JPS6137917A - Method for controlling uniform heating of steel material - Google Patents

Method for controlling uniform heating of steel material

Info

Publication number
JPS6137917A
JPS6137917A JP15971084A JP15971084A JPS6137917A JP S6137917 A JPS6137917 A JP S6137917A JP 15971084 A JP15971084 A JP 15971084A JP 15971084 A JP15971084 A JP 15971084A JP S6137917 A JPS6137917 A JP S6137917A
Authority
JP
Japan
Prior art keywords
temperature
induction heating
steel material
heating
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15971084A
Other languages
Japanese (ja)
Inventor
Masamitsu Kobashi
小橋 正満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15971084A priority Critical patent/JPS6137917A/en
Publication of JPS6137917A publication Critical patent/JPS6137917A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Control Of Heat Treatment Processes (AREA)

Abstract

PURPOSE:To heat uniformly a steel material without generating unevenness of temps. by heating locally the low-temp. zone of the steel material before the steel material is charged into an induction heating furnace to make the temp. distribution uniform. CONSTITUTION:The temps. of a material B drawn out from a combustion furnace A in the lengthwise and widthwise directions are measured by a radiation thermometer C while the material is conveyed on a table, and the measured results are inputted to an arithmetic unit D. The requisite temp. and specified uniformity of temps. of the material B when the material is taken out from an induction heating furnace F are inputted to the arithmetic unit D, and the amt. of heat to be afforded and heating time necessary for leveling the temps. of the local low-temp. zone of the material B are calculated from said measured results. The low-temp. zone of the material B is locally heated by an induction heating coil E on the basis of the calculated values to make the temp. distribution uniform. Then the material B is introduced into the induction heating furnace F, and rapidly heated.

Description

【発明の詳細な説明】 (産業上の利用分野) 鋼材の圧延に当って、素材を高温に均熱することが必要
であり、このような均熱昇温制御に関してこの明細書で
述べる技術内容は、最小の投入熱2・・量により−とく
に短時間のうちに所定の均熱を実□現することについて
の開発成果を提案するところにある。
[Detailed Description of the Invention] (Industrial Application Field) When rolling steel materials, it is necessary to soak the material to a high temperature, and the technical content described in this specification regarding such soaking temperature increase control is The purpose of the present invention is to propose the development result of achieving a predetermined uniform heating in a short period of time by using the minimum amount of heat input.

〔従来の技術〕[Conventional technology]

鋼材を高話加熱する際、在来一般的な雰囲気炉−すなわ
ち燃焼炉に、誘導加熱炉を組合わせて、加熱所要時間の
短縮を図ることが試みられている。
When heating steel materials, attempts have been made to shorten the heating time by combining an induction heating furnace with a conventional general atmosphere furnace, that is, a combustion furnace.

この場合、鋼材の表面と円部との温度差は誘導加熱後に
若干の保持時間をおくことによって容易に消去されるが
、鋼材表面における温度分布は、1・・燃焼炉加熱で不
可避な温度むらが、そのまま誘導加熱を経たあとに持ち
来たされる。
In this case, the temperature difference between the surface of the steel material and the circular part can be easily eliminated by holding it for a while after induction heating, but the temperature distribution on the surface of the steel material is 1. Temperature unevenness that is inevitable in combustion furnace heating However, it is brought in after being subjected to induction heating.

この温度むらは、主として燃焼炉内での鋼材支持設備で
あるスキッドとの接触部が、他の部分に比較して昇温し
難いことに起因して1局部的な低1・温領域(いわゆる
スキッドマーク)を形成することに代表され、このよう
な温度むらは、誘導加熱による短時間急速加熱によって
はほとんど解消され得々い。
This temperature unevenness is mainly due to the fact that the temperature of the contact area with the skid, which is the steel support equipment in the combustion furnace, is difficult to rise compared to other parts. Such temperature unevenness, which is typified by the formation of skid marks, can hardly be eliminated by short-term rapid heating using induction heating.

