JPS6138977Y2 - - Google Patents

Info

Publication number
JPS6138977Y2
JPS6138977Y2 JP10926083U JP10926083U JPS6138977Y2 JP S6138977 Y2 JPS6138977 Y2 JP S6138977Y2 JP 10926083 U JP10926083 U JP 10926083U JP 10926083 U JP10926083 U JP 10926083U JP S6138977 Y2 JPS6138977 Y2 JP S6138977Y2
Authority
JP
Japan
Prior art keywords
pile
piles
bottom plate
concrete
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10926083U
Other languages
Japanese (ja)
Other versions
JPS59111812U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10926083U priority Critical patent/JPS59111812U/en
Publication of JPS59111812U publication Critical patent/JPS59111812U/en
Application granted granted Critical
Publication of JPS6138977Y2 publication Critical patent/JPS6138977Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Revetment (AREA)

Description

【考案の詳細な説明】 防波堤または海岸護岸等の防波構造物に関す
る。
[Detailed description of the invention] This invention relates to breakwater structures such as breakwaters or coastal seawalls.

水底地盤上に築造される防波構造物は波浪の影
響を受け易いため、静穏度の高い目数が継続して
得られなければ工事の施工は不可能であつた。こ
れを解決するために実用新案登録第1307202号が
考案された。本考案は幾多の利点を有するが、鋼
杭を主体とするとき、構造上一番大きな応力が生
ずる杭頭部が干湿を繰返す部分となるため鋼杭の
腐食が最もはげしい。従つて安全な防波構造物と
するには、杭頭部の干潮面から上の部分の防食を
完全にしなければならず、そのため一般に杭頭部
を鉄筋コンクリート等で被覆する必要があつた。
ところが、干潮面附近は絶えず波浪の作用すると
ころであるから杭頭部に型枠をとりつけることが
非常に困難で、一定の静穏日数が得られないため
に長期間施工不能に陥り、工費増大の最も大きな
原因となつていた。本考案はこの欠点を除去する
もので、これを実施例により説明する。第1図は
本考案に使用する杭を上からみた平面図で、1は
H鋼杭、2はH鋼杭のフランジと腹板によつて形
成される部に丁度嵌合するように平鉄を溶接し
た底板で、底板の一部には小孔3を設けてある。
4は底板の端部とH鋼のフランジ端部に溶接した
平鉄で、側板である。かくてH鋼杭の1のフラン
ジ、腹板、および底板2、側板4によつて筒形の
囲い(以下単に「筒」と称する)5が形成され
る。本考案の杭1を水底地盤上に設立したとき、
第2図のように底板2は満潮時には水中にあり、
従つて筒5の内部には水が入つている。しかし本
考案では底板2の一部に小孔3を設けてあるか
ら、筒5の中にコンクリートを静かに流し込め
ば、筒5の中の水は小孔3から流出し、コンクリ
ートの充填の進行とともに小孔3は自然に閉塞し
てしまう。また干潮時に底板2が水上に出る場合
は筒5の中の水は自然に流出する。もし小孔3が
なければ、干潮時に底板2が水上に出ても筒5の
中には水が入つたままであるからコンクリートの
充填に支障をきたす。このように小孔3があるた
めに底板2が水上にあるときは勿論、水中にある
ときでも筒5の中の水は容易に外に排出されるか
ら、筒5の中にはコンクリートを容易に充填でき
る。従つてH鋼杭1は水底地盤上に設立されたと
きに最も腐食のはげしい乾湿を繰返す部分のH鋼
杭の内側の表面を完全にコンクリートで被覆する
ことができる。第3図は通常のH鋼杭を使用して
構築された防波構造物の一実施例の断面図であ
る。通常のH鋼杭1′を適当な間隔をもつて水底
地盤上に設立し、杭の頭部を複数の横桟6をもつ
て連結して角筒状の囲いを形成し、その囲いの内
部に上記各杭の間隙から脱出しない程度の大きさ
の石またはコンクリートブロツク等の消波材7を
充填し、杭の頭部を場所打コンクリート8をもつ
て強固に連結してなるものである。この際、杭の
頭部には最も大きなモーメントが発生するが、満
潮面10附近以上の干湿を繰返す部分は腐食も一
番大きく、港湾等の設計基準(港湾の施設の技術
上の基準、同解説第3−10頁、日本港湾協会発
行)によれば、腐食速度は満潮面以上を0.3mm/
年、満潮面と海底間を0.1mm/年としている。そ
れゆえ満潮面以上では、例えば30年間では約9
mm、満潮面と海底面の間でも約3mmも腐食により
損耗することとなる。従つて満潮面以上ではH鋼
杭は構造上最も重要なフランジが両側から9mmづ
つ計18mmも損耗し、原形の残るところがほんの僅
かとなり、杭頭部のモーメントに耐えることがで
きない。そこで第3図のように満潮面10附近、
または満潮面10と干潮面9の間の適当な位置か
ら上のH鋼杭をコンクリート8で被覆する必要が
あつた。これは構造上欠くことのできない絶対条
件であつた。ところがH鋼杭を被覆するために
は、まづH鋼杭の周辺に型枠の底板をとりつけな
ければならず、しかもそのとりつけか所が波浪の
影響を受け易いところであるために作業が極めて
困難であつた。また干満差の大きいところでは場
所打コンクリート8の下面以下を干湿を繰返す部
分はH鋼杭は全面に亘つて0.1mm/年づつ腐食が
進行するのでH鋼杭の全断面ではその損耗は非常
に大きい。なお場所打コンクリート8はその作業
が極めて困難であるにもかかわらず、H鋼杭の防
食上できるだけ下にさげる必要があり、そうする
と場所打コンクリート8の高さaが大きくなり、
波力はaに全面的に直接作用するから、外力の影
響が非常に大きくなる。すなわち応力が大きくな
り、杭の断面も大きくなければならないという欠
点があつた。これに対し第4図は本考案の防波構
造物の一実施例であるが、筒5の底板2は干潮面
以下とし、筒5内のコンクリートは水中コンクリ
ートとしているが、この場合はH鋼杭の損耗が腹
板については皆無であり、フランジについて片面
だけであるから、第3図のような従来のものに比
し腐食損耗は、1/2以下に減じ、全体としてH鋼
杭の構造上最も重要な部分の損耗は非常に小さく
なる。そのため杭頭部の場所打コンクリート8は
満潮面附近より上の位置からでも十分である。そ
の結果場所打コンクリート8の高さbは第3図の
従来の構造によるaに比し小さくなるから波力の
直接作用する面も小さくなり、応力上非常に有利
になるばかりでなく、場所打コンクリートの型枠
とりつけが容易となるのでコンクリートの打設そ
のものも容易となり、コンクリート量も少なくな
り、全体として施工が容易で工費が大いに軽減で
きるようになつた。
Wavebreak structures constructed on underwater ground are susceptible to the effects of waves, so construction work would be impossible unless a high level of calmness could be achieved continuously. To solve this problem, Utility Model Registration No. 1307202 was devised. Although the present invention has many advantages, when the pile is mainly made of steel, the pile head, where the greatest structural stress occurs, is the part that undergoes repeated drying and humidity, and therefore the steel pile is most susceptible to corrosion. Therefore, in order to create a safe wave-break structure, the portion of the pile head above the low tide surface must be completely protected from corrosion, and for this reason, it is generally necessary to cover the pile head with reinforced concrete or the like.
