JPS6336325B2 - - Google Patents

Info

Publication number
JPS6336325B2
JPS6336325B2 JP3053581A JP3053581A JPS6336325B2 JP S6336325 B2 JPS6336325 B2 JP S6336325B2 JP 3053581 A JP3053581 A JP 3053581A JP 3053581 A JP3053581 A JP 3053581A JP S6336325 B2 JPS6336325 B2 JP S6336325B2
Authority
JP
Japan
Prior art keywords
polymerization
propylene
ethylene
weight
autoclave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3053581A
Other languages
Japanese (ja)
Other versions
JPS57145114A (en
Inventor
Tadashi Asanuma
Ichiro Fujikage
Shinryu Uchikawa
Tetsunosuke Shiomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP3053581A priority Critical patent/JPS57145114A/en
Priority to GB8205476A priority patent/GB2094319B/en
Priority to PT74523A priority patent/PT74523B/en
Priority to FR8203581A priority patent/FR2501214B1/en
Priority to BR8201135A priority patent/BR8201135A/en
Priority to CA000397621A priority patent/CA1180481A/en
Priority to KR8200938A priority patent/KR850001403B1/en
Priority to IT20005/82A priority patent/IT1150636B/en
Priority to DE19823208010 priority patent/DE3208010A1/en
Publication of JPS57145114A publication Critical patent/JPS57145114A/en
Priority to US07/083,924 priority patent/US4751265A/en
Publication of JPS6336325B2 publication Critical patent/JPS6336325B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Graft Or Block Polymers (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐衝撃性、剛性等のすぐれた物性を有
するプロピレン―エチレンブロツク共重合体の製
造方法に関し、さらに詳しくは高活性、高立体規
則性触媒を用い、全重合量の60〜95重量%を塊状
重合法で連続的に重合し、さらに全重合量の40〜
5重量%を回分的に重合することにより、すぐれ
た物性を有するプロピレン―エチレンブロツク共
重合体を効果よく製造する方法に関する。 チーグラー及びナツタらによる立体規則性触媒
の発明以来結晶性ポリオレフインはすぐれた剛
性、耐熱性を有し、又その成形品が軽量であるこ
となどすぐれた性質を有する汎用樹脂として近来
その生産量は世界的に増大している。しかしなが
ら結晶性ポリプロピレンは低温で脆いという欠点
を有するため低温で耐衝撃性を要求される用途に
は使用しにくい。この欠点を改良する方法につい
てはすでに多くの研究、開発がなされ、種々の改
良法が提案されている。 中でも工業的に有用な方法としてプロピレンと
他のオレフイン特にエチレンをブロツク共重合す
る方法が、例えば特公昭38−14834、特公昭39−
1836、特公昭39−15535などで提案されている。
しかしながらこれらの方法で製造されたブロツク
コポリマーは結晶性ポリプロピレンと比較して成
形加工品の剛性、透明性が低く、衝撃或いは折り
曲げにより変形させると変形部が白化するなどの
欠点を有する。これらの問題の解決のため3段階
に分けてブロツク共重合を行う方法がたとえば特
公昭44−20621、特公昭47―24593などで提案さ
れ、得られるブロツクコポリマーの物性は非常に
優れたものである。しかしながらこれらの方法で
は比較的低活性の触媒を用い、また不活性溶媒例
えばn―ヘプタン等を用いているため触媒残渣の
除去、不活性溶媒の回収が必要であり、従つて後
処理工程が非常に複雑であり、又不活性溶媒可溶
のポリマーがかなり多く生成するため製造コスト
を大幅に高めている。 一方、実質的に不活性溶媒を使用しない塊状重
合法、気相重合法によりブロツクコポリマーを得
る方法はたとえば特公昭42−17488、特開昭49−
120986、特開昭52−3684等で提案されている。こ
れらの方法では実質的に不活性溶媒を使用しない
ため溶媒の回収工程は省略され重合体の乾燥工程
も大幅に簡略化されているが触媒の活性が低いた
め触媒残渣の除去を必要とする。また塊状重合
法、気相重合法では得られるポリマーの物性に悪
影響を与えまたそれ自身では殆んど価値のない低
分子量、低結晶性重合体の除去が困難なため、得
られた重合体の物性が低下したりまた粘着性のた
め重合体の取扱いが困難となる。 一方、プロピレン―エチレンブロツク共重合体
の単位時間当り、重合槽の単容積当りの生産性を
高めるために連続的に生する方法が望まれる。し
かしながら回分的には良い方法であつても、それ
を連続的方法に適用するには多くの問題がある。
特にブロツク共重合体の製造においては適当な物
性を与えるため、エチレン/プロピレンの反応比
の異なる重合段階をいくつか設ける場合が多く、
従つてその段階の数に等しい数の重合槽を準備す
る必要がある。又何槽かの重合槽を並べて連続し
て各重合槽で重合を行なうとき完全混合槽を備え
た重合槽では各重合槽では触媒の滞留時間がこと
なり従つて触媒当りの重合が分布をもつため連続
的重合法は重合体の物性の面では剛性、耐衝撃性
とも回分的重合法に劣ることになる。 さらにプロピレン自身を溶媒とする塊状重合で
は、エチレン/プロピレンの反応比を後の段階で
より大きくする場合、一般に後の重合槽の圧力が
高くなるため低圧側から高圧側へスラリーを圧送
しなければならず、その装置は高価なものとなる
ばかりか、圧送による発熱量の増大のため重合体
が溶融してライン閉塞トラブルが生じ易い。 本発明の目的は重合時或いは生成したポリマー
の乾燥時等に、ポリマーの装置への付着とか、ポ
リマーの団塊化等の製造上の困難がなく、また触
媒残渣及び低分子量、低結晶性重合体を実質的に
除去することなく、耐衝撃性と高い剛性を有する
プロピレン―エチレンブロツク共重合体を製造す
る方法を提供することにある。 本発明の別の目的は、耐衝撃性と高い剛性等す
ぐれた物性を有するプロピレン―エチレンブロツ
ク共重合体を、少なくとも完全な回分的重合する
場合に比較て物性を実質的に低下させることな
く、重合槽の単位容積当り、単位時間当りの生産
性を高め乍ら製造する方法を提供することにあ
る。 本発明は、立体規則性触媒を用いて、2槽以上
の重合槽を直列に連結し多段階の重合によりプロ
ピレン―エチレンブロツク共重合体を製造する方
法に於て、 (i) 2槽以上直列に連結された重合槽の最初の少
なくとも1槽においてプロピレン単独か又はエ
チレン/プロピレンの反応比が6/94重量比以
下の範囲で65〜85℃で不活性溶媒が実質的に存
在しないプロピレン自身を溶媒とする塊状重合
を連続的に行い、上記連続重合量の割合は全重
合量の60〜95重量%であり、 (ii) 前記直列に連結した重合槽の最終槽ではその
槽での重合量の少なくとも80重量%までエチレ
ン/プロピレンの反応比15/85〜95/5重量比
の範囲で、30〜65℃の温度で不活性溶媒が実質
的に存在しないプロピレン自身を溶媒とする塊
状重合か或いは実質的に液状の重合媒体の存在
しない気相重合を回分的に行うことを特徴とす
るプロピレン―エチレンブロツク共重合体の製
造法に関する。 本発明に用いる高活性な高立体規則性触媒の一
成分は少なくともMg、Ti、Clを含有する固体触
媒であり該固体触媒は種々の方法で得られるが、
例えば本発明者の一部がすでに特開昭54−
103494、特開昭54−116079、特開昭55−102606号
公報等で提案しているような触媒を用いることが
できる。具体的には無水のハロン化マグネシウム
(たとえば塩化マグネシウム)と種々の有機化合
物、例えば芳香族オルソカルボン酸エステル、ア
ルコキシケイ素とハロゲン化炭化水素、オルソカ
ルボン酸エステルとハロゲン化炭化水素、カルボ
ン酸エステルとAlCl3との錯体とアルコールを共
粉砕したものをハロゲン化チタンで熱処理するこ
とにより固体触媒を得ることができる。或いは不
活性溶媒に可溶な有機マグネシウム化合物(グリ
ニヤール試薬を含む)を種々のハロゲン化剤と反
応させることにより不活性溶媒に不溶なMg及び
Clを含有する固体担体を合成し、さらに電子供与
性化合物、ハロゲン化チタンで処理することによ
つても得られる。 次に触媒の1成分である有機アルミニウム化合
物としては、一般式AlRmX3―m(式中:Rは炭
素数1〜12の炭化水素残基、Xはハロゲン原子、
かつ1≦m≦3)で表わされる有機アルミニウム
化合物が好ましく用いられる。例えばトリエチル
アルミニウム、トリ―n―ブチルアルミニウム、
トリインブチルアルミニウム、トリ―n―ヘキシ
ルアルミニウム、ジエチルアルミニウムモノクロ
ライドなどが単独で又は2種以上混合して用いら
れる。 また、少なくとも1個のC―o及び/又はC―
N結合有する炭素数2―20個の化合物としては、
エステル、エーテル、オルソエステル、アルコキ
シケイ素、アミン、アミド、リン酸エステル等が
用いられ、より具体的には安息香酸エチル、トル
イル酸メチル、オルソ安息香酸メチル、テトラエ
トキシシラン、フエニルトリエトキシシラン、ジ
ブチルエーテル、トリエチルアミン、ジエチルア
ニリン、リン酸トリエチル等が好ましく用いられ
る。 本発明で用いる触媒構成する3成分の使用割合
は任意であり、又その適当な範囲は用いる化合物
によつて異なるが一般には固体触媒中のTi1モル
に対して有機アルミニウムは1〜500モルの範囲
でありC―O結合又はC―N結合含有化合物は1
―250モルの範囲である。固体触媒のg当り生成
ポリマーのg数で表わされる触媒活性は4000以上
である。4000未の場合は得られる共重合体の物性
に悪影響を与える触媒残渣が多量に存在すること
になり好ましくない。 本発明の方法においては2槽以上直列に連結さ
れた重合槽の最初の少なくも1槽においてプロピ
レン単独か又はエチレン/プロピレンの反応が
6/94重量比以下の範囲で65〜85℃で不活性溶媒
が実質的に存在しないプロピレン自身を溶媒する
塊状重合が全重合量の60〜95重量%まで連続的に
行われる。このような条件下の塊状重合を行うこ
とにより、かさ比重の大きい粘着性のない重合体
パウダーが得られる。上記塊状重合エチレン/プ
ロピレンの反応比が6/94重量比をこえる割合で
行うと、得られるパウダーのかさ比重が小さく、
又パウダーの粘着性が高いため乾燥時パウダーの
団塊化が起つたり、あるいはプロピレン可溶性の
ポリマーが増加して乾燥工程で配管類の閉塞を生
じたり、更に重合熱の除去が著しく困難になる。 また、上記塊状重合が65℃未の温度で行われる
と立体規則性が低下するため得られるポリマーの
剛性が低下したり、プロピレン可溶性のポリマー
が増加して乾燥時団塊化が起つたりする。又触媒
の活性が低下するため好ましくない。一方、重合
温度が85℃をこえると得られるポリマーのかさ比
重の低下が著しいため、単位容積当りの生産性が
低下するもに、触媒の活性の低下が早くなる。プ
ロピレン単独かエチレン/プロピレンの反応比が
6/94重量比以下の範囲での重合量の割合が全重
合量の60〜95重量%であることは得られるブロツ
クコポリマーの耐衝撃性と剛性バランスよく保つ
ために必要であり、60%未では剛性が著しく低下
