量△Sとの関係を表しており,((q+m)/m)を影響係数と呼ぶ。この関係式を用いることによって,上記天地寸法の修正の場合には,目標天地寸法修正量△hに対するロール間隙修正量△Sを求めることができる。
ここで,上記ミル定数mは圧延スタンド毎の定数であり,上記材料の塑性定数qは材料の材質,温度,形状,寸法等によって変化するため,上記影響係数は圧延時の条件によって異なる値となる。そこで,ロール間隙量を修正する圧延スタンド,材料の材質,温度,形状,寸法等の条件毎の影響係数を,予め上記影響係数記憶部29に記憶しておき,圧延時の条件に合った影響係数を用いて上記ロール間隙調整部28においてロール間隙修正量の計算を行う。
【0011】
また,上記ロール間隙調整部28では,上記のロール間隙修正量の計算に加えて,幅広がりによる影響を打ち消すためのロール間隙修正量の計算も行っている。幅広がりとは,図6に示すように,例えば厚さ方向寸法をhからhに圧延した場合に,幅方向寸法がBからBに広がる現象である。従って,上で説明したロール間隙の修正に加えて,上記幅広がり量を打ち消すためのロール間隙の修正を行わなければならない。例えば,水平圧延スタンドのロール間隙量を小さくする修正をすれば,同時に垂直圧延スタンドのロール間隙量も上記幅広がり量B−Bを打ち消す量だけ小さくする修正をしなければならない。熱間圧延の幅広がり量の計算には,図7に示す篠倉の式がよく用いられている。
また,上記のようにある圧延スタンドのロール間隙量を修正すれば,それに伴って圧延スタンド間の張力が変化し断面形状に影響を及ぼす。従って上記ロール間隙調整部28では,常に各圧延スタンド間の張力を無張力の状態に保つような圧延スタンドの回転数の自動制御を同時に行っているが,これは公知の様々な技術を利用することができる。
【0012】
次に,図2を用いて,本実施の形態に係る棒鋼圧延設備の製品断面形状自動制御装置の処理手順を順を追って説明する。
(ステップS31)まず,最終の水平圧延スタンド11Hから製品棒鋼16が出てくると,製品断面寸法測定部24によって製品断面寸法が測定される。
(ステップS32)修正要領選定部25において,設定部27に予め設定された目標断面寸法と上記製品断面寸法とを図3に示す寸法項目毎に比較し,差異を求める。
(ステップS33)上記寸法の差異の有無によって断面寸法修正の要否を判断する。
(ステップS34)断面寸法修正の必要がある場合には,上記寸法差異に基づいて,修正ルール記憶部26に記憶された上記修正ルールから,制御すべき圧延スタンドとそのロール間隙修正に関する修正要領を選定する。
(ステップS35)ロール間隙調整部28は,上記修正要領に基づいて,材料温度測定部21から得た材料温度,材料断面寸法測定部23から得た材料断面寸法,製品温度測定部22から得た製品温度,及び上記設定部27によって設定された棒鋼の材質,各圧延スタンドの定数であるミル定数の各条件に対応する影響係数を影響係数記憶部29から取り出す。
(ステップS36)上記影響係数を用いて,上記ロール間隙調整部28は上記制御すべき圧延スタンドに対するロール間隙修正量を計算する。
(ステップS37)更に上記ロール間隙調整部28は,上記制御すべき圧延スタンドとそれに対するロール間隙修正量に基づいて,ロール間隙変更部13に対してロール間隙変更の指示を行う。
(ステップS38)上記ロール間隙修正量(S36によって得られる),及びその修正によって得られた製品断面寸法(S31によって得られる)を用いて影響係数を計算し,上記影響係数記憶部29に記憶された影響係数を更新する。
以上の処理を繰り返すことによって,目標とする断面形状の製品を得ることができる。
【0013】
以上説明したように,本実施の形態に係る棒鋼圧延設備の製品断面形状自動制御装置は,スタンド間での断面寸法を使用せず,正確な断面寸法が安定して測定できる圧延直後の製品断面寸法を使用しており,また幅広がり量や棒鋼の材料条件を考慮してロール間隙修正量を計算しているため,製品断面寸法を正確に目標断面寸法に一致させることができる。また,熟練オペレータが蓄積してきた断面形状修正要領のノウハウを修正ルールとしてデータベース化している。従って特別な技術を持った熟練オペレータなしに正確に製品断面形状が目標断面形状と一致するようにロール間隙量を自動制御することができ,試圧延の繰り返しによる歩留り並びに稼働率の低下を改善することができる。
【0014】
【発明の効果】
本発明に係る棒鋼圧延設備の製品断面形状自動制御装置は,上記したように構成されているため,測定精度が不安定なスタンド間での断面寸法測定を行うことなく,またスタンド間張力制御による断面寸法修正を行うことなく,更に棒鋼の材料条件及び幅広がりを考慮して,正確に製品断面形状が目標断面形状と一致するようにロール間隙量を自動制御することによって,試圧延の繰り返しによる歩留り並びに稼働率の低下を改善し,特別な技術を持った熟練オペレータを必要としない棒鋼圧延設備の製品断面形状自動制御装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る棒鋼圧延設備の製品断面形状自動制御装置の概略構成を示すブロック図。
【図2】本発明の実施の形態に係る棒鋼圧延設備の製品断面形状自動制御装置の処理フローを示す図。
【図3】寸法項目の分類の一例を示す図。
【図4】天地寸法を修正寸法項目とする場合の修正要領を示す図。
【図5】板厚,ロール間隙と,圧延荷重の関係を表す図。
【図6】幅広がりの状態を示す図。
【図7】幅広がり量を計算する篠倉の式を示す図。
【符号の説明】
1H〜11H…第1〜第11水平圧延スタンド
2V〜10V…第2〜第10垂直圧延スタンド
12…ロール間隙測定部
13…ロール間隙変更部
14…加熱炉
15…棒鋼材料
16…製品棒鋼
21…材料温度測定部
22…製品温度測定部
23…材料断面寸法測定部
24…製品断面寸法測定部
25…修正要領選定部
26…修正ルール記憶部
27…設定部
28…ロール間隙調整部
29…影響係数記憶部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automatic product cross-sectional shape control apparatus for a steel bar rolling facility, and more specifically, a steel bar rolling facility in which horizontal and vertical rolling stands are alternately arranged and the bar steel is rolled stepwise by a roll attached to the rolling stand. Thus, the present invention relates to an automatic product cross-sectional shape control apparatus for a steel bar rolling facility that automatically controls the gaps between the rolls so that the bar has a desired cross-sectional shape.
[0002]
[Prior art]