However, since waves are constantly acting near the low tide level, it is extremely difficult to attach formwork to the pile heads, and construction cannot be carried out for a long period of time because a certain number of calm days cannot be obtained, resulting in the greatest increase in construction costs. This was a major cause. The present invention eliminates this drawback and will be explained by way of example. Figure 1 is a top plan view of the pile used in this invention, where 1 is an H steel pile, and 2 is a flat iron that fits exactly into the part formed by the flange and belly plate of the H steel pile. It is a welded bottom plate, and a small hole 3 is provided in a part of the bottom plate.
4 is a side plate, which is a flat iron welded to the end of the bottom plate and the flange end of the H steel. Thus, a cylindrical enclosure (hereinafter simply referred to as a "tube") 5 is formed by the flange of the H steel pile, the belly plate, the bottom plate 2, and the side plates 4. When the pile 1 of the present invention is installed on the underwater ground,
As shown in Figure 2, the bottom plate 2 is underwater at high tide.
Therefore, water is contained inside the cylinder 5. However, in the present invention, a small hole 3 is provided in a part of the bottom plate 2, so if concrete is poured gently into the tube 5, the water in the tube 5 will flow out through the small hole 3, and the concrete will not be filled. As the disease progresses, the small hole 3 naturally closes. Further, when the bottom plate 2 comes out on the water at low tide, the water in the tube 5 naturally flows out. If the small holes 3 were not provided, water would remain in the tube 5 even if the bottom plate 2 rose above the water at low tide, which would hinder the filling of concrete. Because of the small holes 3, the water inside the cylinder 5 can be easily drained out not only when the bottom plate 2 is above water but also when it is underwater, so it is easy to pour concrete into the cylinder 5. can be filled. Therefore, when the H-steel pile 1 is installed on underwater ground, the inner surface of the H-steel pile, which is the part that repeats wet and dry conditions where corrosion is most severe, can be completely covered with concrete. FIG. 3 is a cross-sectional view of one embodiment of a wave-break structure constructed using ordinary H-steel piles. Ordinary H-steel piles 1' are installed on the underwater ground at appropriate intervals, the heads of the piles are connected with a plurality of horizontal bars 6 to form a rectangular cylindrical enclosure, and the inside of the enclosure is A wave-absorbing material 7 such as stones or concrete blocks of a size large enough to prevent escape from the gaps between the piles is filled in the piles, and the heads of the piles are firmly connected with cast-in-place concrete 8. At this time, the largest moment is generated at the head of the pile, but the parts that repeatedly experience dryness and humidity of 10 or more around the high tide level experience the greatest corrosion. According to the same commentary, pages 3-10, published by the Japan Ports and Harbors Association, the corrosion rate is 0.3 mm/min above the high tide level.
The distance between the high tide surface and the ocean floor is 0.1 mm/year. Therefore, above the high tide level, for example, approximately 9
mm, and approximately 3 mm will be lost due to corrosion between the high tide surface and the seabed surface. Therefore, above the high tide level, the structurally most important flanges of H-steel piles wear out by 9 mm on both sides, totaling 18 mm, leaving only a small portion of the original shape, and the pile cannot withstand the moment at the head. Therefore, as shown in Figure 3, around the high tide level 10,
Alternatively, it was necessary to cover the H steel pile above an appropriate position between the high tide level 10 and the low tide level 9 with concrete 8. This was an absolute structural requirement. However, in order to cover the H-steel pile, it is first necessary to attach the bottom plate of the formwork around the H-steel pile, and this work is extremely difficult because the attachment point is easily affected by waves. It was hot. In addition, in areas with large tidal differences, corrosion progresses at a rate of 0.1 mm/year over the entire surface of the H steel pile in the area below the lower surface of the cast-in-place concrete 8 where drying and humidity are repeated, so the wear and tear on the entire cross section of the H steel pile is extremely big. Although the work of cast-in-place concrete 8 is extremely difficult, it is necessary to lower it as low as possible to prevent corrosion of the H-steel pile, which increases the height a of cast-in-place concrete 8.