し、又95%こえると耐衝撃性が大きく低下する。 プロピレン単独かエチレン/プロピレンの反応
比が6/94重量比以下で重合する段階の一部を回
分重合で行うことももちろん可能であるが、連続
化することにより生産性を上げるためには連続重
合を行う段階をできるだけ多くすることが好まし
い。連続で重合する段階を1槽で行うことはもち
ろん可能であるが、触媒当りの重合量をできるだ
け均一にするため2槽以上直列に重合槽を連結し
て多槽で重合することが好ましい。 次に連続式の塊状重合工程に続いて、直列に連
結した重合槽の最終槽では、その槽での重合量の
少なくとも80重量%まで、エチレン/プロピレン
の反応比15/85〜95/5重量比の範囲で、30〜65
℃、好ましくは45〜55℃の温度で不活性溶媒が実
質的に存在しないプロピレン自身を溶媒とする塊
状重合か、或いは実質的に液状の重合媒体の存在
しない気相重合により回分的に重合が行われる。
エチレン/プロピレンの反応比が15/85〜95/5
重量比の範囲で重合する段階は耐衝撃性のすぐれ
たプロピレン―エチレンブロツクコポリマーを得
るためには必須の工程である。ブロツクコポリマ
ーの耐衝撃性、剛性、透明性あるいは衝撃又は折
りまげによる変形時の変形部が白化しないことな
どの物性バランスよく保つためには、エチレン/
プロピレンの反応比が15/85〜95/5重量比の範
囲での重合をさらに何段階かにわけて行うこが好
ましい。例えば15/85〜60/40重量比で重合する
段階と50/50〜95/5重量比の範囲で重合する段
階の2段階採用すること、又は分子量の異なるポ
リマーを生成させる重合段階をいくつか設けるこ
と又はエチレン/プロピレンの反応比を変えると
同時に分子量調節しながら数段階で重合すること
ができる。 エチレン/プロピレンの反応比が15/85〜95/
5重量比の範囲で回分重合の採用は前述のとおり
物性バランスを良好にするために1個の重合槽で
多段重合を行うことを可能にする。 多段重合をすべて連続式で行うためにはその段
階に等しい数の重合槽を準備する必要があり、経
済的ではない。又エチレン/プロピレンの反応比
が70/30重量比以上のようにエチレンリツチの反
応又は分子量の大きく異なる重合体を生成する反
応をすべて連続式で行う場合理由は明らかではな
いが、生成コポリマー成形するとき、その表面が
ざらざらになり商品価値を著しく損ねるだけでな
く、耐衝撃性が悪化する。 エチレン/プロピレンの反応比15/85〜95/5
重量比の範囲での重合65℃をこえて行うプロピレ
ンに多量のポリマーが溶出するので、常法の過
或いはプロピレン等により向流洗浄等の操作を行
う精製工程において商品としてほとんど価値のな
い低分子量、低結晶性ポリマー多量に副成し、製
品のコストを高めることになる。又、そのまま過
剰の未反応モノマーを蒸発除去して製品をうる場
合には、プロピレンに溶解したポリマーが析出し
てパウダーの表面に付着するためパウダーの粘着
性が増し、団塊化が起る。さらにはポリマーのか
さ比重が大きく低下するため単位容積当りの生産
量が大幅に低下する。 一方、30℃未満の温度で重合を行うには、通常
の冷却用水では重合熱の除去が困難であるので、
特別の冷却用設備を必要とし、さらには重合活性
が大幅に低下する。 本発明の方法を用いることにより耐衝撃性と剛
性の優れたポリマーが製造上の困難がなく高い生
産性もつて得られ、工業的に非常に有意義であ
る。 以下に実施例により本発明をさらに詳しく説明
する。なお実施例において メルトフローインデツクス ASTM D1238 (以下MIと略記) 曲げ剛性度 ASTM D747―63 アイゾツト(ノツチ付) ASTM D256―56 デユポン JIS K6718 に基づいてMIは230℃、荷重2.16Kgの条件で、曲
げ剛性度は20℃の条件で、またアイゾツト及びデ
ユポン衝撃強度は20℃及び−10℃の条件下でそれ
ぞれ測定した。アイソタクチツクインデツクス
(以下IIと略記)は 沸騰n―ヘプタン抽出残/全ポリマー(%) として算出された。 実施例 1 (i) 固体触媒成分の調製 直径12mmの鋼9Kgの入つた内容積4の粉砕
用ポツト4個装備した振動ミルを用意する。各
ポツトに窒素雰囲気中で塩化マグネシウム300
g、テトラエトキシシラン60ml及びα、α、
α、―トリクロロトルエン45mlを加え、40時間
粉砕した。内容積50のオートクレーブに上記
粉砕物3Kg、四塩化チタン20を加えて80℃で
2時間撹拌した後、デカンテーシヨンによつて
上澄液を除き、次にn―ヘプタン35を加え80
℃で15分間撹拌ののちデカンテーシヨンで上澄
液を除く洗浄操作を7回繰返した後、さらにn
―ヘプタン20を追加して固体触媒スラリーと
した。固体触媒スラリーの一部をサンプリング
しn―ヘプタンを蒸発させ分析したところ固体
触媒中に1,4重量%のTiを含有していた。 (ii) 重 合 第1図に示された重合装置を用いて重合が行
われる。 充分に乾燥し窒素で置換した内容積50のオ
ートクレープにn―ヘプタン30、上記固体触
媒50g、ジエチルアルミニウムクロライド240
ml、p―トルイル酸メチル140mlを入れ25℃で
撹拌した。この混合物を触媒スラリー混合物と
する。 充分に乾燥し窒素で置換しさらにプロピレン
ガスで置換した内容積300のオートクレーブ
Aにプロピレン60Kg装入し、固体触媒として1
g/hの速度で上記触媒スラリー混合物を、又
トリエチルアルミニウムを4ml/h、液体プロ
ピレンを30Kg/hの速度で連続的に別々のフイ
ード口から供給し、オートクレーブ下部からポ
リプロピレンスラリー30Kg/hで連続的に系外
に抜き出しながら75℃で重合を開始した。この
時、気相の水素濃度は6.5vol%になるように装
入した。重合開始後6時間経過し重合が安定し
たところで少量のスラリーを系外に抜き出し、
パウダーの物性を測定し、下部から連続的に抜
き出しているスラリーを、充分に乾燥し窒素で
置換しさらにプロピレンガスで置換した内容積
200のオートクレーブBに装入した。この時、
スラリーの抜き出しは180Kg/hで5分間抜き出
した。200のオートクレーブBに移液後、の
移液までオートクレーブAからはスラリーは排
出しないでオートクレーブAに対するプロピレ
ン、触媒スラリー混合物、トリエチルアルミニ
ウムの装入量は一定としておく。したがつてオ
ートクレーブAのプロピレンスラリー量は47.5
Kg〜60Kgの間で変動することとなる。 連続重合槽は平均滞留時間 (重合槽中のスラリー量/1時間当りの装入又は排出ス
ラリー量) 2時間で運転されているが、回分重合を開始す
る際には短時間で回分重合槽へスラリーを一気
に排出するため連続重合槽のスラリー量が減少
し(装入は30Kg/h、排出は180Kg/hである)、
回分重合槽へのスラリーの排出終了時までは
47.5Kgのスラリー量となる。回分重合槽での重
合中は、連続重合槽でのスラリーの排出がない
ので47.5Kgからのスラリーの排出までの25分間
で60Kgまでスラリー量が増加することになり、
次の回分重合槽への排出が上記と同様に繰り返
される。 一方、オートクレーブBでは、気相部をパー
ジしながら液状のプロピレン5Kgを圧入し、内
温を50℃にすると同時に水素濃度を0.3vol%と
した。さらにエチレン及び水素を装入し気相部
の水素濃度を0.60vol%、エチレンの濃度を35.0
モル%として7.5分間50℃で重合した。さらに
エチレンを一括して添加し水素濃度0.55vol%、
エチレン濃度40.0モル%で1.5分間重合後、あ
らかじめ乾燥し窒素で置換しさらにプロピレン
で置換し、液状プロピレン10Kg、イソプロパノ
ール50mlを入れた内容積200のオートクレー
ブCに一気に圧送し、触媒を失活した。 オートクレーブBは液状のプロピレンで内部
を洗浄し、これをオートクレーブCに排出した
後、約3Kg/cm2―ゲージで次のスラリー受け入
れまで放置した。一方オートクレーブCのスラ
リーは、フラツシユタンクDに圧送し、さらに
ホツパーEを経てパウダーとして取り出した。
オートクレーブCは排出後は、液状プロピレン
10Kg、イソプロパノール50mlを入れ次の受入れ
まで待機する。以上の操作を繰り返すことによ
り回分的に共重合を行う。オートクレーブBで
の操作は、スラリー受入れから次回の受け入れ
準備完了まで約25分要した。スラリーの受け入
れは30分ごとに行うことにより、オートクレー
ブBでの操作を、50回繰り返し25時間の重合を
行い、製品として約250Kgのプロピレンエチレ
ンブロツクコポリマーを得た。25時間の運転の
間、配管の閉塞等異常はまつたくなく運転が可
能であつた。製品中のTi含量より固体触媒当
りの重合量を求めると、11800g/g固体触媒で
あつた。 得られたブロツクコポリマーは60℃、100mm
Hgで10時間さらに乾燥し、通常の添加剤を加
えて造粒し物性を測定した。結果は表2に示
す。 第2図はエチレン/プロピレン反応比(重量
比)とエチレン分圧(気圧)との関係を示す。50
℃において実施例1の触媒を用いてモデル実験を
行なつた結果を示す。このグラフにより第1表に
おける回分重合の各段階のエチレン濃度に対応す
るエチレン/プロピレン反応比が推定される。 実施例 2 実施例1の(i)で得た触媒を用いて、水素濃度及
びエチレンの濃度を表1に示すように変更した他
は実施例1と同様に重合した。25時間の重合中何
ら異常なく重合が可能であつた。 実施例 5 TiCl3、1/3AlCl3粉砕物〔東邦チタン社製
AA型触媒(TAC)〕と2g/h、ジエチルアルミ
ニウムクロライド8ml/h、プロピレンを15Kg/h
で装入し70℃で表1に示す水素濃度、エチレン濃
度で又回分重合のサイクルは60mmで各段階の重合
時間は表1に示す条件でその他は実施例1と同様
に重合を行つた。回分重合を3回実施したところ
でホツパーFから、パウダーが出なくなつたので
フラツシユタンクE、及びホツパーFをn―ヘプ
タンで洗浄しポリマーをスラリで排出後、さらに
重合を続けたが、さらに回分重合を2回行つたと
ころで再びパウダーが出なくなつたので重合を停
止した。この間にパウダーとして取り出されたポ
リマーを実施例1と同様に処理し物性を測定し、
又パウダー中のTi含量から固体触媒当りの重合
活性を推定した。なお、造粒されたペレツトは黄
色に着色していた。 実施例 6 オートクレーブAでの重合温度を50℃とし、プ
ロピレンの装入量を17Kg/hとし、水素濃度、エ
チレン濃度等は表1に示すようにした他は実施例
1と同様に重合した。回分重合を5回実施したと
ころでホツパーFからパウダーが出なくなつたの
で重合を停止した。この間に得られたパウダーを
実施例1と同様に処理し物性を測定し、又パウダ
ー中のTi含量から固体触媒当りの重合活性を推
定した。 実施例 7 オートクレーブBでの重合を70℃で行い、水素
濃度、エチレン濃度等は表1に示す条件で実施例
1と同様に重合を行つた。回分重合を4回実施し
たところでポツパーFからパウダーが出なくなつ
たので重合を停止した。得られたパウダーを実施
例1と同様に処理し物性を測定した。 実施例 3 オートクレーブAとオートクレーブBの間にさ
らに内容積300のオートクレーブGを配設した
重合装置を用いる。オートクレーブGにはオート
クレーブAでの重合開始時にトリエチルアルミニ
ウムを1.5ml/h及びプロピレン60Kgを装入しさら
にオートクレーブAからポリプロピレンスラリー
を30Kg/hで連続的に装入すると同時にトリエチ
ルアルミニウムを3.0ml/h装入し、実施例1での
オートクレーブAからオートクレーブBへのオラ
リー排出と同様にオートクレーブGからオートク
レーブBへの操作を行つた他は、実施例1と同様
に重合を行つた。25時間の連続重合がまつたく異
常なく行うことができ、かつ製品の物性は良好で
あつた。なお、オートクレーブAからGへのスラ
リーの排出は、通常のスラリーポンプを用いて圧
送した。 実施例 4 オートクレーブAの前に30のオートクレーブ
Hを連結し、オートクレーブHにプロピレン5Kg
装入し、実施例1で用いた触媒スラリー混合物を
固体触媒として1g/hの速度で、トリエチルア
ルミニウムを0.8ml/hで、液体プロピレンを29.2
Kg/hの速度で連続的に別々のフイード口から装
入し、オートクレーブHからプロピレン60Kgを装
入したオートクレーブAにスラリーを29.2Kg/hで
送り、又オートクレーブAにはさらにプロピレン
0.8Kg/h、エチレン160g/h、トリエチルアルミニ
ウム4ml/hをフイードし、表1に示す条件で連