The steel bar rolling equipment used to roll steel bars into a product with a desired cross-sectional shape is composed of horizontal and vertical rolling stands arranged alternately, and the bar steel is stepped by rolls attached to the rolling stands. So-called tandem rolling mills are generally used. In the rolling process of steel bars using the tandem rolling mill, a method conventionally used for obtaining a product having a target cross-sectional dimension is as follows.
(1) First, 1 to 2 test rolled materials are rolled, and the product cross-sectional dimensions are measured with calipers or the like.
(2) In order to correct the difference between the product cross-sectional dimension and the target cross-sectional dimension, a roll stand that corrects the roll gap and the amount of correction are determined based on knowledge that the operator has learned empirically. I do. At that time, the operator must predict the width spread amount and correct the roll gaps of a plurality of rolling stands in order to cancel the width spread amount.
(3) The steps (1) and (2) are repeated at least once, and 3-4 times when there is more, until there is no difference between the product sectional dimension and the target sectional dimension.
In addition, an automatic cross-sectional dimension control device for obtaining a product having a desired cross-sectional shape by automatically controlling various operation amounts of the rolling stand has been proposed instead of the above-described manual method by the operator.
For example, the apparatus proposed in Japanese Patent Publication No. 50-39067 has cross-sectional dimension measuring devices on the entry side and the exit side of the rolling stand to be operated (the last one stand or the last two stands). In addition to predictive control of the operation target rolling stand based on the measurement result of the entry-side cross-sectional dimension measurement device, correction control of the operation target rolling stand is performed based on the measurement result of the exit-side cross-sectional dimension measurement device. .
The apparatus proposed in Japanese Examined Patent Publication No. 61-32088 is, for example, a cross-sectional dimension measuring device placed immediately after the final horizontal rolling stand, and the top and bottom dimensions obtained by a gauge meter method from the roll gap amount and rolling load. The vertical dimension is controlled by correcting the roll gap of the final horizontal rolling stand using the measurement result of the cross-sectional dimension measuring apparatus and the target cross-sectional dimension, and the width dimension is measured by the cross-sectional dimension measuring apparatus. Using the result, adjustment is made by tension control by adjusting the number of rotations of the vertical rolling stand immediately before the final stand.
[0003]
[Problems to be solved by the invention]
However, the above-described conventional methods are based on trial and error relying on human hands and have many problems. The operator must take into account various conditions such as the target cross-sectional shape, material of the steel bar, and the amount of spread, and the roll gap must be corrected for a number of rolling stands. Need. In addition, repeated trial rolling causes waste of materials and time, resulting in reduced yield and operating rate.
In addition, the cross-sectional dimension automatic control devices shown in the above examples are not practically used due to the following problems.
