JPS6138925B2 - - Google Patents
Info
- Publication number
- JPS6138925B2 JPS6138925B2 JP3465981A JP3465981A JPS6138925B2 JP S6138925 B2 JPS6138925 B2 JP S6138925B2 JP 3465981 A JP3465981 A JP 3465981A JP 3465981 A JP3465981 A JP 3465981A JP S6138925 B2 JPS6138925 B2 JP S6138925B2
- Authority
- JP
- Japan
- Prior art keywords
- polymerization
- activity
- slurry
- propylene
- ethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000006116 polymerization reaction Methods 0.000 claims description 114
- 230000000694 effects Effects 0.000 claims description 67
- 239000002002 slurry Substances 0.000 claims description 42
- 239000003054 catalyst Substances 0.000 claims description 35
- 150000001875 compounds Chemical class 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 26
- 239000003638 chemical reducing agent Substances 0.000 claims description 22
- -1 titanium halide Chemical class 0.000 claims description 21
- 229920001400 block copolymer Polymers 0.000 claims description 18
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 229920000642 polymer Polymers 0.000 claims description 10
- 239000011949 solid catalyst Substances 0.000 claims description 10
- 239000010936 titanium Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 125000002370 organoaluminium group Chemical group 0.000 claims 1
- 230000000704 physical effect Effects 0.000 description 15
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 14
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 14
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- QSSJZLPUHJDYKF-UHFFFAOYSA-N methyl 4-methylbenzoate Chemical compound COC(=O)C1=CC=C(C)C=C1 QSSJZLPUHJDYKF-UHFFFAOYSA-N 0.000 description 9
- 239000002904 solvent Substances 0.000 description 8
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 8
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 7
- 239000005977 Ethylene Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 230000006872 improvement Effects 0.000 description 6
- 239000012442 inert solvent Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000009849 deactivation Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000012662 bulk polymerization Methods 0.000 description 2
- 238000011437 continuous method Methods 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 2
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 2
- 238000012685 gas phase polymerization Methods 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- LPNBBFKOUUSUDB-UHFFFAOYSA-N p-toluic acid Chemical compound CC1=CC=C(C(O)=O)C=C1 LPNBBFKOUUSUDB-UHFFFAOYSA-N 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XEMRAKSQROQPBR-UHFFFAOYSA-N (trichloromethyl)benzene Chemical compound ClC(Cl)(Cl)C1=CC=CC=C1 XEMRAKSQROQPBR-UHFFFAOYSA-N 0.000 description 1
- NDQXKKFRNOPRDW-UHFFFAOYSA-N 1,1,1-triethoxyethane Chemical compound CCOC(C)(OCC)OCC NDQXKKFRNOPRDW-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910003923 SiC 4 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000012661 block copolymerization Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- CQYBWJYIKCZXCN-UHFFFAOYSA-N diethylaluminum Chemical compound CC[Al]CC CQYBWJYIKCZXCN-UHFFFAOYSA-N 0.000 description 1
- GGSUCNLOZRCGPQ-UHFFFAOYSA-N diethylaniline Chemical compound CCN(CC)C1=CC=CC=C1 GGSUCNLOZRCGPQ-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920005676 ethylene-propylene block copolymer Polymers 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- WVWZECQNFWFVFW-UHFFFAOYSA-N methyl 2-methylbenzoate Chemical compound COC(=O)C1=CC=CC=C1C WVWZECQNFWFVFW-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000002905 orthoesters Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- SQBBHCOIQXKPHL-UHFFFAOYSA-N tributylalumane Chemical compound CCCC[Al](CCCC)CCCC SQBBHCOIQXKPHL-UHFFFAOYSA-N 0.000 description 1
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- ORYGRKHDLWYTKX-UHFFFAOYSA-N trihexylalumane Chemical compound CCCCCC[Al](CCCCCC)CCCCCC ORYGRKHDLWYTKX-UHFFFAOYSA-N 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
- IECKAVQTURBPON-UHFFFAOYSA-N trimethoxymethylbenzene Chemical compound COC(OC)(OC)C1=CC=CC=C1 IECKAVQTURBPON-UHFFFAOYSA-N 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Landscapes
- Graft Or Block Polymers (AREA)
Description
本発明は耐衝撃性、剛性等の物性の間で良好な
バランスを有するプロピレン―エチレンブロツク
共重合体の製造方法に関する。
チーグラー及びナツタらによる立体規則性触媒
の発明以来結晶性ポリオレフインはすぐれた剛
性、耐熱性を有し、又その成形品が軽量であるこ
となどすぐれた性質を有する汎用樹脂として近来
その生産量は世界的に増大している。しかしなが
ら結晶性ポリプロピレンは低温という欠点を有す
るため低温で耐衝撃性を要求される用途には使用
しにくい。この欠点を改良する方法についてはす
でに多くの研究、開発がなされ、種々の改良法が
提案されている。中でも工業的に有利な方法とし
て、プロピレンと他のオレフイン特にエチレンを
ブロツク共重合する方法が例えば、特公昭38−
14834、特公昭39−1836、特公昭39−15535などで
提案されている。しかかしながらこれらの方法で
製造されたブロツク共重合体は結晶性ポリプロピ
レンと比較して成形品の剛性、透明性が低く、衝
撃或いは折りまげにより変形させると変形部が白
化するなどの欠点を有する。これらの問題に対し
て3段階に分けてブロツク共重合を行う方法が特
公昭44−20621、特公和49−24593などで提案され
得られるブロツク共重合体の物性は非常に優れた
ものである。
一方、プロピレン―エチレンブロツク共重合体
の単位時間当り、重合槽の単位容積当りの生産性
を高める、及びなるべく均一な物性をもつ製品を
大量に得るため連続的に生産する方法が望まれ
る。しかしながら回分的には物性バランスの優れ
たプロピレン―エチレンブロツク共重合体を与え
る方法であつても、それを連続的方法に適用する
には多くの問題がある。連続的方法において適当
な物性を有するブロツク共重合体を得るため、エ
チレン/プロピレンの反応比の異なる重合段階を
設ける場合が多く、従つてその段階の数に応じた
重合槽を準備する必要がある。又多槽の重合槽を
直列に連結し、連続して重合を行なう場合、完全
混合槽を備えた重合槽では各重合槽によつて触媒
の滞留時間がことなり従つて触媒当りの重合量に
分布が生ずるため、連続的方法と回分的方法では
その生成重合体の物性が大きく異なり、前者は一
般に回分法に比較して特に耐衝撃性の低下が見ら
れる。
これらの問題の解決方法の1つとして、プロピ
レン単独或いはプロピレンリツチのエチレン/プ
ロピレンの重合が全重合量の大部分を占めるエチ