続重合を行いさらに、実施例1と同様にオートク
レーブAからオートクレーブBへスラリーを送り
込んで表1に示す条件で回分的に重合した。20時
間の重合中、何ら異常なく重合が可能であつた。 剛性及び耐衝撃性が若干低下しているが、透明
性の極めてすぐれたものであつた。1mmの厚みの
プレスシートの光線透過率を測定すると実施例1
の共重合体では70%以下であつたのに比較して82
%であつた。
The present invention relates to a method for producing a propylene-ethylene block copolymer having excellent physical properties such as impact resistance and rigidity, and more specifically, using a highly active and highly stereoregular catalyst, the copolymer is produced in an amount of 60 to 95% by weight of the total polymerization amount. is continuously polymerized using a bulk polymerization method, and furthermore, 40~
This invention relates to a method for effectively producing a propylene-ethylene block copolymer having excellent physical properties by batchwise polymerizing 5% by weight. Since the invention of stereoregular catalysts by Ziegler and Natsuta et al., crystalline polyolefin has become a general-purpose resin with excellent properties such as excellent rigidity and heat resistance, and its molded products are lightweight. is increasing. However, crystalline polypropylene has the disadvantage of being brittle at low temperatures, so it is difficult to use in applications that require impact resistance at low temperatures. Much research and development has already been carried out on methods to improve this drawback, and various improvement methods have been proposed. Among them, a method of block copolymerizing propylene and other olefins, especially ethylene, is an industrially useful method, for example, as disclosed in Japanese Patent Publication No. 38-14834 and Japanese Patent Publication No. 39-1989.
It was proposed in 1836, Special Publication No. 39-15535, etc.
However, block copolymers produced by these methods have disadvantages such as lower rigidity and transparency of molded products than crystalline polypropylene, and whitening of deformed parts when deformed by impact or bending. In order to solve these problems, a method of conducting block copolymerization in three stages was proposed, for example, in Japanese Patent Publication No. 44-20621 and Japanese Patent Publication No. 47-24593, and the physical properties of the resulting block copolymers were very excellent. . However, these methods use catalysts with relatively low activity and inert solvents such as n-heptane, so it is necessary to remove the catalyst residue and recover the inert solvent, and therefore the post-processing steps are extremely necessary. The process is complicated, and a considerable amount of inert solvent-soluble polymer is produced, which significantly increases manufacturing costs. On the other hand, methods for obtaining block copolymers by bulk polymerization or gas phase polymerization that do not substantially use inert solvents include, for example, Japanese Patent Publication No. 42-17488 and Japanese Patent Application Laid-open No. 49-1989.
120986, JP-A-52-3684, etc. Since these methods do not substantially use an inert solvent, the solvent recovery step is omitted and the polymer drying step is also greatly simplified, but since the catalyst has low activity, it is necessary to remove the catalyst residue. In addition, bulk polymerization and gas phase polymerization have a negative effect on the physical properties of the resulting polymer, and it is difficult to remove low molecular weight and low crystallinity polymers that are of little value by themselves. The physical properties deteriorate and the polymer becomes difficult to handle due to its stickiness. On the other hand, in order to increase the productivity of the propylene-ethylene block copolymer per unit time and per unit volume of the polymerization tank, a method of continuously producing the propylene block copolymer is desired. However, although this method is good for batchwise use, there are many problems in applying it to continuous methods.
In particular, in the production of block copolymers, several polymerization stages with different ethylene/propylene reaction ratios are often provided in order to provide appropriate physical properties.
Therefore, it is necessary to prepare a number of polymerization vessels equal to the number of stages. Also, when several polymerization tanks are lined up and polymerization is performed in each polymerization tank in succession, in a polymerization tank equipped with a complete mixing tank, the residence time of the catalyst is different in each polymerization tank, and therefore the polymerization per catalyst has a distribution. Therefore, the continuous polymerization method is inferior to the batch polymerization method in terms of the physical properties of the polymer, both in terms of rigidity and impact resistance. Furthermore, in bulk polymerization using propylene itself as a solvent, when increasing the ethylene/propylene reaction ratio in a later stage, the pressure in the later polymerization tank generally increases, so the slurry must be pumped from the low pressure side to the high pressure side. Not only does this equipment become expensive, but also the polymer melts due to the increased heat generated by pressure feeding, which tends to cause line blockage problems. The purpose of the present invention is to eliminate production difficulties such as adhesion of the polymer to equipment or agglomeration of the polymer during polymerization or drying of the produced polymer, and to eliminate catalyst residues and low molecular weight, low crystallinity polymers. The object of