Since the wave force acts directly on the entire surface of a, the influence of external force becomes very large. In other words, there were disadvantages in that the stress was large and the cross section of the pile had to be large. On the other hand, Fig. 4 shows an embodiment of the wave-break structure of the present invention, in which the bottom plate 2 of the cylinder 5 is below the low tide level, and the concrete inside the cylinder 5 is underwater concrete. Since there is no wear on the pile's belly plate and only on one side of the flange, corrosion wear is reduced to less than half that of conventional piles as shown in Figure 3, and the structure of the H steel pile as a whole is improved. The wear and tear on the most important parts will be very small. Therefore, it is sufficient to cast in place concrete 8 at the pile head from a position above the high tide level. As a result, the height b of the cast-in-place concrete 8 becomes smaller than a in the conventional structure shown in Fig. 3, so the surface on which the wave force directly acts becomes smaller, which is not only very advantageous in terms of stress, but also makes it possible to cast-in-place concrete. Since it is easier to attach the concrete formwork, the concrete casting itself is also easier, the amount of concrete is reduced, and overall construction is easier and construction costs can be greatly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図……H鋼杭の平面図、第2図……側面
図、第3図……従来の防波構造物の断面図、第4
図……本考案の防波構造物の断面図。 1,1……杭、2……底板、3……小孔、4…
…側板、5……筒形の囲い、6……横桟、7……
消波材、8……場所打コンクリート、a,b……
場所打コンクリートの高さ。
Figure 1: Plan view of H steel pile, Figure 2: Side view, Figure 3: Cross-sectional view of conventional wave-break structure, Figure 4:
Figure: Cross-sectional view of the wave-break structure of the present invention. 1, 1...Pile, 2...Bottom plate, 3...Small hole, 4...
...Side plate, 5...Cylindrical enclosure, 6...Horizontal bar, 7...
Wave-dissipating material, 8... Cast-in-place concrete, a, b...
Height of cast-in-place concrete.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 水底地盤上に設立されるH鋼杭の設立後におけ
る該杭の乾湿を繰返す水面附近のH鋼杭の部に
平鉄を溶接して底板2とし、かつ底板の一部に小
孔を設け、さらに底板とH鋼杭のフランジ端部に
平鉄を溶接して筒状の囲いを形成し、この囲いの
内部にコンクリートを充填してなる水中構造物構
築用杭の多数を、この各杭間に若干の間隙を保つ
て角筒状に配置して水底地盤上に設立し、これら
各杭の頭部を複数の横桟を有する方形枠体により
連結してなる角筒型格子状枠の内部に、この角筒
型格子状枠の各杭間の間隙から脱出しない程度の
大きさの石材またはコンクリートブロツク等の消
波材を充填し、上記各杭の頭部を鉄骨、鉄筋また
は場所打コンクリート等により強固に連結してな
る防波構造物。
A flat iron is welded to the part of the H steel pile near the water surface where the pile is repeatedly wetted and dried after it is installed on the underwater ground to form the bottom plate 2, and a small hole is provided in a part of the bottom plate, Furthermore, flat iron is welded to the bottom plate and the flange ends of the H steel piles to form a cylindrical enclosure, and a large number of piles for constructing underwater structures are filled with concrete between each pile. The inside of the rectangular tube-shaped lattice frame is formed by placing the piles in a rectangular tube shape with a slight gap between them and establishing them on the underwater ground, and connecting the heads of each of these piles with a rectangular frame having a plurality of horizontal bars. The gaps between the piles of this rectangular cylindrical lattice frame are filled with wave-absorbing materials such as stones or concrete blocks that are large enough to prevent them from escaping, and the heads of each pile are covered with steel frames, reinforcing bars, or cast-in-place concrete. A wave-break structure made up of strong connections.
JP10926083U 1983-07-13 1983-07-13 Wavebreak structure Granted JPS59111812U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10926083U JPS59111812U (en) 1983-07-13 1983-07-13 Wavebreak structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10926083U JPS59111812U (en) 1983-07-13 1983-07-13 Wavebreak structure

