JP3501982B2 - Sheet width control device - Google Patents

Sheet width control device

Info

Publication number
JP3501982B2
JP3501982B2 JP20852199A JP20852199A JP3501982B2 JP 3501982 B2 JP3501982 B2 JP 3501982B2 JP 20852199 A JP20852199 A JP 20852199A JP 20852199 A JP20852199 A JP 20852199A JP 3501982 B2 JP3501982 B2 JP 3501982B2
Authority
JP
Japan
Prior art keywords
rolling
gain
strip width
control device
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20852199A
Other languages
Japanese (ja)
Other versions
JP2001030005A (en
Inventor
都 西野
章 北村
芳則 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20852199A priority Critical patent/JP3501982B2/en
Publication of JP2001030005A publication Critical patent/JP2001030005A/en
Application granted granted Critical
Publication of JP3501982B2 publication Critical patent/JP3501982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,板幅制御装置に係
り,詳しくは,複数の圧延スタンドを用いて被圧延材を
圧延する熱間連続圧延機の,ある圧延スタンドの出側に
て実測された実測板幅と目標板幅との板幅偏差をなくす
ように比例積分器により張力指令値を計算し,該張力指
令値に基づいて当該圧延スタンドの入側張力を操作する
板幅制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strip width control device, and more specifically, it is measured on the exit side of a certain rolling stand of a hot continuous rolling mill for rolling a material to be rolled using a plurality of rolling stands. A strip width controller for calculating a tension command value by a proportional integrator so as to eliminate the strip width deviation between the measured strip width and the target strip width, and operating the entry side tension of the rolling stand based on the tension command value. It is about.

【0002】[0002]

【従来の技術】複数の圧延スタンドを用いて被圧延材を
圧延する熱間連続圧延機において,被圧延材の板幅を制
御するために,エッジャーを用いて行う方法が従来知ら
れていた(例えば特公平6−18653号公報や,特公
平6−36928号公報などを参照)。しかしながら,
エッジャーによる板幅制御では制御精度に限界があるた
め,板幅をフィードバックし,圧延スタンド間の張力を
積極的に操作する板幅制御を行う技術も提案されてお
り,例えば特開平9−155421号公報や特開平9−
155422号公報などに開示されている。特開平9−
155421号公報に記載の技術では,ある中間スタン
ドの出側に設置された板幅計により被圧延材の板幅が検
出され,該板幅計の板幅検出値と目標板幅との偏差に基
づいて比例積分制御量が算出される。基本的にはこの比
例積分制御量が制御指令値として用いられるが,上記偏
差が正で且つ所定値以下であるときには,製品幅側への
オーバーシュートを防止するために前回制御量と所定設
定値とに基づいて算出された代替制御量が制御指令値と
して用いられる。そして,上記制御指令値によって当該
圧延スタンドの入側張力が制御される。また,特開平9
−155422号公報に記載の技術は,同じく,ある圧
延スタンドの出側に設置された板幅計により被圧延材の
板幅を検出し,該板幅計の板幅検出値と目標板幅との偏
差に基づいて,当該圧延スタンドの入側張力を制御する
のであるが,張力変更量ΔσFBKを求めるのに,板幅
偏差ΔW,入側張力σ,及びスタンド間移送時間Δtを
用いており,上記張力変更量ΔσFBKに基づいて比例
積分器により張力変更指令値を計算している。
2. Description of the Related Art In a hot continuous rolling mill for rolling a material to be rolled using a plurality of rolling stands, there has been conventionally known a method of using an edger to control the strip width of the material to be rolled ( For example, see Japanese Patent Publication No. 6-18653 and Japanese Patent Publication No. 6-36928). However,
Since there is a limit to the control accuracy in the plate width control by the edger, a technique for feeding back the plate width and actively controlling the tension between the rolling stands has also been proposed, for example, Japanese Patent Laid-Open No. 9-155421. Gazette and Japanese Patent Laid-Open No. 9-
It is disclosed in Japanese Patent No. 155422. JP-A-9-
In the technique described in Japanese Patent No. 155421, the strip width of the material to be rolled is detected by a strip width meter installed on the exit side of a certain intermediate stand, and the deviation between the strip width detection value of the strip width meter and the target strip width is calculated. Based on this, the proportional-plus-integral control amount is calculated. Basically, this proportional-plus-integral control amount is used as a control command value, but when the deviation is positive and less than a predetermined value, the previous control amount and a predetermined set value are set to prevent overshoot on the product width side. The alternative control amount calculated on the basis of is used as a control command value. Then, the entrance side tension of the rolling stand is controlled by the control command value. In addition, JP-A-9
The technique described in Japanese Patent No. 155422 similarly detects the strip width of a material to be rolled by a strip width meter installed on the exit side of a certain rolling stand, and detects the strip width detected by the strip width meter and the target strip width. The entrance side tension of the rolling stand is controlled based on the deviation of the rolling stand. The strip width deviation ΔW, the entrance side tension σ, and the inter-stand transfer time Δt are used to obtain the tension change amount ΔσFBK. A tension change command value is calculated by a proportional integrator based on the tension change amount ΔσFBK.