the present invention is to provide a method for producing a propylene-ethylene block copolymer having high impact resistance and high rigidity without substantially removing the propylene. Another object of the present invention is to produce a propylene-ethylene block copolymer having excellent physical properties such as impact resistance and high rigidity, without substantially deteriorating the physical properties as compared with at least complete batch polymerization. It is an object of the present invention to provide a method for manufacturing while increasing productivity per unit volume of a polymerization tank and per unit time. The present invention provides a method for producing a propylene-ethylene block copolymer through multi-stage polymerization in which two or more polymerization tanks are connected in series using a stereoregular catalyst. In at least one of the first polymerization tanks connected to the polymerization tank, propylene alone or propylene itself in the absence of substantially an inert solvent at 65 to 85°C with an ethylene/propylene reaction ratio of 6/94 or less by weight is used. Bulk polymerization using the solvent as a solvent is carried out continuously, and the proportion of the above continuous polymerization amount is 60 to 95% by weight of the total polymerization amount, (ii) In the final tank of the polymerization tanks connected in series, the polymerization amount in that tank is Bulk polymerization in propylene itself as a solvent in the substantial absence of an inert solvent at a temperature of 30 to 65°C with an ethylene/propylene reaction ratio in the range of 15/85 to 95/5 by weight to at least 80% by weight of Alternatively, the present invention relates to a method for producing a propylene-ethylene block copolymer, which is characterized in that gas phase polymerization is carried out batchwise in the absence of a substantially liquid polymerization medium. One component of the highly active and highly stereoregular catalyst used in the present invention is a solid catalyst containing at least Mg, Ti, and Cl, and the solid catalyst can be obtained by various methods.
For example, some of the inventors of the present invention have already
Catalysts such as those proposed in JP-A No. 103494, JP-A-54-116079, and JP-A-55-102606 can be used. Specifically, anhydrous magnesium halide (for example, magnesium chloride) and various organic compounds, such as aromatic orthocarboxylic acid esters, alkoxy silicon and halogenated hydrocarbons, orthocarboxylic acid esters and halogenated hydrocarbons, and carboxylic acid esters. A solid catalyst can be obtained by co-pulverizing a complex with AlCl 3 and alcohol and heat-treating it with titanium halide. Alternatively, inert solvent-insoluble Mg and
It can also be obtained by synthesizing a solid support containing Cl and further treating it with an electron-donating compound, titanium halide. Next, the organoaluminum compound that is one component of the catalyst has the general formula AlRmX 3 -m (wherein: R is a hydrocarbon residue having 1 to 12 carbon atoms, X is a halogen atom,
and 1≦m≦3) is preferably used. For example, triethylaluminum, tri-n-butylaluminum,
Triinbutylaluminum, tri-n-hexylaluminum, diethylaluminum monochloride, and the like may be used alone or in combination of two or more. Also, at least one Co-o and/or C-
As a compound having 2-20 carbon atoms and having an N bond,
Esters, ethers, orthoesters, alkoxysilicon, amines, amides, phosphate esters, etc. are used, and more specifically, ethyl benzoate, methyl toluate, methyl orthobenzoate, tetraethoxysilane, phenyltriethoxysilane, Dibutyl ether, triethylamine, diethylaniline, triethyl phosphate and the like are preferably used. The ratio of the three components constituting the catalyst used in the present invention is arbitrary, and the appropriate range varies depending on the compound used, but generally the organic aluminum is in the range of 1 to 500 mol per 1 mol of Ti in the solid catalyst. and the compound containing C-O bond or C-N bond is 1
-250 moles. The catalytic activity expressed as the number of grams of polymer produced per gram of solid catalyst is 4000 or more. If it is less than 4000, a large amount of catalyst residue will be present which will adversely affect the physical properties of the resulting copolymer, which is not preferable. In the method of the present invention, in at least one of the first polymerization tanks of two or more polymerization tanks connected in series, the reaction of propylene alone or ethylene/propylene is inert at 65 to 85°C in a weight ratio of 6/94 or less. Bulk polymerization using propylene itself as a solvent, in which substantially no solvent is present, is carried out continuously up to 60 to 95% by weight of the total polymerization amount. By carrying out bulk polymerization under such conditions, a non-tacky polymer powder with a high bulk specific gravity can be obtained. When the reaction ratio of bulk polymerized ethylene/propylene exceeds 6/94 weight ratio, the bulk specific gravity of the powder obtained is small;