In the apparatus proposed in the above Japanese Patent Publication No. 50-39067, the cross-sectional dimension between the stands is measured, but the cross-sectional dimension measurement between the stands is more unstable than the cross-sectional dimension measurement after rolling. There are many problems in accuracy. Furthermore, since this apparatus does not consider the breadth, the target cross-sectional dimension cannot be obtained due to interference with rolling of other stands.
In the apparatus proposed in Japanese Patent Publication No. 61-32088, the width dimension is controlled by the tension control between the stands as described above. Originally, it is ideal that the tension between the stands is no tension, and the cross-sectional dimension control method by this tension control cannot accurately control the cross-sectional dimension.
Furthermore, as a problem common to both apparatuses proposed in the above Japanese Patent Publication No. 50-39067 and the above Japanese Patent Publication No. 61-32088, the material conditions such as the material temperature and material of the steel bar are not considered. The point is mentioned. Since the cross-sectional dimensions of the product also change depending on the material conditions, it is essential to consider the material conditions in order to realize accurate cross-sectional shape control.
The present invention has been made to solve the various problems as described above. The object of the present invention is to perform cross-sectional dimension measurement between stands with unstable measurement accuracy and between stands. Trial rolling is performed by automatically controlling the roll gap so that the product cross-sectional shape exactly matches the target cross-sectional shape without considering the cross-sectional dimensions by tension control and taking into consideration the material conditions and width expansion of the steel bar. It is to provide a product cross-sectional shape automatic control device for a steel bar rolling facility that improves the yield and reduction of the operating rate due to repetition of the above, and does not require a skilled operator with special technology.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a steel bar rolling facility in which horizontal and vertical rolling stands are alternately arranged, and the steel bar is rolled stepwise by a roll attached to the rolling stand. In the product cross-sectional shape automatic control device of the steel bar rolling equipment that automatically controls the gap between each roll, the cross-sectional dimension of the product immediately after rolling is measured for each dimension item that defines the cross-sectional shape of the product. Rules for measuring means, target cross-sectional dimension setting means for setting the target cross-sectional dimension of the bar for each dimension item, and correction procedures for correcting the difference between the target cross-sectional dimension for each dimension item and the product cross-sectional dimension Correction rule storage means for storing the modified correction rules, the target cross-sectional dimension set by the target cross-sectional dimension setting means, and the product cross-sectional dimension measuring means Based on the difference from the determined product cross-sectional dimension, the correction procedure selection means for selecting the correction procedure for the rolling stand to be controlled and its roll gap from the correction rules stored in the correction rule storage means, and the correction procedure described above And a roll gap adjusting means for calculating a correction amount of the roll gap of the rolling stand to be controlled based on the above and instructing the rolling stand to be controlled to correct the roll gap. It is configured as an automatic product cross-sectional shape control device for a steel bar rolling facility.
The calculation of the amount of correction of the roll gap in the roll gap adjusting means is preferably performed using the influence coefficient. The influence coefficient is further calculated based on the cross-sectional dimension of the steel bar before rolling and the material temperature obtained by the material cross-sectional dimension measuring means. Consider the temperature of the steel bar before rolling obtained by the measuring means, the temperature of the steel bar immediately after rolling obtained by the product temperature measuring means, the material of the steel bar input by the material setting means, and the mill constant which is a constant for each rolling stand. Therefore, it is possible to perform more accurate control. In addition, the influence coefficient storage means can store the influence coefficient corresponding to the conditions of the material cross-sectional dimension, product cross-sectional dimension, material temperature, product temperature, steel bar material, and mill constant. Then, the influence coefficient is calculated using the correction amount of the roll gap and the cross-sectional dimension of the product obtained by the correction, and the influence coefficient stored in the influence coefficient storage means is updated with the calculated value. It is possible to increase the accuracy of the coefficient.
Further, in the roll gap adjusting means, it is possible to perform more accurate control by calculating the correction amount of the roll gap in consideration of the width expansion.