【0003】[0003]

【課題を解決するための手段】特開平9−155421
号公報に記載の技術では,ある中間スタンドの出側にて
実測された実測板幅をフィードバックして比例積分制御
を行い,板幅の制御範囲を広くとり,制御の応答性を確
保することを図っているが,圧延速度に応じたむだ時間
が存在することに変わりないため,制御系の安定性を確
保するには,低い制御ゲインを使用せねばならず,応答
性の向上には限界がある。また,制御ゲインは試行錯誤
によって決定しなければならず,チューニングやメンテ
ナンスに莫大な労力を要する。また,特開平9−155
422号公報に記載の技術では,上記スタンド間移送時
間に基づいて張力指令値を定めることにより,例えば特
開平9−155421号公報に記載の技術とくらべて,
より高い制御ゲインを設定することが可能となるが,移
送時間が実測板幅に及ぼす影響は複雑であり,制御性能
がいくらか損なわれてしまうことは避けられない。ま
た,やはり制御ゲインの設定には試行錯誤が必要であ
り,チューニングやメンテナンスに多大な労力が必要と
なる。さらに,上記両公報に記載されているような従来
の板幅制御に関する技術では,板厚,圧延速度,板温度
などの条件が変化した場合に,安定性を補償することが
できない。本発明は,このような従来の技術における課
題を解決するために,板幅制御装置を改良し,張力指令
値から実測板幅までの特性をあらわす数式モデルを利用
して,上記板幅偏差の予測値をオンラインで計算し,該
予測値に基づいて上記比例積分器の制御入力を修正する
予測部と,上記予測部により計算される上記予測値の予
測精度に基づいて制御系の安定性を補償するように上記
比例積分器のゲインを調整するゲイン調整部とを具備す
ることにより,ある圧延スタンドの入側張力が操作され
てからそれが実測板幅に反映されるまでにむだ時間が存
在する場合でも,安定性を補償しながら,高い応答性を
実現する制御ゲインを,試行錯誤の必要なく自動的に得
ることができる板幅制御装置を提供することを目的とす
るものである。また,他の目的は,板厚,圧延速度,板
温度などの設定運転条件に変更があった場合にも,その
変更に応じて制御ゲインを調整し制御系の安定性を補償
することである。
[Means for Solving the Problems] Japanese Patent Laid-Open No. 9-155421
In the technique described in Japanese Patent Publication, the measured plate width actually measured on the outlet side of a certain intermediate stand is fed back to perform proportional-integral control, and the plate width control range is widened to ensure control responsiveness. However, since there is still a dead time corresponding to the rolling speed, a low control gain must be used to ensure the stability of the control system, and there is a limit to improving the responsiveness. is there. In addition, the control gain must be determined by trial and error, and enormous effort is required for tuning and maintenance. In addition, JP-A-9-155
In the technique described in Japanese Patent No. 422, the tension command value is determined based on the transfer time between the stands, so that, for example, compared with the technique described in Japanese Patent Laid-Open No. 9-155421,
It is possible to set a higher control gain, but the effect of the transfer time on the measured strip width is complicated, and some loss of control performance is unavoidable. In addition, setting the control gain also requires trial and error, which requires a great deal of effort for tuning and maintenance. Further, the conventional techniques relating to strip width control as described in both the above publications cannot compensate for stability when conditions such as strip thickness, rolling speed, strip temperature change. In order to solve the above problems in the conventional technique, the present invention improves the plate width control device and uses a mathematical model that represents the characteristics from the tension command value to the actually measured plate width to determine the plate width deviation. A predictor that calculates a predicted value online and corrects the control input of the proportional integrator based on the predicted value, and stability of the control system based on the prediction accuracy of the predicted value calculated by the predictor By providing a gain adjusting unit that adjusts the gain of the proportional integrator so as to compensate, there is a dead time from when the entrance side tension of a rolling stand is operated until it is reflected in the measured strip width. Even in such a case, it is an object of the present invention to provide a strip width control device that can automatically obtain a control gain that realizes high responsiveness while compensating for stability without trial and error. Another purpose is to compensate the stability of the control system by adjusting the control gain according to the changes in the set operating conditions such as strip thickness, rolling speed, strip temperature, etc. .