Furthermore, since the powder has high stickiness, it may aggregate during drying, or the amount of propylene-soluble polymer may increase, causing clogging of piping during the drying process, and furthermore, it becomes extremely difficult to remove the heat of polymerization. Furthermore, if the above-mentioned bulk polymerization is carried out at a temperature below 65° C., stereoregularity decreases, resulting in a decrease in the rigidity of the resulting polymer, and propylene-soluble polymer increases, resulting in agglomeration during drying. Moreover, it is not preferable because the activity of the catalyst decreases. On the other hand, when the polymerization temperature exceeds 85° C., the bulk specific gravity of the resulting polymer decreases significantly, so that the productivity per unit volume decreases and the catalyst activity decreases quickly. Propylene alone or the reaction ratio of ethylene/propylene in a range of 6/94 weight ratio or less is 60 to 95% by weight of the total polymerization, which means that the resulting block copolymer has a good balance of impact resistance and rigidity. If it is less than 60%, the rigidity will be significantly reduced, and if it exceeds 95%, the impact resistance will be significantly reduced. It is of course possible to carry out part of the step of polymerizing propylene alone or with an ethylene/propylene reaction ratio of 6/94 or less by weight, but in order to increase productivity by continuous polymerization, continuous polymerization is necessary. It is preferable to perform as many steps as possible. It is of course possible to carry out the continuous polymerization step in one tank, but in order to make the amount of polymerization per catalyst as uniform as possible, it is preferable to connect two or more polymerization tanks in series and perform polymerization in multiple tanks. Then, following a continuous bulk polymerization step, in the final vessel of the series of polymerization vessels, the reaction ratio of ethylene/propylene is 15/85 to 95/5 by weight, up to at least 80% by weight of the polymerization amount in that vessel. Ratio range from 30 to 65
The polymerization is carried out either by bulk polymerization in propylene itself as a solvent in the substantial absence of an inert solvent at a temperature of 45 to 55 °C, or batchwise by gas phase polymerization in the absence of a substantially liquid polymerization medium. It will be done.
Ethylene/propylene reaction ratio is 15/85 to 95/5
The step of polymerizing within a range of weight ratios is an essential step in order to obtain a propylene-ethylene block copolymer with excellent impact resistance. In order to maintain a well-balanced physical property of the block copolymer, such as impact resistance, rigidity, transparency, and the prevention of whitening of deformed parts when deformed by impact or folding, ethylene/
It is preferred that the polymerization is carried out in several stages in which the reaction ratio of propylene is in the range of 15/85 to 95/5 by weight. For example, it is possible to adopt two stages of polymerization, one in the range of 15/85 to 60/40 weight ratio and the other in the range of 50/50 to 95/5, or to use several polymerization stages to produce polymers with different molecular weights. Polymerization can be carried out in several stages while simultaneously adjusting the molecular weight by changing the reaction ratio of ethylene/propylene. The reaction ratio of ethylene/propylene is 15/85~95/
Adoption of batch polymerization within the range of 5 weight ratios enables multi-stage polymerization to be performed in one polymerization tank in order to improve the balance of physical properties as described above. In order to carry out all multi-stage polymerization in a continuous manner, it is necessary to prepare a number of polymerization tanks equal to the number of stages, which is not economical. In addition, when the ethylene-rich reaction or the reaction that produces polymers with greatly different molecular weights are all carried out in a continuous manner, such as when the ethylene/propylene reaction ratio is 70/30 or more by weight, the resulting copolymer is molded, although the reason is not clear. In this case, the surface becomes rough, which not only significantly reduces the commercial value but also deteriorates the impact resistance. Ethylene/propylene reaction ratio 15/85 to 95/5
Polymerization in a range of weight ratios Because a large amount of polymer is eluted in propylene carried out at temperatures exceeding 65°C, low molecular weight polymers with little commercial value are used in purification processes that involve conventional filtration or countercurrent washing with propylene, etc. , a large amount of low-crystalline polymer is produced as a by-product, increasing the cost of the product. In addition, if a product is obtained by directly removing excess unreacted monomer by evaporation, the polymer dissolved in propylene precipitates and adheres to the surface of the powder, increasing the stickiness of the powder and causing agglomeration. Furthermore, since the bulk specific gravity of the polymer is greatly reduced, the production amount per unit volume is significantly reduced. On the other hand, in order to carry out polymerization at temperatures below 30°C, it is difficult to remove the polymerization heat using ordinary cooling water.