[0005]
[Action]
In the product cross-sectional shape automatic control device for the steel bar rolling facility according to the present invention, first, the cross-sectional dimension for each dimension item of the steel bar immediately after rolling is measured by the product cross-sectional dimension measuring means. Cross-sectional dimensions are not measured between stands with unstable measurement accuracy. The target cross-sectional dimension setting means inputs the target cross-sectional dimension for each dimension item, and the correction procedure setting means obtains the difference between the target cross-sectional dimension and the product cross-sectional dimension. The correction rule storage means stores a correction rule in which a correction procedure for correcting a difference between the target cross-sectional dimension and the product cross-sectional dimension for each dimension item is ruled. The above correction procedure has been accumulated by the operator through experience in the conventional method of trial and error relying on human hands. The correction procedure setting means selects a correction procedure related to the rolling stand to be controlled and its roll gap from the correction rules stored in the correction rule storage means based on the dimensional difference. All cross-sectional dimensions are corrected by correcting the roll gap, and cross-sectional dimensions are not corrected by adjusting the tension between the stands. The influence coefficient storage means stores the influence coefficients corresponding to the conditions of the material cross-sectional dimension, product cross-sectional dimension, material temperature, product temperature, steel bar material, and mill constant, which is a constant for each rolling stand. Based on the above correction procedure, the roll gap adjusting means determines the material temperature obtained from the material temperature measuring means, the material sectional dimension obtained from the material sectional dimension measuring means, the product temperature obtained from the product temperature measuring means, and the target sectional dimension. The influence coefficient corresponding to each condition of the material of the steel bar set by the setting means and the mill constant is extracted from the influence coefficient storage means, and the rolling to be controlled is performed using the influence coefficient and further considering the width spread amount. Calculate the roll gap correction for the stand. In this way, the roll gap correction amount is calculated in consideration of the material conditions and width expansion of the steel bar. Further, the roll gap adjusting means issues a roll gap correction instruction based on the rolling stand to be controlled and the roll gap correction amount corresponding to the rolling stand. Further, the influence coefficient is calculated using the roll gap correction amount and the product cross-sectional dimension obtained by the correction, and the influence coefficient stored in the influence coefficient storage means is updated.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and examples of the present invention will be described below with reference to the accompanying drawings for understanding of the present invention. It should be noted that the following embodiments and examples are examples embodying the present invention and do not limit the technical scope of the present invention.
FIG. 1 is a block diagram showing a schematic configuration of a product cross-sectional shape automatic control device for a steel bar rolling facility according to an embodiment of the present invention. FIG. 2 is a product cross-sectional shape of a steel bar rolling facility according to an embodiment of the present invention. FIG. 3 is a diagram showing an example of the processing flow of the automatic control device, FIG. 3 is a diagram showing an example of the classification of dimension items, FIG. 4 is a diagram showing the correction procedure when the vertical dimension is a correction dimension item, and FIG. And FIG. 6 is a diagram showing the state of width expansion, and FIG. 7 is a diagram showing Shinokura's formula for calculating the amount of width expansion.
First, a schematic configuration of a product cross-sectional shape automatic control device for a steel bar rolling facility according to the present embodiment will be described with reference to FIG.
[0007]
In this embodiment, the steel bar rolling equipment to which the product cross-sectional shape automatic control device is applied includes a horizontal rolling stand 1H, a vertical rolling stand 2V,. . . , A tandem rolling facility in which horizontal and vertical rolling stands are alternately arranged up to the horizontal rolling stand 11H. Each rolling stand is provided with a roll gap measuring unit 12 for measuring the roll gap and a roll gap changing unit 13 for changing the roll gap according to instructions from a roll gap adjusting unit 28 described later. The bar material 15 extracted from the heating furnace 14 is sequentially rolled from the horizontal rolling stand 1H and comes out as a product bar 16 from the final horizontal rolling stand 11H. Immediately before the horizontal rolling stand 1H, a material temperature measuring unit 21 for measuring the temperature of the steel bar material 15 before rolling and a material cross-sectional dimension measuring unit 23 for measuring the cross-sectional dimension of the steel bar material 15 before rolling are arranged. Yes. Further, immediately after the final horizontal rolling stand 11H, a product temperature measuring unit 22 for measuring the temperature of the product bar 16 and a product cross-sectional dimension measuring unit 24 for measuring the cross-sectional dimension of the product bar 16 are arranged. As the material cross-sectional dimension measuring unit 23 and the product cross-sectional dimension measuring unit 24, a rotary dimension measuring apparatus or the like that can accurately measure a cross-sectional dimension by rotating an optical detection unit around a measurement object is used. be able to. The cross-sectional dimension of the product bar 16 measured by the product cross-sectional dimension measuring unit 24 is compared with the target cross-sectional dimension set by the setting unit (an example of the target cross-sectional dimension setting means) 27 in the correction point selecting unit 25 to determine the dimension. Differences are required. Further, the correction procedure selection unit 25 is connected to a correction rule storage unit 26 for storing a correction rule in which a correction procedure for correcting a difference between the target cross-sectional dimension and the product cross-sectional dimension is ruled. The procedure selection unit 25 selects a correction procedure (a rolling stand to be controlled and its roll gap) corresponding to the dimensional difference from the correction rule storage unit 26 and sends it to the roll gap adjustment unit 28. The roll gap adjusting unit 28 is connected to the material temperature measuring unit 21, the material cross-sectional dimension measuring unit 23, and the product temperature measuring unit 22. The influence coefficient corresponding to each condition of the material of the steel bar set by the setting section 27 and the mill constant which is a constant of each rolling stand is taken out from the influence coefficient storage section 29, and the roll gap correction amount for the rolling stand to be controlled is calculated. calculate. Then, the roll gap correction unit 13 of the rolling stand to be controlled is instructed to correct the roll gap.