(発明が解決しようとする問題点) 土述したように、燃焼炉から抽出した鋼材をそのまま誘
導加熱炉に装入したとしても、燃焼炉加熱に由来する温
度むらのため、誘導刃口熱炉における昇温により、鋼材
の均熱を図ることは困難でろ一□つたことがこの発明の
課題である。
(Problems to be Solved by the Invention) As mentioned above, even if the steel extracted from the combustion furnace is directly charged into the induction heating furnace, due to the temperature unevenness caused by the heating of the combustion furnace, the induction heating furnace The problem of this invention is that it is difficult to uniformly heat the steel material due to the temperature rise in the steel material.

(問題点を解決するための手段) この発明は、燃焼炉と誘導加熱炉とに鋼材を順次通して
、所定の温度に均熱するに当り、誘導加熱炉装入前に鋼
材表面の温度分布を測定し・その□゛測定値から局部的
な低温域の温度平準化に必要な、投入熱量および方a熱
時間を演算し、得られた結果に基づき該低温域に局部加
熱を施して、上記温度分布を均一にしたのち、誘導加熱
炉による急熱を施すことを特徴とする鋼材の均熱昇温制
御方法で1・ある。
(Means for Solving the Problems) This invention provides a temperature distribution on the surface of the steel material before charging it into the induction heating furnace, when the steel material is sequentially passed through a combustion furnace and an induction heating furnace and uniformly heated to a predetermined temperature. □ From the measured values, calculate the amount of heat input and heating time required to equalize the temperature in the local low temperature area, and apply local heating to the low temperature area based on the obtained results, 1. A method for controlling temperature increase in soaking steel material, which is characterized in that after the temperature distribution is made uniform, rapid heating is performed using an induction heating furnace.

第1図は、この発明による均熱昇温制御系統図であり、
Aは燃焼炉、Bは鋼材、Cは放射温度計からなる測温装
置、Dは演算器で上位プロセスコンピュタ−(図示省略
)と接続されている。また・・Eは、補助ヵ■熱手段で
あり、この例では誘導加熱゛コイルを用いている。そし
てFld誘導加熱炉でおる。
FIG. 1 is a soaking temperature increase control system diagram according to the present invention,
A is a combustion furnace, B is a steel material, C is a temperature measuring device consisting of a radiation thermometer, and D is an arithmetic unit connected to a host process computer (not shown). Further, E is an auxiliary heating means, and in this example, an induction heating coil is used. Then, it is heated in an Fld induction heating furnace.

燃焼炉Aから抽出された鋼材Bは、テーブル上を搬送さ
れる途中で、放射温度計Cにて長手方向、−□巾方向の
表面温度を測定し、この測定結果は演算器りに入力する
。演算器りへは、加熱素材の寸法、規格などの仕様があ
らかじめ上位プロセスコンピュータより入力しこのデー
ターの中には、誘導加熱炉抽出時における必要加熱温度
および所定均熱11・度を、製品規格、操業性などから
決定し、それを含むものとする。そして満足すべき加熱
温度、処理時間がら、素材の局部的な低温域の必要昇熱
量を以下に述べる方法にて計算し、補助加熱手段Eにて
局部加熱を行うのである。
While the steel material B extracted from the combustion furnace A is being transported on the table, the surface temperature in the longitudinal direction and the -□ width direction is measured with a radiation thermometer C, and the measurement results are input into the computer. . Specifications such as the dimensions and standards of the material to be heated are entered in advance from the host process computer into the computer, and this data includes the required heating temperature and predetermined soaking temperature of 11 degrees when extracting from the induction heating furnace, as well as product specifications. , shall be determined based on operability, etc., and shall be included. Based on the satisfactory heating temperature and processing time, the necessary amount of heat increase in the local low temperature region of the material is calculated using the method described below, and the auxiliary heating means E performs local heating.

必要昇熱量の計算に関して、第2図(a)には、燃焼炉
から抽出した鋼材の長手方向の温度分布を。
Regarding the calculation of the required heat increase amount, Figure 2 (a) shows the temperature distribution in the longitudinal direction of the steel material extracted from the combustion furnace.