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に,請求項1に係る発明は,複数の圧延スタンドを用い
て被圧延材を圧延する熱間連続圧延機の,ある圧延スタ
ンドの出側にて実測された実測板幅と目標板幅との板幅
偏差をなくすように比例積分器により張力指令値を計算
し,該張力指令値に基づいて当該圧延スタンドの入側張
力を操作する板幅制御装置において,上記張力指令値か
ら実測板幅までの特性をあらわす数式モデルを利用し
て,上記板幅偏差の予測値をオンラインで計算し,該予
測値に基づいて上記比例積分器の制御入力を修正する予
測部と,上記予測部により計算される上記予測値の予測
精度に基づいて制御系の安定性を補償するように上記比
例積分器のゲインを調整するゲイン調整部とを具備して
なることを特徴とする板幅制御装置として構成されてい
る。また,請求項2に係る発明は,上記請求項1に記載
の板幅制御装置において,上記数式モデルが,むだ時間
要素を含むものであることをその要旨とする。また,請
求項3に係る発明は,上記請求項1又は2に記載の板幅
制御装置において,上記ゲイン調整部が,板厚,圧延速
度,若しくは板温度,又はこれらの組み合わせを少なく
とも含む設定運転条件に基づいて,上記比例積分器のゲ
インを圧延中に変更してなることをその要旨とする。上
記請求項1〜3のいずれか1項に記載の板幅制御装置に
よれば,張力指令値から実測板幅までの特性をあらわす
数式モデルを利用して,上記板幅偏差の予測値をオンラ
インで計算し,該予測値に基づいて上記比例積分器の制
御入力を修正する予測部と,上記予測部により計算され
る上記予測値の予測精度に基づいて制御系の安定性を補
償するように上記比例積分器のゲインを調整するゲイン
調整部とを具備することにより,ある圧延スタンドの入
側張力が操作されてからそれが実測板幅に反映されるま
でにむだ時間が存在する場合でも,安定性を補償しなが
ら,高い応答性を実現する制御ゲインを,試行錯誤の必
要なく自動的に得ることができる。しかも,上記請求項
3に記載の板幅制御装置によれば,板厚,圧延速度,板
温度などの設定運転条件に変更があった場合でも,その
変更に応じて上記比例積分器のゲインが圧延中に変更さ
れるため,制御系の安定性を維持することができる。
In order to achieve the above object, the invention according to claim 1 provides a rolling stand of a hot continuous rolling mill for rolling a material to be rolled using a plurality of rolling stands. Side, the tension command value is calculated by a proportional integrator so as to eliminate the plate width deviation between the measured plate width and the target plate width, and the entry side tension of the rolling stand is operated based on the tension command value. In a strip width control device, a predicted value of the strip width deviation is calculated online using a mathematical model expressing the characteristics from the tension command value to the measured strip width, and the proportional integrator of the proportional integrator is calculated based on the predicted value. A prediction unit that corrects the control input, and a gain adjustment unit that adjusts the gain of the proportional integrator so as to compensate the stability of the control system based on the prediction accuracy of the predicted value calculated by the prediction unit Characterized by And it is configured as a plate width controller. The gist of the invention according to claim 2 is that in the plate width control device according to claim 1, the mathematical model includes a dead time element. The invention according to claim 3 is the plate width control device according to claim 1 or 2, wherein the gain adjusting unit includes at least a plate thickness, a rolling speed, a plate temperature, or a combination thereof. The gist is that the gain of the proportional integrator is changed during rolling based on the conditions. According to the plate width control device of any one of claims 1 to 3, the predicted value of the plate width deviation is online by using a mathematical model that represents the characteristics from the tension command value to the actually measured plate width. To correct the control input of the proportional integrator based on the prediction value, and to compensate the stability of the control system based on the prediction accuracy of the prediction value calculated by the prediction unit. By including a gain adjusting unit that adjusts the gain of the proportional integrator, even when there is a dead time from when the entrance tension of a rolling stand is operated to when it is reflected in the measured strip width, It is possible to automatically obtain a control gain that achieves high responsiveness while compensating for stability without trial and error. Moreover, according to the strip width control device of the third aspect, even when the set operating conditions such as strip thickness, rolling speed, strip temperature and the like are changed, the gain of the proportional integrator is changed according to the change. Since it is changed during rolling, the stability of the control system can be maintained.

【0005】[0005]

【発明の実施の形態】以下,添付図面を参照して,本発
明の実施の形態につき説明し,本発明の理解に供する。
尚,以下の実施の形態は,本発明の具体的な一例であっ
て,本発明の技術的範囲を限定する性格のものではな
い。ここに,図1は本発明の実施の形態に係る板幅制御
装置A1の概略構成を示す制御ブロック図,図2は上記
板幅制御装置A1と熱間連続圧延機の関係を示す図であ
る。図1及び図2に示す如く,本発明の実施の形態に係
る板幅制御装置A1は,例えば複数の圧延スタンド#
1,#2,…を用いて被圧延材を圧延する熱間連続圧延
機の,ある圧延スタンド#2の出側にて実測された実測
板幅Wsen と目標板幅Wref との板幅偏差ΔWをなくす
ように比例積分器1により張力指令値Δσrefを計算
し,該張力指令値Δσref に基づいて当該圧延スタンド
#2の入側張力を操作する板幅制御装置として具体化さ
れる。上記板幅制御装置A1が,特徴とするところは,
上記張力指令値Δσref から実測板幅Wsen までの特性
をあらわす数式モデルを利用して,上記板幅偏差ΔWの
予測値ΔWp1,ΔWp2をオンラインで計算し,該予
測値ΔWp1,ΔWp2に基づいて上記比例積分器1の
制御入力である上記板幅偏差ΔWを修正する予測部2
と,上記予測部2により計算される上記予測値の予測精
度Δ(s)に基づいて制御系の安定性を補償するように
上記比例積分器1のゲインKp,Kiを調整するゲイン
調整部3とを具備する点である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention.
The following embodiments are specific examples of the present invention, and are not of the nature to limit the technical scope of the present invention. 1 is a control block diagram showing a schematic configuration of a strip width control device A1 according to an embodiment of the present invention, and FIG. 2 is a diagram showing a relation between the strip width control device A1 and a hot continuous rolling mill. . As shown in FIGS. 1 and 2, the strip width control device A1 according to the embodiment of the present invention is, for example, a plurality of rolling stands #.
1, # 2, the continuous hot rolling machine for rolling a material being rolled using ..., certain rolling stand # sheet width between the measured actual measurement strip width W sen and the target plate width W ref at 2 outgoing side a proportional integrator 1 to eliminate the deviation ΔW calculate the tension command value .DELTA..sigma ref, is embodied as a plate width controller for operating the inlet side tension of the rolling stand # 2 based on the tension command value .DELTA..sigma ref . The feature of the plate width control device A1 is that
The predicted values ΔWp1 and ΔWp2 of the plate width deviation ΔW are calculated online using a mathematical model that represents the characteristics from the tension command value Δσ ref to the measured plate width W sen , and based on the predicted values ΔWp1 and ΔWp2. Prediction unit 2 that corrects the plate width deviation ΔW, which is the control input of the proportional integrator 1.
And a gain adjusting unit 3 that adjusts the gains Kp and Ki of the proportional integrator 1 so as to compensate the stability of the control system based on the prediction accuracy Δ (s) of the predicted value calculated by the predicting unit 2. It is a point which comprises and.