レン―プロピレンブロツク共重合体の製造方法に
おいて、上記プロピレン単独或いはプロピレンリ
ツチのエチレン/プロピレンの重合段階を連続で
行い、次にエチレン/プロピレンの反応比をかえ
ながらいくつかの重合段階を回分的に行う方法が
考えられ、この方法を採用することによつて比較
的少数の重合槽を用いて物性のバランスの優れた
ブロツク共重合体を得ることができる。しかしな
がら、連続重合段階から回分重合段階、又回分重
合段階から脱活工程へスラリーを移送する間、さ
らに水素濃度等を調整する間、予定していない制
御不可能な重合がおこり従つて得られるポリマー
の物性のバランスが悪化する。連続重合段階から
回分重合段階へのスラリーの移送、更に回分重合
段階から触媒の脱活工程へのスラリーの移送を、
容量の大きいポンプあるいは圧力差を利用して短
時間に行つたり、又水素濃度の調整もパージ量を
大きくするなどの方法をとることにより、予定し
ていない制御不可能な重合をかなり減少させるこ
とができる。しかしながら連続重合槽からスラリ
ーの急激な排出は、連続重合を行つている重合槽
のレベルを急激に変化させることになり、連続重
合の温度の制御とか、生成するポリマーの分子量
の制御が困難になるなどの問題が生ずる、さらに
ポンプでスラリーの移送を行う場合にはポンプの
能力が大きいものが必要となり設備費用が大きく
なる。回分重合段階から触媒の脱活工程へのスラ
リーの移送を短時間に行う場合への影響は小さい
ものの、上記したような設備費用の増大をまねく
だけではなく、脱活槽の温度コントロール及びス
ラリーから製品の取出し操作が困難となる。
本発明の目的は耐衝撃性と高い剛性等すぐれた
物性を有するプロピレン―エチレンブロツク共重
合体を重合時の制御の困難を伴なうことなく製造
すること及び回分重合の場合に比較して得られる
ポリマーの物性を実質的に低下させることなく、
重合槽単位容積当り単位時間当りの生産性を高め
る方法を提供することにある。
本発明は、立体規則性触媒を用いて2槽以上の
重合槽を連結した多段階重合に際しエチレン/プ
ロピレンの反応比が6/94重量%以下の重合を連
続式で行い、エチレン/プロピレンの反応比が
15/85〜95/5重量%の重合を回分的に行うこと
によりプロピレン―エチレンブロツク共重合体を
製造する方法に於て、回分重合を行う重合槽にス
ラリーを移送すると同時又は移送する前に該スラ
リーに触媒活性低下剤を加えることにより該低下
剤を加えない場合の触媒活性の1/4以下に低下
させ、次いで回分重合を行う重合槽へのスラリー
の移送の終了後に有機アルミニウム化合物を添加
することにより、該有機アルミニウム化合物を添
加する前の活性の1.1倍以上に活性を高めた条件
下で回分重合を行い、次いで回分重合槽での重合
が終了すると同時に触媒活性低下剤を加えること
により、該低下剤を加える前の活性の1/2以下
に低下させることを特徴とするプロピレン―エチ
レンブロツク共重合体の製造方法に関する。
本発明で使用する立体規則性触媒は一般にプロ
ピレンの立体規則性触媒に用いられる触媒であれ
ばよく特に制限はないが、(イ)少なくともMg,
Ti,Cの3種の元素を含有する固体触媒と、
(ロ)有機アルミニウム化合物からなる触媒が好まし
い。少なくともMg,Ti,Cの3種の元素を含
有する固体触媒は種々の方法で、例えば本発明者
の一部がすでに特開昭54−103494、特開昭54−
116079、特開昭55−102606等で提案しているよう
な方法で得られる。具体的にはハロゲン化マグネ
シウム(たとえば無水のMgC2)と種々の有
機化合物、例えば芳香族オルソカルボン酸エステ
ル、アルコキシケイ素とハロゲン化炭化水素、オ
ルソカルボン酸エステルとハロゲン化炭化水素、
カルボン酸エステルとAC3との錯体とアル
コールを共粉砕したものをハロゲン化チタンで熱
処理することにより固体触媒を得ることができ
る。或いは不活性溶媒に可溶な有機アルミニウム
化合物を種々のハロゲン化剤と反応させることに
より不活性溶媒に不溶な、Mg及びCを含有す
る固体担体を合成し、さらに電子供与性化合物、
ハロゲン化チタンで処理することによつても得ら
れる。
触媒の一成分である(ロ)有機アルミニウム化合物
としては、一般式ARmX3-n(式中:Rは炭素
数1〜12の炭化水素残基、Xはハロゲン原子、か
つ1m3で表わされる有機アルミニウム化合
物が好ましく用いられる。例えばトリエチルアル
ミニウム、トリ―n―ブチルアルミニウム、トリ
イソブチルアルミニウム、トリ―n―ヘキシルア
ルミニウム、ジエチルアルミニウムモノクロライ
ドなどが単独で又は2種以上混合して用いられ
る。C−O又はC−N結合を少なくとも1つ有す
る化合物を併用することにより得られるポリマー
の立体規則性を高め物性のバランスをよくするこ
とができる。C−O又はC−N結合を少なくとも
1つ有する化合物としてはエステル、エーテル、
オルソエステル、アルコキシケイ素、アミン、ア
ミド、リン酸エステル等が用いられ、より具体的
には安息香酸エチル、トルイル酸メチル、オルソ
安息香酸メチル、テトラエトキシシラン、フエニ
ルトリエトキシシラン、ジブチルエーテル、トリ
エチルアミン、ジエチルアニリン、リン酸トリエ
チル等が好ましく用いられる。
本発明で用いる触媒を構成する各成分の使用割
合は任意であり、又その適当な範囲は用いる化合
物によつて異なるが、一般には固体触媒中のTi1
モルに対して有機アルミニウム化合物は0.1〜500
モルであり、又C−O又はC−N結合を少くとも
1つ有する化合物は0〜250モルの範囲である。
本発明の方法においては1槽以上を連結して重
合槽を用いてエチレン/プロピレンの反応比が
6/94重量%以下の重合の80%以上を連続で行
い、エチレン/プロピレンの反応比が15/85〜
95/5重量%の重合の90%以上を回分的に行うこ
とによりエチレン/プロピレンブロツク共重合体
が製造される。エチレン/プロピレンの反応比が
6/94重量%以下の重合にはプロピレン単独で重
合することも、もちろん含まれる。該反応比での
重合は不活性溶媒の存在下又は不活性溶媒が実質
的に存在在しないプロピレン自身を溶媒とする塊
状重合又は液状の重合溶媒が実質的に存在しない
気相重合で行うこともできる。エチレン/プロピ
レンの反応比が6/94重量%以下の重合はエチレ
ン/プロピレンブロツク共重合体の耐衝撃性と剛
性をバランスよく保つために必要であり、特にこ
の反応比での重合が全重合量の60〜95重量%であ
ることがエチレン/プロピレンブロツク共重合体
の剛性を高めるため望ましい。上記反応比での重
合温度は触媒系によつて異なるが、一般には40〜
90℃特に60〜80℃が好ましい。又生産性を高める
ため上記反応比での重合工程はできるかぎり連続
で行うことが好ましい。
次にエチレン/プロピレンの反応比が15/85〜
95/5重量%の重合段階は、耐衝撃性の優れたプ
ロピレン―エチレンブロツク共重合体を得るため
には必須の工程であり、その重合は不活性溶媒の
存在下又は不活性溶媒が実質的に存在しないプロ
ピレン自身を溶媒とする塊状重合又は液状の重合
溶媒が実質的に存在しない気相重合法で行うこと
もできる。上記重合温度はエチレン/プロピレン
の反応比等により異なるが一般には30〜70℃、特
に40〜60℃が好ましい。
本発明の方法においては回分重合を行う重合槽
にスラリーを移送すると同時又は移送する前に該
スラリーに触媒活性低下剤を加えることにより該
低下剤を加えない場合の触媒活性の1/4以下に
低下させ、次いで回分重合を行う重合へのスラリ
ーの移送終了後に有機アルミニウム化合物を添加
することにより、該有機アルミニウム化合物を添
加する前の活性の1.1倍以上を高めた条件下で回
分重合を行い、次いで回分重合槽での重合が終了
すると同時に触媒活性低下剤を加えることによ
り、該低下剤を加える前の活性の1/2以下に低
下させる。
連続重合工程から回分重合工程へ、又回分重合
工程から脱活工程へスラリーを移送する間、さら
に気相の水素濃度等を調整する間に予定しない制
御不能な重合が行われるため得られるポリマーの
物性のバランスが非常に悪化する。そこで上記の
予定しない制御不可能な重合量をなるべく減少さ
せるため回分重合槽にスラリーを移送するとき又
はその前に活性低下剤を添加して重合槽にある触
媒活性を本来の活性の1/4以下、好ましくは
1/4〜1/10に低下させる。1/4より大きく
なれば制御不可能な重合量の減少効果が小さくな
り、一方1/10より低くなれば活性を復活させる
ため添加される有機アルミニウム化合物の量が増
大することになる。
回分重合槽へのスラリーの移送終了後に、回分
重合の時間及び重合量により決定される適当な触
媒活性を復活させるため有機アルミニウム化合物
が添加される。有機アルミニウム化合物の使用割
合は活性低下剤の種類及び量により左右される
が、有機アルミニウム化合物を添加する前の活性
の1.1倍以上、好ましくは1.1倍〜10倍に活性を高
める如き量である。すなわち、1/4〜1/10に
低下させた活性を回分重合(制御された状態)の
為に向上させるわけで、活性の向上が認められ、
制御された状態の方の重合量が向上すれば良く、
活性の向上があればそれなりの効果があるわけで
あるが、1/10まで低下させた下限の場合にはそ
の1/10の少なくとも1.1倍の向上がなければ、
活性向上の実効性が不充分なためである。
他方、制御されている状態での重合のために活
性向上は大きければそれだけ良い訳であるが、活
性を低下させる前の活性(=1)以上にすること
は実際のプロセス上、除熱が困難になるなどの問
題があり好ましくない。従つて、活性低下の下限
の1/10まで低下させた場合において、活性向上
の最大限は1/10×10=1から、10倍が上限とな
る。
次に回分重合終了後活性低下剤を重合槽に添加
して該低下剤を加えない前の活性の1/2以下に
低下させる。重合後の活性は低い程良いが、低下
剤の添加量の問題もあり、少なくとも1/2以下
であれば活性低下の効果があるからである。低下
剤の添加量は活性を1/2以下にするに必要な量
であり、且つ共重合終了後スラリーを排出し、簡
単な洗浄を行つた後に残留する低下剤の量が回分
槽へスラリーを受け入れる際に所望の活性低下以
上に低下させない如き量であればよい。かかる活
性低下剤としては触媒活性を低下させるものであ
れば使用でき、種々の有機化合物及びAC
3,SiC4の如き無機化合物が用いられるが、
好ましくは生成ポリマーの立体規則性を大きく低
下させずに活性を低下させるものが好ましい。特
に回分重合を行う重合槽にスラリーを移送する際
に添加する活性低下剤は、立体規則性を低下させ
ずに活性を低下させ、かつ少量の有機アルミニウ
ム化合物の添加により活性を復活させることが可
能であるような化合物を用いるのが好ましい。た
とえば前述の触媒の好ましい一成分として用いら
れるC−O又はC−N結合を少なくとも1つ有す
る化合物が示される。具体的な化合物の例は前述
したとおりである。
又、活性を復活させるのに用いる有機アルミニ
ウム化合物としては、前述の触媒の一成分として
用いた有機アルミニウム化合物が如ましく用いら
れる。
本発明の方法を用いることにより耐衝撃性と剛
性ののバランスの優れたプロピレン―エチレンブ
ロツク共重合体を制御した条件で効率よく与える
ことができ工業的に非常に有意義である。
以下に実施例により本発明をさらに詳しく説明
する。なお実施例及び比較例において、
メルトフローインデツクス(以下MIと略記)
ASTM D1238
曲げ剛性度 ASTM D747−63
アイゾツト(ノツチ付) ASTM D256−56
デユポン JIS K6718
に基づいてMIは230℃、荷重2.16Kgの条件で、曲
げ剛性度は20℃の条件で、またアイゾツト及びデ
ユポン衝撃強度は20℃及び−10℃の条件下でそれ
ぞれ測定した。極限粘度数(以下ηと略記)は
135℃、テトラリン溶液で測定した。アイソタク
テイツクインデツクス(以下IIと略記)は
沸騰n―ヘプタン抽出残ポリマー/全ポリマー(%)
として
算出された。
実施例 1
(i) 固体触媒成分の調整
直径12mmの鋼球9Kgの入つた内容積4の粉砕