第2図中)Vcで燃焼炉から抽出された鋼材が、補助手
段による局部加熱とその後誘導加熱終了までの均熱に供
すべき処理時間Δtに対する昇温挙動を・・・それぞれ
示した。第2図(b)において高温域(イ)に対1する
低温域(ロ)の温度差を補うべき局部加熱に要する時間
をΔt0(〈ハ)としたとき、鋼材の高温域(表面温度
)(イ)の温度Tn[ついては、誘導加熱炉での加熱終
了後の温度をTn/として、(Δt−Δ1.)の時間゛
で昇温すれば良いことから必要投入電力は下記式1式%
) で決定される。
In Fig. 2), the steel material extracted from the combustion furnace at Vc shows the temperature increase behavior with respect to the treatment time Δt for local heating by auxiliary means and soaking until the end of induction heating. In Fig. 2(b), when the time required for local heating to compensate for the temperature difference between the high temperature region (a) and the low temperature region (b) is Δt0 (<c), the high temperature region (surface temperature) of the steel material (A) Temperature Tn [Concerning the temperature after heating in the induction heating furnace as Tn/, it is sufficient to raise the temperature in a time of (Δt - Δ1.), so the required power input is calculated using the following formula 1 formula %
) is determined.

なお低温域(ロ)の加熱中における高温域(イ)の温度
!“降下Tl(イ〜・・)は゛ T□(イ〜7、)=f(スラブ厚みt、大気温度θ、ス
ラブ表面温度θ8.・・・・)より算出できる。
In addition, the temperature in the high temperature range (a) while heating the low temperature range (b)! "The drop Tl (I~...) can be calculated from 'T□ (I~7,)=f (slab thickness t, atmospheric temperature θ, slab surface temperature θ8...).

ここで誘導加熱炉抽出時における鋼材表面の筒1温域(
ホ)と低湿域(へ)の許容温度差をΔθ2とすれば、そ
の高温域(ホ)に至る投入電力Qによる昇熱量から、低
温域5(ロ)における局部加熱後の温度T。が決定され
る。従って燃焼炉抽出直後の局部低温域(ロ)の表面温
度TがΔθ8だけ上昇して誘導加熱炉抽出後 ・・Δθ
、におさまるように、Δt□の時間内で昇温すれ1ば良
いわけでちる。このΔt0に対しては、とくに制約はな
いが、所期した目的の達成の上からは、できるだけ小さ
い値に設定することが望ましい。
Here, the cylinder 1 temperature range (
If the allowable temperature difference between E) and the low humidity region (E) is Δθ2, then the temperature T after local heating in the low temperature region 5 (B) is calculated from the amount of heat raised by the input power Q to reach the high temperature region (E). is determined. Therefore, the surface temperature T of the local low temperature area (b) immediately after extraction from the combustion furnace increases by Δθ8, and after extraction from the induction heating furnace...Δθ
, it is sufficient to raise the temperature within the time period Δt□. Although there are no particular restrictions on Δt0, it is desirable to set it to a value as small as possible in order to achieve the intended purpose.

ここにΔθ8だけ昇熱するための投入電力Qは次′の様
に決定される。
Here, the input power Q to raise the temperature by Δθ8 is determined as follows.

・誘導コイルを用いfc場合 f(Δ1.板厚t、放散熱R1物性、温度差Δθ8.・
・・・・)・直火を用いた場合 f(Δt0.板厚t、物性、フレーム温度、温度差Δθ
8・・・・・)なお第1図補助加熱手段Eとして誘導加
熱コイルを用いたのは、前掲第2図(a)に示したよう
な温度むらが生じたとき、その部分のみの加熱に好都合
1゛・だからである。つまり、第8図に示すように、鋼
材長手方向にコイルをSo、S2.s8・・・・snの
ように分割しておき、局部低温域(ロ)に対応する部分
のコイルを選択使用するのである。
・In the case of fc using an induction coil, f(Δ1. plate thickness t, dissipated heat R1 physical properties, temperature difference Δθ8.・
...)・When using direct flame f(Δt0. Plate thickness t, physical properties, flame temperature, temperature difference Δθ
8...) The reason why an induction heating coil is used as the auxiliary heating means E in Figure 1 is because when temperature unevenness occurs as shown in Figure 2 (a) above, it can be used to heat only that part. This is because it is convenient. That is, as shown in FIG. 8, the coils are arranged in the longitudinal direction of the steel material So, S2. The coil is divided into sections like s8...sn, and the coil corresponding to the local low temperature region (b) is selectively used.

