JPS599125A - Method for setting temperature of heating furnace - Google Patents

Method for setting temperature of heating furnace

Info

Publication number
JPS599125A
JPS599125A JP11885782A JP11885782A JPS599125A JP S599125 A JPS599125 A JP S599125A JP 11885782 A JP11885782 A JP 11885782A JP 11885782 A JP11885782 A JP 11885782A JP S599125 A JPS599125 A JP S599125A
Authority
JP
Japan
Prior art keywords
furnace
temperature
slab
temp
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11885782A
Other languages
Japanese (ja)
Other versions
JPH0360887B2 (en
Inventor
Kenji Ueda
植田 憲治
Shinichiro Muto
武藤 振一郎
Natsuki Saikawa
斉川 夏樹
Tomio Yamada
富美夫 山田
Hisashi Ezure
江連 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd, Kawasaki Steel Corp filed Critical Toshiba Corp
Priority to JP11885782A priority Critical patent/JPS599125A/en
Publication of JPS599125A publication Critical patent/JPS599125A/en
Publication of JPH0360887B2 publication Critical patent/JPH0360887B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Abstract

PURPOSE:To make contribution to the improvement in the size and quality of products, by calculating and setting the temp. in the transverse direction of a heating furnace from the temp. of the material to be heated at the present temp., the target temp. of the material to be heated after a specified time and the prescribed temp. gradient in the longitudinal direction of the material to be heated. CONSTITUTION:Two units of control devices 61, 62 for furnace temp. are provided in the transverse direction of a furnace. When a set furnace temp. thetag1REF is given, a burner 21 is operated by a thermometer 51, a subtractor 91 and the device 61, and the temp. in the furnace is maintained at thetag1. When a set furnace temp. thetag2REF is given, a burner 22 is operated by a thermometer 52, a subtractor 92 and the device 62 and the furnace temp. is maintained at thetag2. Therefore, a furnace temp. gradient can be made in the transverse direction of the furnace. Thereupon, the above-described thetag1REF, thetag2REF are calculated and set from the temp. thetag1 of a slab 1 at the present time, the target temp. thetag2 of the slab 1 after a specified time and the prescribed temp. gradient DELTAthetaM in the longitudinal direction of the slab 1.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、スラブ等の被加熱材料を加熱する加熱炉の炉
温設定方法に係るもので、特に被加熱材料の炉幅方向す
なわち長さ方向の温度勾配を所定の値に確保し、かつ、
被加熱材料を目標温度に保持する炉幅方向の炉温設定方
法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for setting the furnace temperature of a heating furnace for heating a material to be heated such as a slab, and particularly to a method for setting a furnace temperature in a furnace width direction, that is, a longitudinal direction of the material to be heated. ensure the temperature gradient at a predetermined value, and
The present invention relates to a furnace temperature setting method in the furnace width direction for maintaining a material to be heated at a target temperature.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

加熱炉たとえば連続スラブ加熱炉(以下、単に「加熱炉
1と呼ぶ)ではエネルギーの消費量を最小に抑えながら
被加熱材料(以下[スラブjという)を後工程に適した
温度に加熱するとともに目標の生産数を確保するように
操業されなければならない。
A heating furnace, for example, a continuous slab heating furnace (hereinafter simply referred to as "heating furnace 1"), heats the material to be heated (hereinafter referred to as "slab J") to a temperature suitable for the subsequent process while minimizing energy consumption. It must be operated in such a way as to ensure the production number of

第1図は、代表的な加熱炉を示しだブロック図である。FIG. 1 is a block diagram showing a typical heating furnace.

スラブ1は装入口3から抽出口4−!、で炉壁10に囲
まれた予熱帯101.加熱帯102.均熱帯103を通
過する間に加熱され抽出目標温度にて抽出される。各帯
の炉内温度計5で検出された炉内温度は減算器9へ帰還
され、各帯の炉温は炉温制御装置6によりバーナ2を操
作し、オペレータの設定値θRgFになるよう制御され
る。また、スラブ1はその長さ方向が加熱炉の炉幅方向
になるように装入される。
Slab 1 is from charging port 3 to extraction port 4-! , a preheating zone 101 surrounded by a furnace wall 10. Heating zone 102. While passing through the soaking zone 103, it is heated and extracted at the extraction target temperature. The furnace temperature detected by the furnace thermometer 5 in each zone is fed back to the subtractor 9, and the furnace temperature in each zone is controlled by the furnace temperature control device 6 to operate the burner 2 to reach the operator's set value θRgF. be done. Further, the slab 1 is loaded so that its length direction is in the furnace width direction of the heating furnace.