用ポツトを4個装備した振動ミルを用意する。各
ポツトに窒素雰囲気中で塩化マグネシウム300
g、テトラエトキシシラン60ml、α,α,α―ト
リクロロトルエン45mlを加えて40時間粉砕した。
内容積50のオートクレーブに上記粉砕物3Kg、
四塩化チタン20を加え80℃で2時間撹拌した後
デカンテーシヨンによつて上澄液を除き、次にn
―ヘプタン35を加え80℃で15分間撹拌ののちデ
カンテーシヨンで上澄液を除く洗浄操作を7回繰
り返した後さらにn―ヘプタン20を追加して固
体溶媒スラリーとした。固体溶媒スラリーの一部
をサンプリングしn―ヘプタンを蒸発させ分析し
たところ固体溶媒中に1.4重量%のTiを含有して
いた。
(ii) 重 合
第1図に示した重合装置を用いて重合が行われ
る。充分に乾燥し窒素で置換した内容積50のオ
ートクレーブにn―ヘプタン30、上記固体触媒
50g、ジエチルアルミニウム、クロライド240
ml、P―トルイル酸メチル140mlを入れ25℃で撹
拌した。この混合物を触媒スラリー混合物とす
る。充分に乾燥し窒素で置換しさらにプロピレン
ガスで置換した内容積300のオートクレーブA
及びBを直列に連結し、内容積200のオートク
レーブC1及びC2をオートクレーブBの次に並
列に連結する。内容積300のオートクレーブD
をオートクレーブC1に対して直列に連結する。
オートクレーブA及びBにプロピレン60Kgを装入
する。上記触媒スラリー混合物を固体触媒として
1g/hもう一つの有機アルミニウム化合物触媒
成分であるトリエチルアルミニウムを1.5ml/h
で、さらに液体プロピレンを30Kg/hでオートク
レーブAに装入する。オートクレーブBにはトリ
エチルアルミニウムを3.0ml/hの速度でまたオ
ートクレーブAからポリプロピレンスラリーを30
Kg/hで連続的に装入しオートクレーブBからは
ポリプロピレンスラリーを30Kg/hで連続的に抜
き出しながらオートクレーブA及びBの気相水素
濃度を表1に示す量に保つように水素を装入し75
℃で重合を行い、重合開始後6時間経過し重合が
安定したところで連続重合部でどのようなηとII
を持つものが得られているかを確かめるためにオ
ートクレーブBから少量のスラリーを抜き出しパ
ウダーの物性を測定した。その結果を第2表の連
続重合最終パウダー物性の項に記した。次にオー
トクレーブBの下部から連続的に抜き出している
スラリー及び1.4ml/30minの速度で、P―トル
イル酸メチルを同時にオートクレーブC1に装入
し30分間スラリーC1に受け入れた後、オートク
レーブBからのスラリー及びP―トルイル酸メチ
ルの移送先をオートクレーブC2に変更した。
C1ではスラリーを受け入れると同時に気相部を
パージしながら液状のプロピレン5Kgを圧入し、
内温を50℃にすると同時に水素濃度を0.3vol%と
した。この間の活性はP―トルイル酸の装入によ
り約1/5に低下している。さらにエチレン及び
水素を装入し気相部の水素濃度を0.55vol%、エ
チレンの濃度を35.0モル%としさらにトリエチル
アルミニウム3.0mlを一気に圧入して活性を約2.5
倍に上げて上記水素及びエチレン濃度を保ちなが
ら9分間50℃で重合し、さらにエチレンを追加し
て水素濃度0.50vol%、エチレン濃度40.0モル%で
2.0分間重合した。ついでp―トルイル酸メチル
を2ml装入した後、あらかじめ液状のプロピレン
10Kg、イソプロパノール50mlを入れたオートクレ
ーブDに7分間で圧送した。オートクレーブC1
は液状のプロピレンで内部を洗浄し、洗浄したプ
ロピレンもオートクレーブDに送つた。オートク
レーブC1は約3Kg/cm2−ゲージで次のスラリー
受け入れに備えた。一方オートクレーブDにはイ
ソプロパノールを1ml/hで装入しながらその下
部からスラリーをフラツシユタンクEに移送し、
さらにポツパーFを経てパウダーとして取り出し
た。オートクレーブDからの排出は約40Kg/hの
連続排出とし、次にオートクレーブC2からスラ
リーを受け入れる時、オートクレーブDにはスラ
リーが約10Kg残つているようにした。オートクレ
ーブC2ではオートクレーブBからのスラリー及
びP―トルイル酸メチルを30分間受け入れた後C
1と同様に共重合操作を行つた。オートクレーブ
C1,C2の操作を各25回合計50回、25時間の連
続重合を行ない製品として約250Kgのプロピレン
―エチレンブロツク共重合体を得た。以上の操作
の間何ら異常なく運転が可能であつた。製品中の
Ti含量より固体触媒当りの重合量を求めた。得
られたブロツク共重合体は60℃、100mmHgで10時
間乾燥し、通常用いられる添加物を加えて造粒し
物性を測定した。結果を表2に示す。
参考例
第2図及び第3図に実施例1の(i)で合成した触
媒を用い、固体触媒、ジエチルアルミニウムクロ
ライド、トリエチルアルミニウムの配合比を一定
としP―トルイル酸メチルの量比のみを変更した
場合の活性と、P―トルイル酸メチルの使用量の
関係、及び固体触媒、ジエチルアルミニウムクロ
ライド、P―トルイル酸メチルの配合比を一定と
しトリエチルアルミニウムの量比のみを変更した
場合の活性とトリエチルアルミニウムの使用量の
関係を示す。これより所望の活性を得るために必
要な添加するP―トルイル酸メチル、及びトリエ
チルアルミニウムの量が推定できる。
実施例 2
オートクレーブC1及びC2にスラリーを受け
入れる際に添加するP―トルイル酸メチル0.6
ml/30minをテトラエトキシシラン2.0ml/30min
に変更し活性を約1/5に低下させ、かつオート
クレーブC1及びC2での回分重合開始の際に加
えるトリエチルアルミニウムを2mlに変更して活
性を約2.5倍とした他は実施例1と同様に重合を
行つた結果を表2に示す。
実施例 3
オートクレーブC1及びC2にスラリーを受け
入れる際に添加するP―トルイル酸メチル1.4
ml/30minをオルソ酢酸エチル0.9ml/30minに変
更して活性を約1/4としかつオートクレーブC
1及びC2での回分重合開始の際に加えるトリエ
チルアルミニウムを2.5mlに変更して活性を約2.0
倍に上げて、その他については表1に示す条件で
実施例1と同様の操作により重合を行つた結果を
表2に示す。
比較例 1
回分重合槽への添加剤及び有機アルミニウム化
合物はまつたく加えず、表1に示す条件でその他
は、実施例1と同様に重合を行つた。結果を表2
に示す。耐衝撃性が非常に劣る。
比較例 2
回分重合の各段階の重合時間を変更した他は比
較例1と同様に重合を行つた。結果を表2に示
す。エチレン含量を大きくすることで耐衝撃性は
かなり良好となつたが、剛性が不充分である。
The present invention relates to a method for producing a propylene-ethylene block copolymer having a good balance between physical properties such as impact resistance and rigidity. Since the invention of stereoregular catalysts by Ziegler and Natsuta et al., crystalline polyolefin has become a general-purpose resin with excellent properties such as excellent rigidity and heat resistance, and its molded products are lightweight. is increasing. However, crystalline polypropylene has the disadvantage of low temperatures, and therefore is difficult to use in applications requiring impact resistance at low temperatures. Much research and development has already been carried out on methods to improve this drawback, and various improvement methods have been proposed. Among them, one of the industrially advantageous methods is the method of block copolymerizing propylene and other olefins, especially ethylene, as described in Japanese Patent Publication No. 1983-
14834, Special Publication No. 39-1836, Special Publication No. 39-15535, etc. However, block copolymers produced by these methods have disadvantages such as lower rigidity and transparency of molded products than crystalline polypropylene, and whitening of deformed parts when deformed by impact or folding. . To solve these problems, a method of carrying out block copolymerization in three stages was proposed in Japanese Patent Publication No. 44-20621, Japanese Patent Publication No. 49-24593, etc., and the physical properties of the resulting block copolymers were extremely excellent. . On the other hand, in order to increase the productivity of the propylene-ethylene block copolymer per unit time and unit volume of the polymerization tank, and to obtain a large quantity of products with as uniform physical properties as possible, a continuous production method is desired. However, even if this method provides a propylene-ethylene block copolymer with an excellent balance of physical properties in a batchwise manner, there are many problems in applying it to a continuous method. In order to obtain a block copolymer with appropriate physical properties in a continuous process, polymerization stages with different ethylene/propylene reaction ratios are often provided, and therefore it is necessary to prepare polymerization tanks according to the number of stages. . Furthermore, when multiple