また補助加熱手段Eは1局部加熱が可能彦燃焼2・・°
バーナでもよい。この場合は、第4図に示したよ゛うに
、燃焼バーナとしてノズルNに燃料ガスGとと酸素0.
又は、空気を供給し、スキッド部に対応する位置に適切
な加熱を施すのである。さらにかような加熱処理は、燃
焼炉から抽出し、温度を゛測定した後であればいつでも
良いわけであるから、補助加熱手段Eは必ずしも誘導加
熱炉と独立して配置する必要はない。すなわち第5図に
示した誘導加熱炉内に、誘導コイルエと隣接の補助加熱
手段Eとして上記のような燃焼バーナを設置し、演1゛
□算器りの出力によシ、誘導加熱炉Fでの加熱と併用に
て局部加熱を実施しても良い。
In addition, the auxiliary heating means E can heat one local area Hiko combustion 2...°
A burner may be used. In this case, as shown in FIG. 4, the nozzle N serves as a combustion burner with fuel gas G and zero oxygen.
Alternatively, air is supplied and appropriate heating is applied to the location corresponding to the skid portion. Furthermore, such a heat treatment can be carried out at any time after extraction from the combustion furnace and temperature measurement, so the auxiliary heating means E does not necessarily have to be arranged independently of the induction heating furnace. That is, in the induction heating furnace shown in FIG. Local heating may be carried out in combination with heating.

たソし、第5図の場合には、鋼材巾方向の局部加熱可能
位置が限定される不利を伴うが、この問題は、局部加熱
手段およびその配置を燃焼炉を含゛□めた加熱工程での
最冷点の発生状況に応じて選定することにより容易に解
決する。
However, in the case of Fig. 5, there is a disadvantage that the position where local heating is possible in the width direction of the steel material is limited. This can be easily solved by selecting according to the situation where the coldest point occurs.

(作用) ここで従来、鋼材の高温加熱、とくに燃焼炉と、誘導加
熱炉とを併用する場合における鋼材長手方2・・・向に
わたる表面温度の動向を第6図にて、燃焼炉゛および誘
導加熱炉からそれぞれ抽出した直後の有様について、下
段と上段に分けて示した。燃焼炉抽出時の鋼材表面には
、いわゆる焼むらのため高温域(イ)と局部低温域(ロ
)に温度差Δθ、が生じる。そ−・のため、誘導加熱炉
での昇温を経た抽出のあとも温度差Δθ、が、はとんど
解消されない。これに対し、この発明では上記の動向を
実測によって把握したのち、第6図の局部低温域(ロ)
に対し、局部加熱を施して第7図下段の(ロ)′に示す
ごとく、許容l・・温度差(Δθ5)に縮めるように、
昇温制御し、しかるのち誘導加熱の適用によって、鋼材
の均熱を図る。ここに、誘導加熱炉にて短時間で許容温
度差Δθ′の下に所定の高温Kまで均熱昇温することが
できる。
(Function) Here, Fig. 6 shows the trend of the surface temperature of steel materials in two longitudinal directions when high-temperature heating of steel materials, especially when a combustion furnace and an induction heating furnace are used together. The state immediately after extraction from the induction heating furnace is shown in the lower and upper rows. Due to so-called uneven heating, a temperature difference Δθ occurs between the high temperature region (a) and the local low temperature region (b) on the surface of the steel material when it is extracted from the combustion furnace. Therefore, the temperature difference Δθ is hardly eliminated even after extraction through temperature raising in an induction heating furnace. In contrast, in this invention, after understanding the above trends through actual measurements, we
Then, local heating is applied to reduce the temperature difference to the allowable l···temperature difference (Δθ5), as shown in (b)′ in the lower part of Figure 7.
The temperature rise is controlled and then induction heating is applied to uniformly heat the steel material. Here, the temperature can be soaked and raised to a predetermined high temperature K within an allowable temperature difference Δθ' in a short time using an induction heating furnace.

(実施例) 第8図にこの発明に従う鋼材の均熱昇温制御方法の具体
的な適用の一例を図解し、横軸に時間、縦軸に温度をと
って、実線にて鋼材表面の一般的な温度(イ)の推移、
また゛破線にて局部低温域(ロ)の推・・移を区別して
示した。
(Example) Fig. 8 illustrates an example of a specific application of the method for controlling the soaking temperature increase of steel materials according to the present invention. Changes in temperature (a),
In addition, the transitions of the local low-temperature region (b) are shown separately using broken lines.