Publications (2)

Publication Number Publication Date
JPS59111812U JPS59111812U (en) 1984-07-28
JPS6138977Y2 true JPS6138977Y2 (en) 1986-11-10

Family

ID=30254590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10926083U Granted JPS59111812U (en) 1983-07-13 1983-07-13 Wavebreak structure

Country Status (1)

Country Link
JP (1) JPS59111812U (en)

Also Published As

Publication number Publication date
JPS59111812U (en) 1984-07-28

Similar Documents

Publication Publication Date Title
RU195367U1 (en) Prefabricated waterworks module
JPS6138977Y2 (en)
JP3301739B2 (en) Caisson offshore structure
JPS6042121Y2 (en) Piles for constructing underwater structures
CN209260743U (en) A kind of transition structure for barrel type basis dike corner
JPH06970B2 (en) Breakwater and its construction method
SU433272A1 (en) ISLAND ICE-RESISTANT KNIFE FOR DRILLING ON THE SEAS
JP2503854Y2 (en) Wave control structure using columnar members
RU2040632C1 (en) Enclosure
JPS6268926A (en) Construction for underwater reinforced concrete
JPH0526094Y2 (en)
JPS607377Y2 (en) wave-dissipating dyke
JP2519299B2 (en) Underwater civil engineering structure and its construction method
JPS6215302Y2 (en)
JPS6328968Y2 (en)
JP3619953B2 (en) River structure using composite pile for river structure and back split levee using the river structure
JPS6018776B2 (en) Hull caisson construction method
SU1687709A1 (en) Sea dike, assy
JPS59165710A (en) Wave-breaking shell revetment
JP3808552B2 (en) Form for constructing underwater caisson, underwater caisson and construction method thereof
JPH076175B2 (en) Breakwater structure
JPS622081B2 (en)
JPS5850205A (en) Curtain wall type brakewater
SU1337455A1 (en) Seaport hydraulic structure
JPS63297628A (en) Method and formwork for construction of concrete slope frame