[0008]
Next, the correction rule stored in the correction rule storage unit 26, the influence coefficient stored in the influence coefficient storage unit 29, and the roll gap using the correction rule, which constitute the main part of the product sectional shape automatic control device, are described. Each of the correction amount calculation methods will be described.
First, the correction rule will be described. As described above, in the conventional steel bar rolling process, in order to obtain a product having a target cross-sectional dimension, the operator corrects the roll gap with a number of rolling stands as correction targets. The operator compares the target cross-sectional dimension and the cross-sectional dimension of the trial rolling result for each dimension item such as a vertical dimension, a width dimension, and a corner dimension. The operator empirically knows how to correct the difference for each dimension item that has a difference, that is, how to correct the above difference by how to correct the roll clearance of which rolling stand. If there is a difference in a dimensional item by the above dimensional comparison, the correction work is manually performed according to the above correction procedure. This correction procedure know-how, that is, the correction procedure effective for correcting the difference for each dimension item (difference for each dimension item and the correction of the rolling stand and the roll gap specified to correct the difference) A correction rule stored in the correction rule storage unit 26 is a rule of knowledge about the quantity.
An example of the classification of the dimension items is shown in FIG. Each product shape is classified into 16 dimension items.
[0009]
Next, as an example of the above correction procedure, for example, a case where the correction dimension item is a vertical dimension will be described. As shown in FIG. 4, in order to correct the top and bottom dimensions of the current h 0 to the target value h 1 , it is the knowledge of a skilled operator that the final rolling stand 11H is selected as a rolling stand for correcting the roll gap amount. . Then, the top / bottom dimension h 0 is corrected to the target value h 1 by correcting the roll gap amount of the selected final rolling stand 11H from S 0 to S 1 (the calculation method of the correction amount ΔS will be described later). It has been known. Thus, in the item of the vertical dimension of the correction rule stored in the modifying rule storing section 26, the final rolling stand 11H as rolling stand to correct the roll gap amounts, and, the roll gap amount from S 0 to S 1 A technique for correction is stored.
In the case of dimension items other than the top and bottom dimensions, the dimensional difference can be corrected by correcting the roll gap amount. As an example, the correction procedure for correcting the corner R (the corner R is larger than the target dimension) is, for example, the last rolling stand 10V as the rolling stand for correcting the roll gap amount and the rolling preceding the two. Selecting the stand 8V, and reducing the roll gap amount of the rolling stand 10V and increasing the roll gap amount of the rolling stand 8V are stored in the correction rule storage unit 26. The amount of correction of the roll gap is calculated by the roll gap adjustment unit 28, and the roll corner is corrected based on the calculated amount, so that the target corner R can be obtained.
[0010]
Next, taking the case of correction of the top and bottom dimensions, an influence coefficient stored in the influence coefficient storage unit 29 and a method for calculating the roll gap correction amount in the roll gap adjustment unit 28 using the influence coefficient will be described.
First, there is a relationship as shown in FIG. 5 among the plate thickness (roll entry side, exit side), roll gap amount, and rolling load. In FIG. 5, M and Q are graphs of the mill constant and the plastic constant of the material, respectively, and the slopes m and q represent the mill constant and the plastic constant, respectively. Further, the intersections of M and Q and the horizontal axis indicate the roll gap amount and the roll entry side plate thickness, respectively, and the horizontal axis value of the intersection of M and Q indicates the roll exit side plate thickness. FIG. 5 shows that when the roll entry side plate thickness is constant (Q fixed) and the roll gap amount is changed by ΔS from S 0 to S 1 , the roll outlet side plate thickness changes from h 0 to h 1 by Δh. ing. The relationship is expressed by an expression:
ΔP = q × Δh
ΔP = m × (ΔS−Δh)
From the above two formulas,
ΔS = ((q + m) / m) × Δh
This relationship is derived. The above equation represents the relationship between the roll outlet side plate thickness change amount Δh and the roll gap change amount ΔS, and ((q + m) / m) is called an influence coefficient. By using this relational expression, in the case of correction of the top and bottom dimensions, the roll gap correction amount ΔS with respect to the target top and bottom dimension correction amount Δh can be obtained.
Here, the mill constant m is a constant for each rolling stand, and the plastic constant q of the material varies depending on the material, temperature, shape, dimensions, etc., and therefore the influence coefficient varies depending on the rolling conditions. Become. Therefore, the influence coefficient for each condition such as the rolling stand for correcting the roll gap, the material quality, temperature, shape, dimensions, etc. is stored in the influence coefficient storage unit 29 in advance, and the influence according to the rolling condition is satisfied. The roll gap adjustment unit 28 calculates the roll gap correction amount using the coefficient.