Special cooling equipment is required, and furthermore, polymerization activity is significantly reduced. By using the method of the present invention, polymers with excellent impact resistance and rigidity can be obtained with high productivity without any manufacturing difficulties, and are of great industrial significance. The present invention will be explained in more detail with reference to Examples below. In the examples, MI is based on melt flow index ASTM D1238 (hereinafter abbreviated as MI), bending rigidity ASTM D747-63 Izot (with notch) ASTM D256-56 DuPont JIS K6718, and MI under the conditions of 230℃ and 2.16Kg load. The bending stiffness was measured at 20°C, and the Izod and Dupont impact strengths were measured at 20°C and -10°C, respectively. The isotactic index (hereinafter abbreviated as II) was calculated as boiling n-heptane extraction residue/total polymer (%). Example 1 (i) Preparation of solid catalyst component A vibratory mill equipped with four grinding pots each having an internal volume of 4 and containing 9 kg of steel with a diameter of 12 mm is prepared. 300 mg of magnesium chloride in a nitrogen atmosphere in each pot
g, 60ml of tetraethoxysilane and α, α,
45 ml of α,-trichlorotoluene was added and the mixture was ground for 40 hours. Add 3 kg of the above pulverized material and 20% titanium tetrachloride to an autoclave with an internal volume of 50%, stir at 80°C for 2 hours, remove the supernatant liquid by decantation, then add 35% n-heptane and 80%
After stirring for 15 minutes at
- Added 20% heptane to make a solid catalyst slurry. When a portion of the solid catalyst slurry was sampled, n-heptane was evaporated, and analyzed, it was found that the solid catalyst contained 1.4% by weight of Ti. (ii) Polymerization Polymerization is carried out using the polymerization apparatus shown in FIG. In an autoclave with an internal volume of 50 ml that has been thoroughly dried and purged with nitrogen, add 30 ml of n-heptane, 50 g of the above solid catalyst, and 240 ml of diethylaluminum chloride.
ml, and 140 ml of methyl p-toluate were added thereto and stirred at 25°C. This mixture is used as a catalyst slurry mixture. 60 kg of propylene was charged into an autoclave A with an internal volume of 300 which had been thoroughly dried, purged with nitrogen, and further purged with propylene gas, and 1 kg of propylene was charged as a solid catalyst.
The above catalyst slurry mixture was fed continuously from separate feed ports at a rate of 4 ml/h, triethylaluminum at a rate of 4 ml/h, and liquid propylene at a rate of 30 kg/h, and the polypropylene slurry was continuously fed at a rate of 30 kg/h from the bottom of the autoclave. Polymerization was started at 75°C while being withdrawn from the system. At this time, the hydrogen concentration in the gas phase was charged to 6.5 vol%. After 6 hours had passed from the start of polymerization and the polymerization was stable, a small amount of slurry was extracted from the system.
After measuring the physical properties of the powder, the slurry that is continuously extracted from the bottom is thoroughly dried, replaced with nitrogen, and then replaced with propylene gas.
200 autoclave B. At this time,
The slurry was extracted at 180 kg/h for 5 minutes. After the slurry was transferred to autoclave B of 200, the slurry was not discharged from autoclave A until the time of transfer, and the amounts of propylene, catalyst slurry mixture, and triethylaluminum charged to autoclave A were kept constant. Therefore, the amount of propylene slurry in autoclave A is 47.5
It will vary between Kg and 60Kg. The continuous polymerization tank is operated with an average residence time (amount of slurry in the polymerization tank/amount of slurry charged or discharged per hour) of 2 hours, but when starting batch polymerization, it is necessary to transfer to the batch polymerization tank in a short time. Because the slurry is discharged all at once, the amount of slurry in the continuous polymerization tank is reduced (charging is 30Kg/h, discharge is 180Kg/h),
Until the end of discharging slurry to the batch polymerization tank
The amount of slurry is 47.5Kg. During polymerization in the batch polymerization tank, there is no slurry discharge in the continuous polymerization tank, so the amount of slurry increases from 47.5Kg to 60Kg in 25 minutes until the slurry is discharged.
Discharge to the next batch polymerization tank is repeated in the same manner as above. On the other hand, in autoclave B, 5 kg of liquid propylene was injected while purging the gas phase to bring the internal temperature to 50°C and at the same time raise the hydrogen concentration to 0.3 vol%. Furthermore, ethylene and hydrogen were charged to reduce the hydrogen concentration in the gas phase to 0.60vol% and the ethylene concentration to 35.0%.
Polymerization was carried out at 50° C. for 7.5 minutes as mol%. Furthermore, ethylene was added all at once to increase the hydrogen concentration to 0.55vol%.
After polymerization for 1.5 minutes at an ethylene concentration of 40.0 mol%, the mixture was dried in advance, purged with nitrogen, then replaced with propylene, and then pressure-transferred at once to an autoclave C with an internal volume of 200 containing 10 kg of liquid propylene and 50 ml of isopropanol to deactivate the catalyst. The inside of autoclave B was washed with liquid propylene, which was discharged into autoclave C, and then left until the next slurry was received at a gauge of about 3 kg/cm 2 . On the other hand, the slurry in the autoclave C was fed under pressure to a flash tank D, and then passed through a hopper E and taken out as a powder.
After autoclave C is discharged, liquid propylene is