【0006】以下,上記板幅制御装置A1の詳細につい
て説明する。上記板幅制御装置A1は,ある圧延スタン
ド,例えば圧延スタンド#2の出側に設置された板幅検
出器101により検出された実測板幅Wsen をフィード
バックし,該実測板幅Wsen に基づいて張力指令値Δσ
ref を制御周期毎に決定し,圧延スタンド#1,#2の
いずれかのロール速度を調整するなどして,上記張力指
令値Δσref に応じて圧延スタンド#2の入側張力を調
整する。上記フィードバック系において,実測板幅W
sen と目標板幅Wref との偏差ΔWをなくす制御を行う
ために,比例積分器1(比例ゲインKp,積分ゲインK
i)が設けられている。しかしながら,上記フィードバ
ック系の制御対象には,圧延速度に応じた,むだ時間L
が含まれており,比例積分器1の比例ゲインKp,積分
ゲインKiの調整により系を安定にしようとすると,比
例ゲインKp,積分ゲインKiを小さく設定しなければ
ならず,高い応答性を得ることはできない。いま,張力
指令値Δσref から検出器101で検出される実測板幅
sen までの実際の特性が,次式(1)により記述でき
るとする。
The details of the plate width control device A1 will be described below. The plate width controller A1 is rolling stands, for example, by feeding back the detected actual plate width W sen by rolling stand # strip width detector 101 installed in the second outlet side in, based on the measured strip width W sen Tension command value Δσ
Ref is determined for each control cycle, and the roll speed of one of the rolling stands # 1 and # 2 is adjusted to adjust the entrance tension of the rolling stand # 2 according to the tension command value Δσ ref . In the above feedback system, the measured width W
In order to eliminate the deviation ΔW between the sen and the target plate width W ref , the proportional integrator 1 (proportional gain Kp, integral gain K
i) is provided. However, the control target of the feedback system is the dead time L depending on the rolling speed.
Is included, and in order to stabilize the system by adjusting the proportional gain Kp and the integral gain Ki of the proportional integrator 1, the proportional gain Kp and the integral gain Ki must be set small, and high response is obtained. It is not possible. Now, it is assumed that the actual characteristics from the tension command value Δσ ref to the measured plate width W sen detected by the detector 101 can be described by the following equation (1).

【数1】 ここで,ΔWは板幅の偏差を,Δσは張力偏差を,Dは
張力変動以外の要因による幅変化をそれぞれ表す。ま
た,伝達関数G(s)は,圧延速度,板温度,板厚,圧
延荷重,板幅絶対値,被圧延材の変形抵抗,圧延スタン
ド間の張力絶対値などの関数である。上記式(1)は,
真のプロセスを表現するモデルであり,一般に上記式
(1)を忠実に再現するモデルは持ち得えない。
[Equation 1] Here, ΔW represents the deviation of the plate width, Δσ represents the tension deviation, and D represents the width change due to factors other than the tension fluctuation. The transfer function G (s) is a function such as rolling speed, strip temperature, strip thickness, rolling load, strip width absolute value, deformation resistance of the material to be rolled, and absolute tension value between rolling stands. The above formula (1) is
It is a model that represents a true process, and in general, there is no model that faithfully reproduces the above equation (1).

【0007】そこで,上記予測部2は,上記式(1)で
表される真のプロセスに対して,一般的に適当であると
知られているノミナルモデルを制御モデルに用いて,実
測板幅Wsen に対する予測制御を行いながら,実測板幅
sen のフィードバックループにおいてむだ時間L経過
後にあらわれる実際の出力の影響を抑制する。上記ノミ
ナルモデルには,例えば次式(2)を用いるものとす
る。
Therefore, the predicting unit 2 uses the nominal model, which is generally known to be suitable for the true process represented by the above equation (1), as the control model to measure the actual plate width. while predictive control for W sen, suppressing the influence of the actual output appearing after the dead time L has elapsed in the feedback loop of the measured strip width W sen. For the nominal model, for example, the following equation (2) is used.

【数2】 ここで,Gm(s)は上記伝達関数G(s)に対応する
ノミナルモデルであるが,むだ時間Lと張力偏差Δσ
は,厳密に測定できる。なお,上記式(2)には線形モ
デルを使用しているが,実際には非線形モデルでも構わ
ず,できるだけ忠実に上記(1)式を再現できるもので
あることが望ましい。上記式(2)に対して,むだ時間
を含んだ予測板幅ΔWp1とむだ時間を含まない予測板
幅ΔWp2とを求めれば,上記予測部2を次式(3),
(4)のように設計することができる。
[Equation 2] Here, Gm (s) is a nominal model corresponding to the transfer function G (s), but the dead time L and the tension deviation Δσ
Can be measured strictly. Although a linear model is used in the equation (2), a non-linear model may be used in practice, and it is desirable that the equation (1) can be reproduced as faithfully as possible. If the predicted plate width ΔWp1 including the dead time and the predicted plate width ΔWp2 that does not include the dead time are obtained with respect to the above formula (2), the predicting unit 2 is calculated by the following formula (3),
It can be designed as in (4).