この事例で、温度域(イ)はスキッド中間部、そして温
度域(ロ)はスキッド接触部に相当し、それぞれの板厚
方向平均温度の較差Δtが60℃であることが、燃焼炉
から抽出した時点の計測によって検゛出された。このハ
ンドリングに2分を要しこの間、各温度域(イ)(ロ)
とも、放冷にょシやや降温する。
In this example, the temperature range (a) corresponds to the skid middle part, and the temperature range (b) corresponds to the skid contact part, and it is extracted from the combustion furnace that the difference in average temperature in the thickness direction of each plate Δt is 60°C. It was detected by measurement at the point in time. This handling takes 2 minutes and during this time each temperature range (a) (b)
In both cases, the temperature will drop slightly when left to cool.

温度域(ロ))に対し誘導加熱コイルをもってする局部
加熱によってその板厚方向平均温度につき25°Cだけ
所要加熱時間70秒にて昇温すると、温度域1“(イ)
は放冷による降温によシ上記温度較差は局部加熱の完了
の際に15℃となった。つまり温度域(イ)は20℃の
降温、同仲)は25℃の昇温を生じたわけである。引続
き1分のハンドリングにて誘導炉に装入して1260℃
の均熱温度まで80分にわfc1□って急熱し、その後
5分間均熱保持を行ったところ、上記の温度較差は、さ
らに縮って、5〜10℃となった。
If the average temperature in the thickness direction of the plate is increased by 25°C in the required heating time of 70 seconds by local heating using an induction heating coil in the temperature range (B)), the temperature range 1" (A)
The above temperature range was 15° C. at the completion of local heating due to the temperature drop due to cooling. In other words, the temperature range (A) decreased by 20°C, and the temperature range (A) increased by 25°C. Then, after 1 minute of handling, it is charged into an induction furnace and heated to 1260℃.
When the sample was rapidly heated to a soaking temperature of fc1□ for 80 minutes and then soaked for 5 minutes, the above temperature range was further reduced to 5 to 10°C.

なお、上記の実施例では、誘導加熱後、均熱保持を行う
場合についても説明したが、かかる均熱゛・・保持を省
略できるということは、いうまでもない。1(発明の効
果) この発明によれば、燃焼炉における加熱に不可避な、温
度むらの影響を、誘導加熱炉での均熱に先立つ局部加熱
の適用によって有利に消去し、該−゛誘導加熱炉による
加熱所要時間の有効な短縮の下でとくに高温への急速加
熱によって、温度むらのない均熱が実現される。
In the above-mentioned embodiments, a case where soaking and holding is performed after induction heating has been described, but it goes without saying that such soaking and holding can be omitted. 1 (Effects of the Invention) According to the present invention, the influence of temperature unevenness, which is inevitable in heating in a combustion furnace, is advantageously eliminated by applying local heating prior to soaking in an induction heating furnace. Due to the particularly rapid heating to high temperatures, uniform heating is achieved with an effective shortening of the heating time required by the furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施に好適な均熱昇温制御′”御
系統図。 第2図(a) (b)は燃焼炉抽出時の鋼材長手方向の
温度分布図および、この発明に従う昇温制御要領説明図
、 第8図、第4図および第5図は、それぞれ局部パ低温域
に対する具体的加熱要領の説明図。 第6図は、従来の加熱方式における鋼材の燃焼炉抽出時
と誘導加熱炉抽出時の表面温度分布を示したグラフ。 第7図は、この発明に従う昇温制御による温度゛・変化
を示したグラフ、 第8図は、この発明に従って昇温制御を行ったときの鋼
材の温度履歴を示した図である。
Fig. 1 is a diagram of a soaking temperature increase control system suitable for carrying out the present invention. Fig. 2 (a) and (b) are temperature distribution diagrams in the longitudinal direction of the steel material during extraction from the combustion furnace and according to the present invention. Figure 8, Figure 4, and Figure 5 are explanatory diagrams of specific heating procedures for local temperature low temperature regions. and a graph showing the surface temperature distribution during extraction from an induction heating furnace. Figure 7 is a graph showing the temperature change due to temperature increase control according to the present invention. Figure 8 is a graph showing the temperature change when temperature increase control was performed according to the present invention. It is a figure showing the temperature history of the steel material at the time.