[0011]
In addition to the calculation of the roll gap correction amount described above, the roll gap adjustment unit 28 also calculates a roll gap correction amount for canceling the influence of the widening. As shown in FIG. 6, the width expansion is a phenomenon in which, for example, when the thickness direction dimension is rolled from h 0 to h 1 , the width direction dimension increases from B 0 to B 1 . Therefore, in addition to the above-described correction of the roll gap, it is necessary to correct the roll gap in order to cancel out the width spread amount. For example, if the correction is made to reduce the roll gap amount of the horizontal rolling stand, the roll gap amount of the vertical rolling stand must also be corrected to reduce the width spreading amount B 1 -B 0 by an amount that cancels the width expansion amount B 1 -B 0 . The Shinokura formula shown in FIG. 7 is often used to calculate the width of hot rolling.
Moreover, if the roll gap amount of a certain rolling stand is corrected as described above, the tension between the rolling stands changes accordingly, and the cross-sectional shape is affected. Therefore, the roll gap adjusting unit 28 simultaneously performs automatic control of the number of rotations of the rolling stand so as to always keep the tension between the rolling stands in a non-tensioned state. This uses various known techniques. be able to.
[0012]
Next, the processing procedure of the automatic product cross-sectional shape control apparatus for the steel bar rolling facility according to the present embodiment will be described in order with reference to FIG.
(Step S31) First, when the product bar 16 comes out of the final horizontal rolling stand 11H, the product cross-sectional dimension measuring unit 24 measures the product cross-sectional dimension.
(Step S32) The correction point selection unit 25 compares the target cross-sectional dimension preset in the setting unit 27 with the product cross-sectional dimension for each dimension item shown in FIG.
(Step S33) The necessity of cross-sectional dimension correction is determined based on the presence or absence of the above-described dimension difference.
(Step S34) When there is a need for cross-sectional dimension correction, based on the dimensional difference, a correction procedure regarding the rolling stand to be controlled and its roll gap correction is determined from the correction rule stored in the correction rule storage unit 26. Select.
(Step S35) Based on the above correction procedure, the roll gap adjusting unit 28 is obtained from the material temperature obtained from the material temperature measuring unit 21, the material sectional dimension obtained from the material sectional dimension measuring unit 23, and the product temperature measuring unit 22. The influence coefficient corresponding to each condition of the product temperature, the material of the bar set by the setting unit 27, and the mill constant which is a constant of each rolling stand is taken out from the influence coefficient storage unit 29.
(Step S36) Using the influence coefficient, the roll gap adjusting unit 28 calculates a roll gap correction amount for the rolling stand to be controlled.
(Step S37) Further, the roll gap adjusting unit 28 instructs the roll gap changing unit 13 to change the roll gap based on the rolling stand to be controlled and the roll gap correction amount corresponding thereto.
(Step S38) The influence coefficient is calculated using the roll gap correction amount (obtained by S36) and the product cross-sectional dimension obtained by the correction (obtained by S31), and is stored in the influence coefficient storage unit 29. Update the affected coefficient.
By repeating the above processing, a product having a target cross-sectional shape can be obtained.
[0013]
As explained above, the product cross-sectional shape automatic control device of the steel bar rolling mill according to the present embodiment does not use cross-sectional dimensions between stands, and the product cross-section immediately after rolling can accurately measure the cross-sectional dimensions. Because the dimensions are used, and the roll gap correction amount is calculated taking into account the width spread and material conditions of the steel bar, the product cross-sectional dimension can be accurately matched to the target cross-sectional dimension. In addition, the know-how of cross-sectional shape correction procedures accumulated by skilled operators is compiled into a database as correction rules. Therefore, the roll gap amount can be automatically controlled so that the product cross-sectional shape exactly matches the target cross-sectional shape without a skilled operator having special technology, and the yield and operating rate decrease due to repeated trial rolling is improved. be able to.
[0014]
【The invention's effect】
Since the product cross-sectional shape automatic control device for the steel bar rolling mill according to the present invention is configured as described above, the cross-sectional dimension measurement between the stands with unstable measurement accuracy is not performed, and the tension control between the stands is used. By adjusting the roll gap amount automatically so that the product cross-sectional shape exactly matches the target cross-sectional shape without considering cross-sectional dimension correction and taking into consideration the material conditions and width expansion of the bar steel, It is possible to provide a product cross-sectional shape automatic control device for a steel bar rolling facility that can improve yield and decrease in operating rate and does not require a skilled operator having special techniques.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of a product cross-sectional shape automatic control device for a steel bar rolling facility according to an embodiment of the present invention.