【数3】 [Equation 3]

【数4】 従って,上記比例積分器1及び予測部2を含む制御系の
構成は,図1の制御ブロック図の通りとなる。上記予測
部2において,内側のループ(予測板幅ΔWp2のルー
プ)により,実測板幅Wsen に関する予測制御が行われ
る。また,外側のループ(予測板幅ΔWp1のループ)
により,実測板幅Wsen のフィードバックループにおい
てむだ時間L経過後にあらわれる実際の出力の影響が排
除される。
[Equation 4] Therefore, the configuration of the control system including the proportional integrator 1 and the predictor 2 is as shown in the control block diagram of FIG. In the predicting unit 2, the inner loop (the loop of the predicted plate width ΔWp2) performs the predictive control regarding the measured plate width W sen . Also, the outer loop (loop with predicted plate width ΔWp1)
As a result, the influence of the actual output that appears after the dead time L has elapsed in the feedback loop of the measured strip width W sen is eliminated.

【0008】板幅偏差ΔWと上記式(3),(4)の計
算結果を用いると,次式(5)により張力指令値Δσ
ref が計算される。
Using the plate width deviation ΔW and the calculation results of the above equations (3) and (4), the tension command value Δσ is calculated by the following equation (5).
ref is calculated.

【数5】 また,上記式(5)は,上記式(1),(2)を用いて
次式(6)のように変換できる。
[Equation 5] Further, the above equation (5) can be converted into the following equation (6) using the above equations (1) and (2).

【数6】 もし,Gm(s)とG(s),DとDmが完全に等しけ
れば,上記式(6)はむだ時間を含まないモデル出力Δ
Wp2を目標値0に制御する制御系であると解釈するこ
とができる(図3参照)。その場合,比例ゲインKp,
積分ゲインKiはむだ時間を含まないGm(s)に対し
て調整すればよい。むだ時間を含まないGm(s)に対
して比例積分制御を行う場合,むだ時間を含む場合より
も比例ゲインKi,積分ゲインKpを大きくすることが
でき,高応答の制御系となる。Gm(s)=G(s),
D=Dmという仮定が非現実的であり,実際には両者の
間でいくらかの差が生じていたとしても,上記予測部2
を用いることにより,むだ時間を含む制御系に対して,
その差の少なさに応じた分だけ応答性を高めることがで
きる。ここで,真のモデルと制御モデルとの差(予測精
度)が次式(7)のΔ(s)により表されるとすると
(図4参照),
[Equation 6] If Gm (s) and G (s) and D and Dm are completely equal, the above equation (6) is the model output Δ that does not include the dead time.
It can be interpreted as a control system for controlling Wp2 to the target value 0 (see FIG. 3). In that case, the proportional gain Kp,
The integral gain Ki may be adjusted for Gm (s) that does not include dead time. When the proportional-plus-integral control is performed on Gm (s) that does not include the dead time, the proportional gain Ki and the integral gain Kp can be made larger than when the dead time is included, and the control system has a high response. Gm (s) = G (s),
The assumption that D = Dm is unrealistic, and even if some difference actually occurs between the two, the prediction unit 2
By using, for a control system including dead time,
The responsiveness can be increased by an amount corresponding to the small difference. Here, if the difference (prediction accuracy) between the true model and the control model is represented by Δ (s) in the following equation (7) (see FIG. 4),

【数7】 制御系は,図5のように,制御対象Gm(s)に乗法的
誤差Δ(s)/Gm(s)がかかったものと解釈でき
る。
[Equation 7] The control system can be interpreted as a product of the multiplicative error Δ (s) / Gm (s) on the controlled object Gm (s), as shown in FIG.

【0009】従って,比例積分器1の比例ゲインKp,
積分ゲインKiを,Δ(s)/Gm(s)というモデル
化誤差の存在下でノミナルモデルGm(s)を常に安定
化するように決定すれば,制御系の安定性を確保しなが
ら高い応答性を実現することができる。ゲイン調整部3
は,このためのものであり,予測部2の予測精度,すな
わち上記差Δ(s)に基づいて制御系の安定性を補償す
るように比例ゲインKp,積分ゲインKiを調整する。
板厚,圧延速度,板温度などによって定まる設定運転条
件について,ある場合に対して,制御モデルの上記乗法
的誤差Δ(s)/Gmの上限を,通常の同定手法を用い
てオフラインで同定しておく。例えば真のプロセスのス
ペクトル解析とノミナルモデルの周波数特性との差から
上記差Δ(s)求めることで同定が可能である。これ
は,運転中に実際の設定運転条件が多少変化しても安定
性を確保するためである。また,上記設定運転条件の,
異なる複数の場合について,予め予測板厚,実測圧延速
度,予測板温度を使用して上記乗法的誤差Δ(s)/G
mをテーブル化(関数化でも構わない)しておく。これ
は,運転時にその時の設定運転条件の変更に柔軟に対応
して,高応答性を維持するためである。乗法的誤差Δ
(s)/Gmに対するPI制御器のロバスト安定化は,
ロバストPI制御として確立しており(佐伯:H∞制御
問題のPID制御系設計法,システム/制御/情報,Vo
l.42,No1,pp.29-34,1998を例えば参照のこと),この方
法を用いれば,適用可能な比例ゲインKp,積分ゲイン
Kiの設定範囲を図6のように自動的に求めることがで
きる。ここで,図6(a)は,圧延速度が遅い圧延前半
での各ゲインKp,Kiの設定範囲を,図6(b)は,
圧延速度の速い圧延後半での各ゲインKp,Kiの設定
範囲をそれぞれ示している。図6(a)と図6(b)と
を比較すると,圧延後半の方が圧延速度が速く,むだ時
間が小さくなるためゲインを大きく設定できるが理解で
きる。
Therefore, the proportional gain Kp of the proportional integrator 1,
If the integral gain Ki is determined so as to always stabilize the nominal model Gm (s) in the presence of a modeling error of Δ (s) / Gm (s), a stable response of the control system is ensured and a high response is obtained. Can be realized. Gain adjuster 3
Is for this purpose, and the proportional gain Kp and the integral gain Ki are adjusted so as to compensate the stability of the control system based on the prediction accuracy of the prediction unit 2, that is, the difference Δ (s).
Regarding the set operating conditions that are determined by the strip thickness, rolling speed, strip temperature, etc., for some cases, the upper limit of the above multiplicative error Δ (s) / Gm of the control model is identified off-line using the ordinary identification method. Keep it. For example, the identification can be performed by obtaining the difference Δ (s) from the difference between the spectrum analysis of the true process and the frequency characteristic of the nominal model. This is to ensure stability even if the actual set operating conditions change during operation. In addition, of the above set operating conditions,
For a plurality of different cases, the above-mentioned multiplicative error Δ (s) / G is calculated by using the estimated plate thickness, the measured rolling speed, and the estimated plate temperature beforehand.
m is tabulated (function may be used). This is to flexibly respond to changes in set operating conditions at the time of operation and maintain high responsiveness. Multiplicative error Δ
Robust stabilization of the PI controller for (s) / Gm is
Established as robust PI control (Saiki: PID control system design method for H∞ control problem, system / control / information, Vo
l.42, No1, pp.29-34, 1998). By using this method, the applicable range of proportional gain Kp and integral gain Ki can be automatically obtained as shown in FIG. You can Here, FIG. 6A shows the setting range of each gain Kp, Ki in the first half of rolling where the rolling speed is slow, and FIG.
The setting ranges of the gains Kp and Ki in the latter half of rolling at a high rolling speed are shown. Comparing FIG. 6A and FIG. 6B, it can be understood that the gain can be set larger because the rolling speed is faster and the dead time is shorter in the latter half of rolling.