polymerization tanks are connected in series and polymerization is performed continuously, the residence time of the catalyst differs depending on each polymerization tank in a polymerization tank equipped with a complete mixing tank, and therefore the amount of polymerization per catalyst varies. Because of the distribution, the physical properties of the produced polymer differ greatly between the continuous method and the batch method, and the former generally shows a particularly low impact resistance compared to the batch method. One way to solve these problems is to use a method for producing an ethylene-propylene block copolymer in which the polymerization of propylene alone or propylene-rich ethylene/propylene accounts for most of the total polymerization amount. One possible method is to carry out the ethylene/propylene polymerization step continuously, and then carry out several polymerization steps batchwise while changing the ethylene/propylene reaction ratio. By adopting this method, a relatively small number of A block copolymer with well-balanced physical properties can be obtained using a polymerization tank. However, during the transfer of the slurry from the continuous polymerization stage to the batch polymerization stage, from the batch polymerization stage to the deactivation stage, and while adjusting the hydrogen concentration, etc., unplanned and uncontrollable polymerization occurs, and the resulting polymer The balance of physical properties deteriorates. Transfer of the slurry from the continuous polymerization stage to the batch polymerization stage, and further transfer of the slurry from the batch polymerization stage to the catalyst deactivation process.
Unplanned and uncontrollable polymerization can be significantly reduced by using methods such as using a large capacity pump or pressure difference to perform the process in a short time, and by adjusting the hydrogen concentration and increasing the purge volume. be able to. However, rapid discharge of slurry from a continuous polymerization tank will cause a sudden change in the level of the polymerization tank in which continuous polymerization is being carried out, making it difficult to control the temperature of continuous polymerization and the molecular weight of the produced polymer. Further, when the slurry is transferred using a pump, a pump with a large capacity is required, which increases the equipment cost. Although the impact is small when the slurry is transferred from the batch polymerization stage to the catalyst deactivation process in a short time, it not only increases the equipment cost as described above, but also requires the temperature control of the deactivation tank and the slurry It becomes difficult to remove the product. The purpose of the present invention is to produce a propylene-ethylene block copolymer having excellent physical properties such as impact resistance and high rigidity without difficulty in controlling the polymerization process, and to obtain better properties than in the case of batch polymerization. without substantially reducing the physical properties of the polymer
The object of the present invention is to provide a method for increasing productivity per unit time per unit volume of a polymerization tank. The present invention involves continuous polymerization in which the reaction ratio of ethylene/propylene is 6/94% by weight or less during multi-stage polymerization in which two or more polymerization tanks are connected using a stereoregular catalyst. The ratio is
In a method for producing a propylene-ethylene block copolymer by batchwise polymerization of 15/85 to 95/5% by weight, at the same time as or before transferring the slurry to a polymerization tank for batch polymerization. By adding a catalyst activity reducing agent to the slurry, the catalyst activity is reduced to 1/4 or less of the catalytic activity when the reducing agent is not added, and then, after the slurry is transferred to a polymerization tank for batch polymerization, an organoaluminum compound is added. By doing so, batch polymerization is carried out under conditions where the activity is increased to 1.1 times or more of the activity before adding the organoaluminum compound, and then, at the same time as the polymerization in the batch polymerization tank is completed, by adding a catalyst activity reducing agent. , relates to a method for producing a propylene-ethylene block copolymer, characterized in that the activity is reduced to 1/2 or less of the activity before adding the reducing agent. The stereoregular catalyst used in the present invention is not particularly limited as long as it is a catalyst generally used for propylene stereoregular catalysts, but (a) at least Mg,
A solid catalyst containing three types of elements, Ti and C,
(b) A catalyst consisting of an organoaluminum compound is preferred. A solid catalyst containing at least three elements, Mg, Ti, and C, can be produced by various methods. For example, some of the inventors have already reported that
116079, JP-A-55-102606, etc. Specifically, magnesium halides (for example, anhydrous MgC 2 ) and various organic compounds, such as aromatic orthocarboxylic esters, alkoxy silicon and halogenated hydrocarbons, orthocarboxylic esters and halogenated hydrocarbons,