Add 10 kg and 50 ml of isopropanol and wait until the next reception. Copolymerization is carried out batchwise by repeating the above operations. The operation in autoclave B took approximately 25 minutes from receiving the slurry to completing preparations for the next reception. The slurry was received every 30 minutes, and the operation in autoclave B was repeated 50 times for 25 hours of polymerization, yielding about 250 kg of propylene ethylene block copolymer as a product. During the 25 hours of operation, operation was possible without any problems such as pipe blockage. The amount of polymerization per solid catalyst was determined from the Ti content in the product, and it was found to be 11,800 g/g solid catalyst. The obtained block copolymer was heated to 60℃ and 100mm
It was further dried with Hg for 10 hours, granulated with conventional additives, and its physical properties were measured. The results are shown in Table 2. FIG. 2 shows the relationship between the ethylene/propylene reaction ratio (weight ratio) and the ethylene partial pressure (atmospheric pressure). 50
The results of a model experiment conducted using the catalyst of Example 1 at ℃ are shown. From this graph, the ethylene/propylene reaction ratio corresponding to the ethylene concentration at each stage of the batch polymerization in Table 1 can be estimated. Example 2 Using the catalyst obtained in Example 1 (i), polymerization was carried out in the same manner as in Example 1, except that the hydrogen concentration and ethylene concentration were changed as shown in Table 1. Polymerization was possible without any abnormalities during 25 hours of polymerization. Example 5 TiCl 3 , 1/3 AlCl 3 pulverized product [manufactured by Toho Titanium Co., Ltd.
AA type catalyst (TAC)] 2g/h, diethylaluminium chloride 8ml/h, propylene 15Kg/h
The polymerization was carried out in the same manner as in Example 1 except that the batch polymerization cycle was 60 mm and the polymerization time of each stage was as shown in Table 1. After performing batch polymerization three times, no powder came out from hopper F, so after washing flash tank E and hopper F with n-heptane and discharging the polymer as a slurry, polymerization was continued. After conducting the polymerization twice, no powder was produced again, so the polymerization was stopped. During this time, the polymer taken out as a powder was treated in the same manner as in Example 1, and its physical properties were measured.
Furthermore, the polymerization activity per solid catalyst was estimated from the Ti content in the powder. Note that the granulated pellets were colored yellow. Example 6 Polymerization was carried out in the same manner as in Example 1, except that the polymerization temperature in autoclave A was 50°C, the amount of propylene charged was 17 kg/h, and the hydrogen concentration, ethylene concentration, etc. were as shown in Table 1. After performing the batch polymerization five times, no powder came out from the hopper F, so the polymerization was stopped. The powder obtained during this period was treated in the same manner as in Example 1, its physical properties were measured, and the polymerization activity per solid catalyst was estimated from the Ti content in the powder. Example 7 Polymerization was carried out in autoclave B at 70°C in the same manner as in Example 1, with hydrogen concentration, ethylene concentration, etc. shown in Table 1. After performing the batch polymerization four times, no powder came out from Potsupar F, so the polymerization was stopped. The obtained powder was treated in the same manner as in Example 1, and its physical properties were measured. Example 3 A polymerization apparatus is used in which an autoclave G having an internal volume of 300 is further disposed between autoclave A and autoclave B. Autoclave G is charged with 1.5 ml/h of triethylaluminum and 60 kg of propylene at the start of polymerization in autoclave A, and then continuously charged with polypropylene slurry from autoclave A at 30 kg/h, and at the same time triethyl aluminum is charged at 3.0 ml/h. Polymerization was carried out in the same manner as in Example 1, except that the procedure for discharging the polymer from autoclave G to autoclave B in the same manner as in Example 1 was performed. Continuous polymerization for 25 hours could be carried out without any abnormality, and the physical properties of the product were good. Note that the slurry was discharged from autoclave A to G using a normal slurry pump. Example 4 30 autoclaves H were connected in front of autoclave A, and 5 kg of propylene was added to autoclave H.
The catalyst slurry mixture used in Example 1 was charged as a solid catalyst at a rate of 1 g/h, triethylaluminum at a rate of 0.8 ml/h, and liquid propylene at a rate of 29.2 g/h.
The slurry is continuously charged from separate feed ports at a rate of 29.2 kg/h from autoclave H to autoclave A charged with 60 kg of propylene.
0.8 kg/h, ethylene 160 g/h, and triethylaluminum 4 ml/h were fed, and continuous polymerization was carried out under the conditions shown in Table 1. Furthermore, the slurry was fed from autoclave A to autoclave B in the same manner as in Example 1, and the slurry was fed as shown in Table 1. Batch polymerization was carried out under the conditions shown. Polymerization was possible without any abnormality during the 20 hours of polymerization. Although the rigidity and impact resistance were slightly decreased, the transparency was extremely excellent. Example 1 when measuring the light transmittance of a 1 mm thick press sheet
82 compared to less than 70% for the copolymer.
It was %.