【0010】上記ゲイン調整部3は,圧延前に被圧延材
の温度分布や,圧延速度指令値,板厚分布の情報を利用
して設定運転条件を判断し,図6に示したような各ゲイ
ンKp,Kiの設定範囲と,その変更を自動的に計算
し,設定範囲内にある点を選択し,各ゲインKp,Ki
を定める。この実施の形態に係る制御系では,上記図6
の設定範囲において,より左下方向にある点を選択すれ
ば,おおよそ高いゲインKp,Kiを得ることができる
が,例えば上記設定範囲を三角形に近似してその重心を
選択したり,各ゲインKp,Kiの設定可能最大値に対
して0から1の間にある所定の係数を乗じた点を選択す
るようにしてもよい。そして,上記ゲイン調整部3によ
り決定されたゲインKp,Kiは,圧延中に比例積分器
1に送出され,比例ゲインKp,積分ゲインKiが調整
される。この実施の形態に係る板幅制御装置A1と,従
来のPI制御に基づく技術とのシミュレーション結果を
図7(a),(b)にそれぞれ示す。図7(a),
(b)の縦軸は板幅であり,横軸は時間である。図7に
示す通り,圧延速度,板温度,板厚変動の存在下で不安
定化せず応答時間が約40%向上している。このよう
に,本発明の実施の形態に係る板幅制御装置によれば,
張力指令値から実測板幅までの特性をあらわす数式モデ
ルを利用して,上記板幅偏差の予測値をオンラインで計
算し,該予測値に基づいて上記比例積分器の制御入力を
修正する予測部と,上記予測部により計算される上記予
測値の予測精度に基づいて制御系の安定性を補償するよ
うに上記比例積分器のゲインを調整するゲイン調整部と
を具備することにより,ある圧延スタンドの入側張力が
操作されてからそれが実測板幅に反映されるまでにむだ
時間が存在する場合でも,安定性を補償しながら,高い
応答性を実現する制御ゲインを,試行錯誤の必要なく自
動的に得ることができる。しかも,板幅,圧延速度,板
温度などの設定運転条件に変更があった場合でも,その
変更に応じて上記比例積分器のゲインが圧延中に変更さ
れるため,制御系の安定性を維持することができる。
尚,上記実施の形態では,簡単のため2つの圧延スタン
ドを示したにすぎないが,本発明の技術的範囲はこれに
限定されるものではなく,これよりも多数の圧延スタン
ドを有した熱間連続圧延機について本発明を適用するこ
とは勿論可能である。さらに,ある一つの圧延スタンド
のみだけではなく,熱間連続圧延機にある複数の圧延ス
タンドに対して本発明を適用することも勿論可能であ
る。
Before the rolling, the gain adjusting section 3 judges the set operating conditions by using the information of the temperature distribution of the material to be rolled, the rolling speed command value, and the strip thickness distribution, and determines each set as shown in FIG. The gain Kp and Ki setting ranges and their changes are automatically calculated, points within the setting ranges are selected, and the gains Kp and Ki are set.
Determine. In the control system according to this embodiment, as shown in FIG.
By selecting a point in the lower left direction in the setting range of, approximately higher gains Kp and Ki can be obtained. For example, the center of gravity is selected by approximating the setting range into a triangle and each gain Kp, Ki A point obtained by multiplying the maximum settable value of Ki by a predetermined coefficient between 0 and 1 may be selected. The gains Kp and Ki determined by the gain adjusting unit 3 are sent to the proportional integrator 1 during rolling, and the proportional gain Kp and the integral gain Ki are adjusted. Simulation results of the plate width control device A1 according to this embodiment and a conventional technique based on PI control are shown in FIGS. 7 (a) and 7 (b), respectively. 7 (a),
The vertical axis of (b) is plate width, and the horizontal axis is time. As shown in FIG. 7, the response time was improved by about 40% without destabilization in the presence of rolling speed, strip temperature and strip thickness fluctuations. Thus, according to the plate width control device according to the embodiment of the present invention,
A prediction unit that calculates a predicted value of the plate width deviation online using a mathematical model that represents the characteristics from the tension command value to the measured plate width, and corrects the control input of the proportional integrator based on the predicted value. And a gain adjusting unit that adjusts the gain of the proportional integrator so as to compensate the stability of the control system based on the prediction accuracy of the predicted value calculated by the predicting unit. Even if there is a dead time after the entry side tension of the is operated to be reflected in the measured strip width, the control gain that achieves high responsiveness while compensating for stability can be obtained without trial and error. You can get it automatically. In addition, even if the set operating conditions such as strip width, rolling speed, strip temperature, etc. are changed, the gain of the proportional integrator is changed during rolling, so the stability of the control system is maintained. can do.
In the above embodiment, two rolling stands are shown for the sake of simplicity, but the technical scope of the present invention is not limited to this. It is of course possible to apply the present invention to a continuous rolling mill. Furthermore, the present invention can be applied not only to one rolling stand but also to a plurality of rolling stands in a hot continuous rolling mill.