A solid catalyst can be obtained by heat-treating a complex of a carboxylic acid ester and AC 3 and an alcohol together with a titanium halide. Alternatively, a solid support containing Mg and C, which is insoluble in an inert solvent, is synthesized by reacting an organoaluminum compound soluble in an inert solvent with various halogenating agents, and further an electron-donating compound,
It can also be obtained by treatment with titanium halides. The organoaluminum compound (b), which is a component of the catalyst, has the general formula ARmX 3-n (wherein: R is a hydrocarbon residue having 1 to 12 carbon atoms, Compounds are preferably used.For example, triethylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-n-hexylaluminum, diethylaluminium monochloride, etc. are used alone or in combination of two or more.C-O or By using a compound having at least one C-N bond in combination, the stereoregularity of the obtained polymer can be enhanced and the physical properties can be well balanced.As a compound having at least one C-O or C-N bond, ester, ether,
Orthoesters, alkoxysilicon, amines, amides, phosphate esters, etc. are used, and more specifically, ethyl benzoate, methyl toluate, methyl orthobenzoate, tetraethoxysilane, phenyltriethoxysilane, dibutyl ether, triethylamine. , diethylaniline, triethyl phosphate and the like are preferably used. The proportion of each component constituting the catalyst used in the present invention is arbitrary, and the appropriate range varies depending on the compound used, but in general, Ti1 in the solid catalyst
Organoaluminum compounds are 0.1 to 500 per mole
and the compound having at least one C--O or C--N bond ranges from 0 to 250 moles. In the method of the present invention, 80% or more of the polymerization with an ethylene/propylene reaction ratio of 6/94% by weight or less is carried out continuously using one or more polymerization tanks connected together, and the ethylene/propylene reaction ratio is 15% by weight or less. /85~
An ethylene/propylene block copolymer is produced by carrying out 90% or more of the 95/5 weight % polymerization batchwise. Of course, polymerization in which the reaction ratio of ethylene/propylene is 6/94% by weight or less also includes polymerization of propylene alone. Polymerization at the reaction ratio can be carried out in the presence of an inert solvent, or by bulk polymerization using propylene itself as a solvent in the absence of substantially an inert solvent, or by gas phase polymerization in the substantial absence of a liquid polymerization solvent. can. Polymerization at an ethylene/propylene reaction ratio of 6/94% by weight or less is necessary to maintain a good balance between impact resistance and rigidity of the ethylene/propylene block copolymer, and especially polymerization at this reaction ratio reduces the total polymerization amount. It is desirable that the amount is 60 to 95% by weight in order to increase the rigidity of the ethylene/propylene block copolymer. The polymerization temperature at the above reaction ratio varies depending on the catalyst system, but is generally 40 to
90°C, especially 60-80°C is preferred. Further, in order to increase productivity, it is preferable to carry out the polymerization step at the above reaction ratio as continuously as possible. Next, the reaction ratio of ethylene/propylene is 15/85 ~
The 95/5% by weight polymerization step is an essential step in order to obtain a propylene-ethylene block copolymer with excellent impact resistance, and the polymerization is carried out in the presence of an inert solvent or when the inert solvent is substantially Bulk polymerization using propylene itself, which is not present in the solvent, as a solvent, or gas phase polymerization, in which a liquid polymerization solvent is not substantially present, can also be carried out. The above polymerization temperature varies depending on the ethylene/propylene reaction ratio, etc., but is generally 30 to 70°C, particularly preferably 40 to 60°C. In the method of the present invention, a catalyst activity reducing agent is added to the slurry at the same time or before the slurry is transferred to a polymerization tank for batch polymerization, so that the catalyst activity is reduced to 1/4 or less of the case where the reducing agent is not added. By adding an organoaluminum compound after the transfer of the slurry to the polymerization where the slurry is lowered and then subjected to batch polymerization, batch polymerization is carried out under conditions where the activity is increased by 1.1 times or more than the activity before adding the organoaluminum compound, Then, at the same time as the polymerization in the batch polymerization tank is completed, a catalyst activity reducing agent is added to reduce the activity to 1/2 or less of the activity before adding the catalyst activity reducing agent. During the transfer of the slurry from the continuous polymerization process to the batch polymerization process, from the batch polymerization process to the deactivation process, and during the adjustment of the hydrogen concentration in the gas phase, unplanned and uncontrollable polymerization occurs, resulting in problems with