Claims (1)

【特許請求の範囲】 1、燃焼炉と誘導加熱炉とに鋼材を順次通して所定の温
度に均熱するに当り、 誘導加熱炉装入前に、鋼材表面の温度分布 を測定し、その測定値から局部的な低温域の温度平準化
に必要な、投入熱量および加熱時時間を演算すること、 得られた結果に基づき該低温域に局部加熱 を施して、上記温度分布を均一にすること、しかるのち
、誘導加熱炉による急熱を施す こと の結合を特徴とする鋼材の均熱昇温制御方 法。
[Scope of Claims] 1. When passing steel material sequentially through a combustion furnace and an induction heating furnace and soaking it to a predetermined temperature, the temperature distribution on the surface of the steel material is measured before charging into the induction heating furnace; From the values, calculate the input heat amount and heating time required to equalize the temperature in the local low-temperature area; Based on the obtained results, apply local heating to the low-temperature area to make the temperature distribution uniform. , followed by rapid heating using an induction heating furnace.
JP15971084A 1984-07-30 1984-07-30 Method for controlling uniform heating of steel material Pending JPS6137917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15971084A JPS6137917A (en) 1984-07-30 1984-07-30 Method for controlling uniform heating of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15971084A JPS6137917A (en) 1984-07-30 1984-07-30 Method for controlling uniform heating of steel material

Publications (1)

Publication Number Publication Date
JPS6137917A true JPS6137917A (en) 1986-02-22

Family

ID=15699595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15971084A Pending JPS6137917A (en) 1984-07-30 1984-07-30 Method for controlling uniform heating of steel material

Country Status (1)

Country Link
JP (1) JPS6137917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10669600B2 (en) 2015-04-02 2020-06-02 Nippon Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
JP2021109990A (en) * 2020-01-08 2021-08-02 Jfeスチール株式会社 Plate temperature control method, heating control device and method for producing metal plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10669600B2 (en) 2015-04-02 2020-06-02 Nippon Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
JP2021109990A (en) * 2020-01-08 2021-08-02 Jfeスチール株式会社 Plate temperature control method, heating control device and method for producing metal plate

Similar Documents

Publication Publication Date Title
US8529711B2 (en) Induction heat treatment method, induction heat treatment installation and induction-heat-treated product
CN104060080B (en) Heater for rolling steel heating of plate blank control method and system
US10161015B2 (en) Heat treatment method and method of manufacturing machine part
JPS6137917A (en) Method for controlling uniform heating of steel material
US4500366A (en) Process for producing a grain-oriented electromagnetic steel strip or sheet
JPH0713271B2 (en) Metal plate continuous annealing equipment and metal plate continuous annealing method
JPH01299702A (en) Method and device for warm rolling
US4621794A (en) Apparatus for producing a grain-oriented electromagnetic steel strip or sheet
JPH06104198A (en) Lamp annealing system
JPH052728B2 (en)
JPS6047881B2 (en) Induction hardening method
JPS63307217A (en) Method for controlling temperature of stepped shaft in heating furnace
JPS5811742A (en) Heat treatment heating method of work roll for cold rolling
JPS59180707A (en) Program-controlled heat treatment device
JPS599125A (en) Method for setting temperature of heating furnace
Krishnan Heat Treat Furnace Operations
JPH0576145B2 (en)
JPS61219133A (en) Photo irradiation annealing apparatus
JPS61195914A (en) Method for controlling temperature of molten steel in vacuum refining furnace
JPS6056210B2 (en) Steel transformation structure control method
CN113109165A (en) Double-phase steel continuous annealing and galvanizing thermal simulation experiment method and device
JPH02221331A (en) Method for controlling temperature of continuous annealing furnace for steel strip
Wallis The Thermal Performance of an Ultrahigh Power(UHP) Electrical Furnace of the Reheating of Steel Slabs
JPH03111517A (en) Method for uniformly heating slab
JPH0670259B2 (en) Continuous annealing method for steel strip