【0011】[0011]

【発明の効果】以上説明した通り,上記請求項1〜3の
いずれか1項に記載の板幅制御装置によれば,張力指令
値から実測板幅までの特性をあらわす数式モデルを利用
して,上記板幅偏差の予測値をオンラインで計算し,該
予測値に基づいて上記比例積分器の制御入力を修正する
予測部と,上記予測部により計算される上記予測値の予
測精度に基づいて制御系の安定性を補償するように上記
比例積分器のゲインを調整するゲイン調整部とを具備す
ることにより,ある圧延スタンドの入側張力が操作され
てからそれが実測板幅に反映されるまでにむだ時間が存
在する場合でも,安定性を補償しながら,高い応答性を
実現する制御ゲインを,試行錯誤の必要なく自動的に得
ることができる。しかも,上記請求項3に記載の板幅制
御装置によれば,板厚,圧延速度,板温度などの設定運
転条件に変更があった場合でも,その変更に応じて上記
比例積分器のゲインが圧延中に変更されるため,制御系
の安定性を維持することができる。
As described above, according to the plate width control device of any one of claims 1 to 3, a mathematical model expressing the characteristics from the tension command value to the measured plate width is used. A prediction unit that calculates the predicted value of the plate width deviation online and corrects the control input of the proportional integrator based on the predicted value; and a prediction accuracy of the predicted value calculated by the prediction unit. By including a gain adjusting unit that adjusts the gain of the proportional integrator so as to compensate for the stability of the control system, after the entry side tension of a certain rolling stand is manipulated, it is reflected in the measured strip width. Even when there is a dead time, the control gain that achieves high response while compensating for stability can be automatically obtained without trial and error. Moreover, according to the strip width control device of the third aspect, even when the set operating conditions such as strip thickness, rolling speed, strip temperature and the like are changed, the gain of the proportional integrator is changed according to the change. Since it is changed during rolling, the stability of the control system can be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態に係る板幅制御装置の概
略構成を示す制御ブロック図。
FIG. 1 is a control block diagram showing a schematic configuration of a plate width control device according to an embodiment of the present invention.

【図2】 上記板幅制御装置A1と熱間連続圧延機の関
係を示す図。
FIG. 2 is a diagram showing a relationship between the strip width control device A1 and a hot continuous rolling mill.

【図3】 上記板幅制御装置A1の等価な制御ブロック
を示す図。
FIG. 3 is a diagram showing an equivalent control block of the plate width control device A1.

【図4】 上記板幅制御装置A1における予測誤差を説
明するための図。
FIG. 4 is a diagram for explaining a prediction error in the plate width control device A1.

【図5】 上記板幅制御装置A1における乗法的誤差を
説明するための図。
FIG. 5 is a diagram for explaining a multiplicative error in the plate width control device A1.

【図6】 ゲインの設定範囲を説明するための図。FIG. 6 is a diagram for explaining a gain setting range.

【図7】 上記板幅制御装置A1とPI制御を用いた従
来技術とのシミュレーション結果を比較する図。
FIG. 7 is a diagram comparing simulation results of the plate width control device A1 and a conventional technique using PI control.

【符号の説明】[Explanation of symbols]

1…比例積分器 2…予測部 3…ゲイン調整部 1 ... Proportional integrator 2 ... Predictor 3 ... Gain adjustment section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 芳則 兵庫県加古川市金沢町1番地 株式会社 神戸製鋼所 加古川製鉄所内 (56)参考文献 特開 平9−182908(JP,A) 特開 昭57−44410(JP,A) 特開 昭62−289307(JP,A) 特開 平7−214127(JP,A) (58)調査した分野(Int.Cl.7,DB名) B21B 37/00 - 37/78 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Yoshinori Fujita Inventor Yoshinori Fujita 1 Kanazawa-machi, Kakogawa-shi, Hyogo Kobe Steel Co., Ltd. Kakogawa Works (56) Reference JP-A-9-182908 (JP, A) JP-A-57 -44410 (JP, A) JP 62-289307 (JP, A) JP 7-214127 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B21B 37/00- 37/78