the resulting polymer. The balance of physical properties deteriorates significantly. Therefore, in order to reduce the unplanned and uncontrollable polymerization amount as much as possible, an activity reducing agent is added when or before transferring the slurry to the batch polymerization tank to reduce the catalyst activity in the polymerization tank to 1/4 of the original activity. Hereinafter, it is preferably reduced to 1/4 to 1/10. If it is larger than 1/4, the effect of uncontrollably reducing the amount of polymerization will be small, while if it is smaller than 1/10, the amount of organoaluminum compound added to restore the activity will increase. After the slurry is transferred to the batch polymerization vessel, an organoaluminum compound is added to restore appropriate catalytic activity determined by the batch polymerization time and amount of polymerization. The proportion of the organoaluminum compound to be used depends on the type and amount of the activity reducing agent, but it is an amount that increases the activity by at least 1.1 times, preferably from 1.1 to 10 times, the activity before adding the organoaluminum compound. In other words, the activity, which was reduced to 1/4 to 1/10, is improved due to batch polymerization (in a controlled state), and an improvement in activity is observed.
It is sufficient if the amount of polymerization is improved in a controlled state,
If there is an improvement in activity, it will have a certain effect, but if the lower limit is reduced to 1/10, unless there is an improvement of at least 1.1 times that 1/10,
This is because the effectiveness of improving activity is insufficient. On the other hand, since polymerization is carried out under controlled conditions, the greater the activity improvement, the better; however, it is difficult to remove heat in the actual process to increase the activity to more than the pre-decreased activity (=1). This is not desirable as there are problems such as Therefore, when the activity is reduced to 1/10 of the lower limit of the activity reduction, the maximum activity improvement is 1/10 x 10 = 1, so the upper limit is 10 times. Next, after the batch polymerization is completed, an activity reducing agent is added to the polymerization tank to reduce the activity to 1/2 or less of the activity before adding the reducing agent. The lower the activity after polymerization, the better, but there is also the problem of the amount of reducing agent added, and if it is at least 1/2 or less, it will have the effect of reducing the activity. The amount of reducing agent added is the amount necessary to reduce the activity to 1/2 or less, and the amount of reducing agent remaining after discharging the slurry after copolymerization and performing simple washing is enough to transfer the slurry to the batch tank. The amount may be sufficient as long as it does not lower the activity more than the desired level upon receipt. Such activity reducing agents can be used as long as they reduce the catalytic activity, and include various organic compounds and AC
3 , inorganic compounds such as SiC 4 are used,
Preferably, those that reduce the activity without significantly reducing the stereoregularity of the resulting polymer are preferred. In particular, the activity reducing agent added when transferring the slurry to a polymerization tank for batch polymerization can reduce the activity without reducing the stereoregularity, and the activity can be restored by adding a small amount of organoaluminum compound. It is preferable to use a compound such that For example, compounds having at least one C--O or C--N bond are shown which are used as preferred components of the above-mentioned catalysts. Specific examples of compounds are as described above. Further, as the organoaluminum compound used to restore the activity, the organoaluminum compound used as a component of the catalyst described above can be used. By using the method of the present invention, a propylene-ethylene block copolymer having an excellent balance of impact resistance and rigidity can be efficiently produced under controlled conditions, which is of great industrial significance. The present invention will be explained in more detail with reference to Examples below. In the examples and comparative examples, melt flow index (hereinafter abbreviated as MI)
ASTM D1238 Bending stiffness ASTM D747-63 Izot (notched) ASTM D256-56 Dupont Based on JIS K6718, MI is at 230℃ and load 2.16Kg, bending stiffness is at 20℃, and Izot and DuPont Impact strength was measured under conditions of 20°C and -10°C, respectively. The limiting viscosity number (hereinafter abbreviated as η) is
Measured at 135°C using a tetralin solution. The isotactic index (hereinafter abbreviated as II) is boiling n-heptane extraction residual polymer/total polymer (%)
It was calculated as Example 1 (i) Adjustment of solid catalyst component A vibratory mill equipped with four grinding pots each having an internal volume of 4 and containing 9 kg of steel balls each having a diameter of 12 mm was prepared. 300 mg of magnesium chloride in a nitrogen atmosphere in each pot
g, 60 ml of tetraethoxysilane, and 45 ml of α,α,α-trichlorotoluene were added and the mixture was pulverized for 40 hours.