FIG. 2 is a diagram showing a processing flow of a product cross-sectional shape automatic control device for a steel bar rolling facility according to an embodiment of the present invention.
FIG. 3 is a diagram showing an example of classification of dimension items.
FIG. 4 is a diagram showing a correction procedure when a vertical dimension is a correction dimension item.
FIG. 5 is a diagram showing a relationship between a plate thickness, a roll gap, and a rolling load.
FIG. 6 is a diagram showing a state of widening.
FIG. 7 is a diagram showing Shinokura's formula for calculating a width spread amount;
[Explanation of symbols]
1H to 11H ... 1st to 11th horizontal rolling stands 2V to 10V ... 2nd to 10th vertical rolling stands 12 ... Roll gap measuring part 13 ... Roll gap changing part 14 ... Heating furnace 15 ... Bar material 16 ... Product bar 21 ... Material temperature measurement unit 22 ... Product temperature measurement unit 23 ... Material cross-sectional dimension measurement unit 24 ... Product cross-sectional dimension measurement unit 25 ... Correction point selection unit 26 ... Correction rule storage unit 27 ... Setting unit 28 ... Roll gap adjustment unit 29 ... Influence coefficient Memory

Claims (5)

水平及び垂直圧延スタンドを交互に配置し,棒鋼を上記圧延スタンドに取り付けられたロールによって段階的に圧延する棒鋼圧延設備で,上記棒鋼が希望の断面形状となるように上記各ロールの間隙を自動制御する棒鋼圧延設備の製品断面形状自動制御装置において,
製品の断面形状を規定する寸法項目毎に,圧延直後の棒鋼の断面寸法を測定する製品断面寸法測定手段と,
上記寸法項目毎の棒鋼の目標断面寸法を設定する目標断面寸法設定手段と,
上記寸法項目毎の上記目標断面寸法と上記製品断面寸法との差異を修正するための修正要領をルール化した修正ルールを記憶する修正ルール記憶手段と,
上記目標断面寸法設定手段によって設定された目標断面寸法と,上記製品断面寸法測定手段によって測定された製品断面寸法との差異に基づいて,上記修正ルール記憶手段に記憶された修正ルールから,制御すべき圧延スタンドとそのロール間隙に関する修正要領を選定する修正要領選定手段と,
上記修正要領に基づいて上記制御すべき圧延スタンドのロール間隙の修正量を計算し,上記制御すべき圧延スタンドに対してロール間隙の修正の指示を行うロール間隙調整手段とを具備し
上記ロール間隙調整手段におけるロール間隙の修正量の計算を,影響係数を用いて行うことを特徴とする棒鋼圧延設備の製品断面形状自動制御装置。
Horizontal and vertical rolling stands are arranged alternately, and in the steel bar rolling equipment that rolls steel bars in stages with the rolls attached to the rolling stands, the gaps between the rolls are automatically adjusted so that the steel bars have the desired cross-sectional shape. In the product cross-sectional shape automatic control device of the steel bar rolling equipment to be controlled,
Product cross-sectional dimension measuring means for measuring the cross-sectional dimension of the steel bar immediately after rolling for each dimension item that defines the cross-sectional shape of the product,
Target cross-sectional dimension setting means for setting a target cross-sectional dimension of the steel bar for each of the above dimension items;
Correction rule storage means for storing a correction rule in which a correction procedure for correcting a difference between the target cross-sectional dimension for each of the dimension items and the product cross-sectional dimension is ruled;
Based on the difference between the target cross-sectional dimension set by the target cross-sectional dimension setting means and the product cross-sectional dimension measured by the product cross-sectional dimension measuring means, control is performed from the correction rule stored in the correction rule storage means. A correction point selection means for selecting a correction point for the power rolling stand and its roll gap,
Roll gap adjusting means for calculating a correction amount of the roll gap of the rolling stand to be controlled based on the correction procedure and instructing the rolling stand to be controlled to correct the roll gap ;
A product cross-sectional shape automatic control device for a steel bar rolling facility, wherein the roll gap correction amount in the roll gap adjusting means is calculated using an influence coefficient .
圧延前の棒鋼の断面寸法を測定する材料断面寸法測定手段と,
圧延前の棒鋼の温度を測定する材料温度測定手段と,
圧延直後の棒鋼の温度を測定する製品温度測定手段と,
棒鋼の材質を設定する材質設定手段とを具備し,
上記影響係数を,上記材料断面寸法,上記製品断面寸法,上記材料温度,上記製品温度,上記棒鋼の材質,及び圧延スタンド毎の定数であるミル定数を考慮して演算する請求項記載の棒鋼圧延設備の製品断面形状自動制御装置。
Material cross-sectional dimension measuring means for measuring the cross-sectional dimension of the steel bar before rolling,
A material temperature measuring means for measuring the temperature of the steel bar before rolling;
Product temperature measuring means for measuring the temperature of the steel bar immediately after rolling;
Material setting means for setting the material of the steel bar,
The influence coefficient, the material cross-sectional dimension, said product cross-sectional dimensions, the material temperature, the product temperature, steel bar according to claim 1, wherein the calculation by considering the mill modulus is a constant of the material of the bars, and each rolling stand Automatic control equipment for product cross section of rolling equipment.