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の圧延スタンドを用いて被圧延材を
圧延する熱間連続圧延機の,ある圧延スタンドの出側に
て実測された実測板幅と目標板幅との板幅偏差をなくす
ように比例積分器により張力指令値を計算し,該張力指
令値に基づいて当該圧延スタンドの入側張力を操作する
板幅制御装置において,上記張力指令値から実測板幅ま
での特性をあらわす数式モデルを利用して,上記板幅偏
差の予測値をオンラインで計算し,該予測値に基づいて
上記比例積分器の制御入力を修正する予測部と,上記予
測部により計算される上記予測値の予測精度に基づいて
制御系の安定性を補償するように上記比例積分器のゲイ
ンを調整するゲイン調整部とを具備してなることを特徴
とする板幅制御装置。
1. A strip width deviation between a strip width and a strip width actually measured on the exit side of a rolling stand of a hot continuous rolling mill for rolling a material to be rolled using a plurality of rolling stands is eliminated. In the strip width control device that calculates the tension command value by the proportional integrator and operates the entry side tension of the rolling stand based on the tension command value as described above, a mathematical expression expressing the characteristic from the tension command value to the actually measured strip width. Using the model, the predicted value of the plate width deviation is calculated online, and the prediction unit that corrects the control input of the proportional integrator based on the predicted value, and the predicted value calculated by the prediction unit A plate width control device comprising: a gain adjusting unit that adjusts the gain of the proportional integrator so as to compensate the stability of the control system based on the prediction accuracy.
【請求項2】 上記数式モデルが,むだ時間要素を含む
ものである請求項1に記載の板幅制御装置。
2. The strip width control device according to claim 1, wherein the mathematical model includes a dead time element.
【請求項3】 上記ゲイン調整部が,板厚,圧延速度,
若しくは板温度,又はこれらの組み合わせを少なくとも
含む設定運転条件に基づいて,上記比例積分器のゲイン
を圧延中に変更してなる請求項1又は2に記載の板幅制
御装置。
3. The gain adjusting unit comprises a plate thickness, a rolling speed,
Alternatively, the strip width control device according to claim 1 or 2, wherein the gain of the proportional integrator is changed during rolling based on a set operating condition including at least the strip temperature or a combination thereof.
JP20852199A 1999-07-23 1999-07-23 Sheet width control device Expired - Lifetime JP3501982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20852199A JP3501982B2 (en) 1999-07-23 1999-07-23 Sheet width control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20852199A JP3501982B2 (en) 1999-07-23 1999-07-23 Sheet width control device

Publications (2)

Publication Number Publication Date
JP2001030005A JP2001030005A (en) 2001-02-06
JP3501982B2 true JP3501982B2 (en) 2004-03-02

Family

ID=16557564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20852199A Expired - Lifetime JP3501982B2 (en) 1999-07-23 1999-07-23 Sheet width control device

Country Status (1)

Country Link
JP (1) JP3501982B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239575A3 (en) * 2001-03-08 2003-11-05 Shindengen Electric Manufacturing Company, Limited DC stabilised power supply
JP4601202B2 (en) * 2001-04-27 2010-12-22 株式会社神戸製鋼所 Design method and control method of plate width control system
JP5202157B2 (en) * 2008-07-25 2013-06-05 株式会社神戸製鋼所 Sheet thickness tension control method and sheet thickness tension control apparatus for tandem rolling mill
JP5660972B2 (en) * 2011-05-18 2015-01-28 株式会社神戸製鋼所 Manufacturing method and rolling device for differential thickness plate
CN112139253B (en) * 2019-06-26 2022-11-15 宝山钢铁股份有限公司 Automatic control method for hot rolling width allowance

Also Published As

Publication number Publication date
JP2001030005A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
US20070068210A1 (en) System for controlling a rolling mill and method of controlling a rolling mill
JPH06526A (en) Controller for continuous hot rolling mill
JP2009208115A (en) Method and device for calculating parameter of rolling control, and rolling simulation device
JP3501982B2 (en) Sheet width control device
JP4323273B2 (en) Load distribution control device for continuous rolling mill
KR100398765B1 (en) Method of controlling board thickness, calculating passing schedule, and board thickness controller for continuous rolling machine
US4386511A (en) Method and system for controlling a plate width
KR101536461B1 (en) Apparatus for controlling slab width and method for the same
JP3319356B2 (en) Method and apparatus for controlling thickness of material to be rolled by rolling mill
JP3521081B2 (en) Strip width control method in hot finishing mill
JPH0569021A (en) Method and device for controlling rolling mill
JPH05111712A (en) Method for controlling sheet thickness/crown in continuous mill
JP3908702B2 (en) Sheet width control method for continuous rolling mill
JPH07100519A (en) Device and method for rolling mill control
JP3267841B2 (en) Controller with phase compensation function
JPS6224809A (en) Method for controlling sheet width in hot rolling
CN113458150B (en) Thickness control method and application of hot-rolled strip steel
JP2002346616A (en) Method for controlling sheet thickness
KR20030029609A (en) Sheet width control method in hot rolling
JP3467559B2 (en) Strip width control method in hot continuous rolling
JP3040044B2 (en) Method of controlling width of hot rolled steel sheet
JPH08187504A (en) Manufacture of tapered steel sheet
JP3389903B2 (en) Metal strip rolling control method
JP3618463B2 (en) Product cross-sectional shape automatic control device for steel bar rolling equipment
JPH10225701A (en) Method for automatically controlling dimension in universal rolling of shape

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031203

R150 Certificate of patent or registration of utility model

Ref document number: 3501982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

EXPY Cancellation because of completion of term