3 kg of the above pulverized material was placed in an autoclave with an internal volume of 50 kg.
After adding titanium tetrachloride 20 and stirring at 80°C for 2 hours, the supernatant was removed by decantation, and then n
After adding 35% of -heptane and stirring at 80°C for 15 minutes, the washing operation of removing the supernatant liquid by decantation was repeated 7 times, and then 20% of n-heptane was added to form a solid solvent slurry. When a portion of the solid solvent slurry was sampled, n-heptane was evaporated, and analyzed, it was found that the solid solvent contained 1.4% by weight of Ti. (ii) Polymerization Polymerization is carried out using the polymerization apparatus shown in FIG. In an autoclave with an inner volume of 50 ml that was sufficiently dried and purged with nitrogen, 30 ml of n-heptane and the above solid catalyst were added.
50g, diethyl aluminum, chloride 240
ml and 140 ml of methyl P-toluate were added thereto and stirred at 25°C. This mixture is used as a catalyst slurry mixture. Autoclave A with an internal volume of 300, fully dried, purged with nitrogen, and further purged with propylene gas.
and B are connected in series, and autoclaves C1 and C2 with an internal volume of 200 are connected next to autoclave B in parallel. Autoclave D with an internal volume of 300
are connected in series to autoclave C1.
Charge 60 kg of propylene to autoclaves A and B. 1 g/h of the above catalyst slurry mixture as a solid catalyst, and 1.5 ml/h of triethylaluminum, another organoaluminum compound catalyst component.
Further, liquid propylene is charged into autoclave A at a rate of 30 kg/h. Triethylaluminum was added to autoclave B at a rate of 3.0 ml/h, and polypropylene slurry was added from autoclave A at a rate of 3.0 ml/h.
While continuously charging the polypropylene slurry at 30 kg/h from autoclave B, charging hydrogen so as to maintain the gas phase hydrogen concentration in autoclave A and B at the amount shown in Table 1. 75
Polymerization was carried out at
In order to confirm whether a powder having the following properties was obtained, a small amount of slurry was taken out from autoclave B and the physical properties of the powder were measured. The results are shown in Table 2 under the section of continuous polymerization final powder physical properties. Next, the slurry being continuously drawn out from the lower part of autoclave B and methyl P-toluate were simultaneously charged into autoclave C1 at a rate of 1.4 ml/30 min, and after being received in slurry C1 for 30 minutes, the slurry from autoclave B was The transfer destination of methyl P-toluate was changed to autoclave C2.
In C1, 5 kg of liquid propylene was injected under pressure while simultaneously receiving the slurry and purging the gas phase.
The internal temperature was set to 50°C and the hydrogen concentration was set to 0.3 vol% at the same time. The activity during this period was reduced to about 1/5 by charging P-toluic acid. Furthermore, ethylene and hydrogen were charged to bring the hydrogen concentration in the gas phase to 0.55 vol%, and the ethylene concentration to 35.0 mol%.Furthermore, 3.0 ml of triethylaluminum was injected at once to increase the activity to approximately 2.5 vol%.
Polymerization was carried out at 50°C for 9 minutes while maintaining the above hydrogen and ethylene concentrations, and then ethylene was added to increase the hydrogen concentration to 0.50 vol% and the ethylene concentration to 40.0 mol%.
Polymerization took place for 2.0 minutes. Next, after charging 2 ml of p-methyl toluate, add liquid propylene in advance.
10 kg and 50 ml of isopropanol were pumped into autoclave D for 7 minutes. Autoclave C1
The inside was washed with liquid propylene, and the washed propylene was also sent to autoclave D. Autoclave C1 was ready to receive the next slurry at approximately 3 Kg/cm 2 -gauge. Meanwhile, while charging isopropanol at 1 ml/h to autoclave D, the slurry was transferred from the bottom to flash tank E.
Furthermore, it was taken out as a powder after passing through Potsupur F. The autoclave D was discharged continuously at a rate of about 40 kg/h, and when the slurry was then received from the autoclave C2, about 10 kg of slurry remained in the autoclave D. Autoclave C2 received the slurry from autoclave B and methyl P-toluate for 30 minutes, and then
The copolymerization operation was carried out in the same manner as in 1. Continuous polymerization was carried out for 25 hours by operating autoclaves C1 and C2 25 times each for a total of 50 times to obtain about 250 kg of propylene-ethylene block copolymer as a product. During the above operations, operation was possible without any abnormality. in the product
The amount of polymerization per solid catalyst was determined from the Ti content. The obtained block copolymer was dried at 60° C. and 100 mmHg for 10 hours, granulated with commonly used additives, and its physical properties were measured. The results are shown in Table 2. Reference example In Figures 2 and 3, the catalyst synthesized in Example 1 (i) is used, the blending ratio of solid catalyst, diethylaluminium chloride, and triethylaluminum is kept constant, and only the amount ratio of methyl P-toluate is changed. The relationship between the activity and the usage amount of P-methyl toluate when The relationship between the amount of aluminum used is shown. From this, it is possible to estimate the amounts of methyl P-toluate and triethylaluminum to be added to obtain the desired activity. Example 2 Methyl P-toluate 0.6 added when receiving slurry into autoclaves C1 and C2
ml/30min to tetraethoxysilane 2.0ml/30min
The same procedure as in Example 1 was carried out, except that the activity was reduced to about 1/5 by changing to Table 2 shows the results of the polymerization. Example 3 Methyl P-toluate added when receiving slurry into autoclaves C1 and C2 1.4
ml/30min was changed to ethyl orthoacetate 0.9ml/30min to reduce the activity to about 1/4 and autoclave C.
The amount of triethylaluminum added at the start of batch polymerization with 1 and C2 was changed to 2.5 ml to increase the activity to about 2.0 ml.
Table 2 shows the results of polymerization carried out in the same manner as in Example 1 under the conditions shown in Table 1 except that the amount was doubled. Comparative Example 1 Batch Polymerization was carried out in the same manner as in Example 1 under the conditions shown in Table 1 without adding any additives or organoaluminum compounds to the polymerization tank. Table 2 shows the results.
Shown below. Impact resistance is very poor. Comparative Example 2 Polymerization was carried out in the same manner as in Comparative Example 1, except that the polymerization time of each stage of the batch polymerization was changed. The results are shown in Table 2. Although the impact resistance was considerably improved by increasing the ethylene content, the rigidity was insufficient.