【表】【table】

【表】 重合槽中のスラリー量
**)
[Table] Amount of slurry in the polymerization tank **)

Claims (1)

【特許請求の範囲】 1 立体規則性触媒を用いて、2槽以上の重合槽
を直列に連結し多段階の重合によりプロピレン―
エチレンブロツク共重合体を製造する方法に於
て、 (i) 2槽以上直列に連結された重合槽の最初の少
なくとも1槽においてプロピレン単独か又はエ
チレン/プロピレンの反応比が6/94重量比以
下の範囲で65〜85℃で不活性溶媒が実質的に存
在しないプロピレン自身を溶媒とする塊状重合
を連続的に行い、上記連続重合量の割合は全重
合量の60〜95重量%であり、 (ii) 前記直列に連結した重合槽の最終載では、そ
の槽での重合量の少なくとも80重量%までエチ
レン/プロピレンの反応比15/85〜95/5重量
比の範囲で、30〜65℃の温度で不活性溶媒が実
質的に存在しないプロピレン自身を溶媒とする
塊状重合か或いは実質的に液状の重合媒体の存
在しない気相重合を回分的に行うことを特徴と
するプロピレン―エチレンブロツク共重合体の
製造法。
[Claims] 1 Propylene is produced through multi-stage polymerization by connecting two or more polymerization tanks in series using a stereoregular catalyst.
In the method for producing an ethylene block copolymer, (i) propylene is used alone or the reaction ratio of ethylene/propylene is 6/94 or less by weight in at least the first tank of two or more polymerization tanks connected in series; Continuously carry out bulk polymerization using propylene itself as a solvent in the absence of substantially an inert solvent at 65 to 85 °C in the range of 65 to 85 ° C, and the proportion of the continuous polymerization amount is 60 to 95% by weight of the total polymerization amount, (ii) In the final loading of said series-connected polymerization vessels, at least 80% by weight of the amount of polymerization in said vessels, with an ethylene/propylene reaction ratio ranging from 15/85 to 95/5 by weight, from 30 to 65°C. A propylene-ethylene block copolymer characterized in that bulk polymerization using propylene itself as a solvent in the absence of an inert solvent or batch polymerization in a gas phase in the absence of a substantially liquid polymerization medium is carried out at a temperature of Polymer manufacturing method.
JP3053581A 1981-03-05 1981-03-05 Production of propylene/ethylene block copolymer Granted JPS57145114A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP3053581A JPS57145114A (en) 1981-03-05 1981-03-05 Production of propylene/ethylene block copolymer
GB8205476A GB2094319B (en) 1981-03-05 1982-02-24 Production of propylene block copolymer
PT74523A PT74523B (en) 1981-03-05 1982-03-03 Improved process for the production of a block copolymer of propylene/ethylene
CA000397621A CA1180481A (en) 1981-03-05 1982-03-04 Process for production of propylene-ethylene block copolymer
BR8201135A BR8201135A (en) 1981-03-05 1982-03-04 PROCESS TO PRODUCE COPOLYMER IN BLOCKS OF ETHYLENE PROPYLENE
FR8203581A FR2501214B1 (en) 1981-03-05 1982-03-04 PROCESS FOR PRODUCING PROPYLENE SEQUENCE COPOLYMER
KR8200938A KR850001403B1 (en) 1981-03-05 1982-03-04 Method of producing for propylene brock copolymer
IT20005/82A IT1150636B (en) 1981-03-05 1982-03-05 BLOCK PROPYLENE COPOLYMER PRODUCTION
DE19823208010 DE3208010A1 (en) 1981-03-05 1982-03-05 PRODUCTION OF PROPYLENE BLOCK COPOLYMERS
US07/083,924 US4751265A (en) 1981-03-05 1987-08-03 Production of propylene block copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3053581A JPS57145114A (en) 1981-03-05 1981-03-05 Production of propylene/ethylene block copolymer

Publications (2)

Publication Number Publication Date
JPS57145114A JPS57145114A (en) 1982-09-08
JPS6336325B2 true JPS6336325B2 (en) 1988-07-20

Family

ID=12306482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3053581A Granted JPS57145114A (en) 1981-03-05 1981-03-05 Production of propylene/ethylene block copolymer

Country Status (1)

Country Link
JP (1) JPS57145114A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059262A (en) * 2008-09-02 2010-03-18 Sumitomo Chemical Co Ltd Method for producing polypropylene

Also Published As

Publication number Publication date
JPS57145114A (en) 1982-09-08

Similar Documents

Publication Publication Date Title
JPS5847402B2 (en) Polymer composition for molding and its manufacturing method
US4751265A (en) Production of propylene block copolymer
US4576994A (en) Process for the preparation of a polypropylene molding composition
JP2005530914A (en) Liquid phase method for the polymerization of α-olefins
JP3485806B2 (en) Method for producing propylene-ethylene block copolymer
JPS6336325B2 (en)
JPS6150087B2 (en)
JPS6336326B2 (en)
JPS6036203B2 (en) Method for producing propylene-ethylene block copolymer
JPS6150085B2 (en)
JPS6138925B2 (en)
KR920006449B1 (en) Method for preparing block copolymers of propylene
JPS62174217A (en) Production of propylene block copolymer
JPS6336327B2 (en)
JP3409264B2 (en) Catalyst for producing ethylene-propylene copolymer rubber
JPS6036206B2 (en) Method for producing propylene block copolymer
JPS6036204B2 (en) Method for producing propylene-ethylene block copolymer
JPH0244846B2 (en)
JPH0317847B2 (en)
JPH02145611A (en) Propylene random copolymer
KR830001194B1 (en) How to prepare propylene copolymer
JPH061817A (en) Production of propylene block copolymer
JPH0559926B2 (en)
JP3217466B2 (en) Method for producing propylene polymer
JPH0312086B2 (en)