材料断面寸法,製品断面寸法,材料温度,製品温度,棒鋼の材質,及びミル定数それぞれの条件に対応した影響係数を記憶する影響係数記憶手段を具備してなる請求項記載の棒鋼圧延設備の製品断面形状自動制御装置。The steel bar rolling facility according to claim 2 , further comprising influence coefficient storage means for storing an influence coefficient corresponding to each condition of the material cross-sectional dimension, product cross-sectional dimension, material temperature, product temperature, steel bar material, and mill constant. Product cross-sectional shape automatic control device. 上記ロール間隙の修正量及び該修正によって得られた製品断面寸法を用いて影響係数を計算し,該計算値によって上記影響係数記憶手段に記憶された影響係数を更新する請求項記載の棒鋼圧延設備の製品断面形状自動制御装置。The steel bar rolling according to claim 3 , wherein an influence coefficient is calculated using the correction amount of the roll gap and a product cross-sectional dimension obtained by the correction, and the influence coefficient stored in the influence coefficient storage means is updated by the calculated value. Equipment cross-section shape automatic control device. 上記ロール間隙調整手段において,幅広がりを考慮してロール間隙の修正量を計算してなる請求項1〜のいずれかに記載の棒鋼圧延設備の製品断面形状自動制御装置。In the roll gap adjusting means, the product cross section automatic control system of steel bar rolling equipment according to any one of claims 1 to 4 made by calculating the correction amount of the nip in consideration of the broadening.
JP13313296A 1996-05-28 1996-05-28 Product cross-sectional shape automatic control device for steel bar rolling equipment Expired - Lifetime JP3618463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13313296A JP3618463B2 (en) 1996-05-28 1996-05-28 Product cross-sectional shape automatic control device for steel bar rolling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13313296A JP3618463B2 (en) 1996-05-28 1996-05-28 Product cross-sectional shape automatic control device for steel bar rolling equipment

Publications (2)

Publication Number Publication Date
JPH09314210A JPH09314210A (en) 1997-12-09
JP3618463B2 true JP3618463B2 (en) 2005-02-09

Family

ID=15097533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13313296A Expired - Lifetime JP3618463B2 (en) 1996-05-28 1996-05-28 Product cross-sectional shape automatic control device for steel bar rolling equipment

Country Status (1)

Country Link
JP (1) JP3618463B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10106527A1 (en) * 2001-02-13 2002-08-29 Sms Demag Ag Method for operating a rolling mill and control system for a rolling mill

Also Published As

Publication number Publication date
JPH09314210A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
JPH0635007B2 (en) Rolling mill control method for rolling one strip material
JP3253013B2 (en) Strip crown and shape control method in hot rolling
JP3618463B2 (en) Product cross-sectional shape automatic control device for steel bar rolling equipment
JP4696775B2 (en) Plate width control method and apparatus
JP2008043967A (en) Method for controlling shape of plate in hot rolling
US20230356278A1 (en) Device and method for rolling a metal strip
US3468145A (en) Billet mill wherein the rolling gap is controlled during the penultimate pass and fixed during the final pass
JP3319356B2 (en) Method and apparatus for controlling thickness of material to be rolled by rolling mill
JP3067879B2 (en) Shape control method in strip rolling
JP3501982B2 (en) Sheet width control device
KR100531145B1 (en) Sheet width control method in hot rolling
JP4028786B2 (en) Sheet shape control method in cold rolling
JP2803573B2 (en) Manufacturing method of tapered steel plate
JPH01306008A (en) Method and device for controlling shape of sheet stock
JP3069001B2 (en) Feedback control method of sheet crown / shape model
KR100929015B1 (en) Prediction of rolling load by calibrating plasticity factor of rolled material
JPS6134881B2 (en)
KR100321023B1 (en) Method for predicting rolling force during cold rolling
JPH08187504A (en) Manufacture of tapered steel sheet
JPH05111712A (en) Method for controlling sheet thickness/crown in continuous mill
JPS63101014A (en) Rolling method for thick plate
JP2005125407A (en) Method of shape control in temper rolling mill
JPH0441010A (en) Method for controlling edge drop in cold rolling
KR100223147B1 (en) Auto-tuning method of sheet thickness control
JPS6134884B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

EXPY Cancellation because of completion of term