【表】【table】
第1図は本発明の方法を実施する重合装置の一
例を示す。第2図及び第3図は触媒活性とP―ト
ルイル酸メチル使用量との関係及び触媒活性とト
リエチルアルミニウム使用量との関係をそれぞれ
示すグラフである。なお単位は相対値で示され
る。
A,B:連続重合用オートクレーブ、C1,C
2:回分重合用オートクレーブ、D:触媒脱活用
オートクレーブ、E:フラツシユタンク、F:ホ
ツパー。
FIG. 1 shows an example of a polymerization apparatus for carrying out the method of the present invention. FIGS. 2 and 3 are graphs showing the relationship between the catalyst activity and the amount of methyl P-toluate used, and the relationship between the catalyst activity and the amount of triethylaluminum used, respectively. Note that the units are expressed as relative values. A, B: Autoclave for continuous polymerization, C1, C
2: Autoclave for batch polymerization, D: Autoclave for deactivating catalyst, E: Flash tank, F: Hopper.
Claims (1)
ロゲン化チタンを担持して得た固体触媒と有機ア
ルミニウム化合物からなる立体規則性触媒を用い
て2槽以上の重合槽を連続して多段階重合に際
し、エチレン/プロピレンの反応比が6/94重量
%以下の重合を連続式で行い、エチレン/プロピ
レンの反応比が15/85〜95/5重量%の重合を回
分的に行うことによりプロピレン―エチレンブロ
ツク共重合体を製造する方法において、回分重合
を行う重合槽にスラリーを移送すると同時又は移
送する前に該スラリーに触媒活性低下剤を加える
ことにより該低下剤を加ない場合の触媒活性の
1/4以下に低下させ、次いで回分重合を行う重
合槽へのスラリーの移送の終了後に有機アルミニ
ウム化合物を添加することにより該有機アルミニ
ウムを添加する前の活性の1.1倍以上に活性を高
めた条件下で回分重合を行い、次いで回分重合が
終了すると同時に触媒活性低下剤を加えることに
より該低下剤を加える前の活性の1/2以下に低
下させることを特徴とするエチレン/プロピレン
ブロツク共重合体の製造方法。 2 上記回分重合槽にスラリー移送時及び重合終
了時に添加する活性低下剤がC−O又はC−N結
合を少なくとも1個有する化合物である第1項記
載の方法。[Claims] 1. Two or more polymerization tanks are continuously operated using a solid catalyst obtained by supporting titanium halide on a carrier containing magnesium halide and a stereoregular catalyst consisting of an organoaluminum compound. During stepwise polymerization, polymerization with an ethylene/propylene reaction ratio of 6/94% by weight or less is carried out continuously, and polymerization with an ethylene/propylene reaction ratio of 15/85 to 95/5% by weight is carried out batchwise. In the method for producing a propylene-ethylene block copolymer, a catalyst activity reducing agent is added to the slurry at the same time as or before the slurry is transferred to a polymerization tank for batch polymerization, thereby reducing the catalyst activity without adding the reducing agent. After reducing the activity to 1/4 or less, and then adding an organoaluminum compound after transferring the slurry to a polymerization tank for batch polymerization, the activity is increased to 1.1 times or more of the activity before adding the organoaluminium. The ethylene/propylene block is characterized in that batch polymerization is carried out under the same conditions, and then, at the same time as the batch polymerization is completed, a catalyst activity reducing agent is added to reduce the activity to 1/2 or less of the activity before adding the catalyst activity reducing agent. Method for producing polymers. 2. The method according to item 1, wherein the activity reducing agent added to the batch polymerization tank at the time of slurry transfer and at the end of polymerization is a compound having at least one C-O or C-N bond.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3465981A JPS57149319A (en) | 1981-03-12 | 1981-03-12 | Production of propylene/ethylene block copolymer |
GB8205476A GB2094319B (en) | 1981-03-05 | 1982-02-24 | Production of propylene block copolymer |
PT74523A PT74523B (en) | 1981-03-05 | 1982-03-03 | Improved process for the production of a block copolymer of propylene/ethylene |
CA000397621A CA1180481A (en) | 1981-03-05 | 1982-03-04 | Process for production of propylene-ethylene block copolymer |
BR8201135A BR8201135A (en) | 1981-03-05 | 1982-03-04 | PROCESS TO PRODUCE COPOLYMER IN BLOCKS OF ETHYLENE PROPYLENE |
FR8203581A FR2501214B1 (en) | 1981-03-05 | 1982-03-04 | PROCESS FOR PRODUCING PROPYLENE SEQUENCE COPOLYMER |
KR8200938A KR850001403B1 (en) | 1981-03-05 | 1982-03-04 | Method of producing for propylene brock copolymer |
IT20005/82A IT1150636B (en) | 1981-03-05 | 1982-03-05 | BLOCK PROPYLENE COPOLYMER PRODUCTION |
DE19823208010 DE3208010A1 (en) | 1981-03-05 | 1982-03-05 | PRODUCTION OF PROPYLENE BLOCK COPOLYMERS |
US07/083,924 US4751265A (en) | 1981-03-05 | 1987-08-03 | Production of propylene block copolymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3465981A JPS57149319A (en) | 1981-03-12 | 1981-03-12 | Production of propylene/ethylene block copolymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57149319A JPS57149319A (en) | 1982-09-14 |
JPS6138925B2 true JPS6138925B2 (en) | 1986-09-01 |
Family
ID=12420563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3465981A Granted JPS57149319A (en) | 1981-03-05 | 1981-03-12 | Production of propylene/ethylene block copolymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57149319A (en) |
-
1981
- 1981-03-12 JP JP3465981A patent/JPS57149319A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57149319A (en) | 1982-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3239184B2 (en) | Manufacturing method of linear low density polyethylene | |
JPS6155104A (en) | Olefin polymerization catalyst component and catalyst | |
US4576994A (en) | Process for the preparation of a polypropylene molding composition | |
US4751265A (en) | Production of propylene block copolymer | |
EP0300638B1 (en) | A process for preparing highly crystalline poly-1-butene and the catalyst used in the process | |
JPH0425286B2 (en) | ||
US4273905A (en) | Process for producing propylene polymer or copolymer | |
JPS6138925B2 (en) | ||
JPS6150085B2 (en) | ||
JPS6336326B2 (en) | ||
JPS62174217A (en) | Production of propylene block copolymer | |
JPS6336327B2 (en) | ||
JPS6036206B2 (en) | Method for producing propylene block copolymer | |
JPS6036203B2 (en) | Method for producing propylene-ethylene block copolymer | |
JPS6336325B2 (en) | ||
KR920006449B1 (en) | Method for preparing block copolymers of propylene | |
JPS6036204B2 (en) | Method for producing propylene-ethylene block copolymer | |
JP3436319B2 (en) | Solid catalyst components and catalysts for olefin polymerization | |
JPH0559926B2 (en) | ||
JPS62508A (en) | Catalyst component for polymerization of olefin | |
JPH0830088B2 (en) | Catalyst for olefin polymerization | |
JPS6150086B2 (en) | ||
JPH0347644B2 (en) | ||
JPH0312086B2 (en) | ||
JPS62135509A (en) | Production of propylene block copolymer |