一般に、加熱炉以後の圧延の工程においては、製品の寸
法や品質をよくするため、スラブ長さ方向の温度勾配を
所定の範囲に抑える必要がある。
Generally, in the rolling process after the heating furnace, it is necessary to suppress the temperature gradient in the longitudinal direction of the slab within a predetermined range in order to improve the dimensions and quality of the product.

このため、加熱炉抽出後の各工程におけるスラブ長さ方
向の温度降下分を考慮して、抽出時のスラブ長さ方向の
温度に勾配をつける操業が行なわれている。これは加熱
炉の炉幅方向つまり在炉スラブにとっては長さ方向の炉
内温度に勾配をつけることにより実現できる。
For this reason, in consideration of the temperature drop in the longitudinal direction of the slab in each step after extraction in a heating furnace, an operation is carried out in which the temperature in the longitudinal direction of the slab during extraction is given a gradient. This can be achieved by creating a gradient in the temperature inside the furnace in the width direction of the heating furnace, that is, in the length direction for the slab in the furnace.

従来、スラブ長さ方向に温度勾配をつける場合は、オペ
レータの経験と勘に基づいて炉幅方向の炉温制御装置の
炉温設定を行なっていた。
Conventionally, when creating a temperature gradient in the slab length direction, the furnace temperature was set by the furnace temperature control device in the furnace width direction based on the operator's experience and intuition.

さらに、近年、計算機の普及により、加熱炉システムに
も計算機が導入されるようになり、時々刻々のスラブ温
度の計算をはじめ、所定のスラブ温度を得るだめの設定
炉温の計算等複雑が演算処理が可能になったが、まだ十
分な計算機制御をみるに至っていない。
Furthermore, in recent years, with the spread of computers, computers have been introduced into heating furnace systems, and complex calculations such as the calculation of the slab temperature from moment to moment and the set furnace temperature to obtain a predetermined slab temperature are performed. Processing has become possible, but sufficient computer control has not yet been achieved.

ここにおいて本発明は、上記の点に鑑み、スラブの温度
を目標値に確保し、スラブの長さ方向の温度勾配を所定
の値に確保する炉温を計算機の演算により、精度よく設
定する手段であり、製品の寸法1品質の向上に富力する
加熱炉の炉温設定方法を提供することを、その目的とす
る。
In view of the above-mentioned points, the present invention provides means for accurately setting the furnace temperature, which ensures the temperature of the slab at a target value and the temperature gradient in the longitudinal direction of the slab at a predetermined value, using computer calculations. The purpose of this invention is to provide a method for setting the furnace temperature of a heating furnace, which is effective in improving the dimensions and quality of products.

〔発明の概要〕[Summary of the invention]

本発明は、炉幅方向に温度勾配をつけることが可能な炉
温制御装置と炉幅方向の炉温を検出する温度i1゛を備
え、現在時刻より一定時間後に被加熱材料の温度を目標
値に確保し、被加熱材料の炉幅方向である長さ方向の温
度勾配を所定の値にする炉幅方向の炉温を設定する加熱
炉の炉温設定方法に訃いて、現【「時p11における被
加熱材料の温度と、一定時間後の被加熱材料の目標温度
と、とくにスラブ表面温度とスラブ平均温度を関係づけ
る熱伝導解析による所定の被加熱材料長さ方向の温度勾
配とから、前記炉幅方向の炉温を導出し設定するように
した加熱炉の炉温設定方法である。
The present invention is equipped with a furnace temperature control device capable of creating a temperature gradient in the furnace width direction and a temperature i1' that detects the furnace temperature in the furnace width direction, and sets the temperature of the material to be heated to a target value after a certain time from the current time. The method of setting the furnace temperature in the furnace width direction to ensure that the temperature gradient in the length direction, which is the furnace width direction, of the material to be heated is set to a predetermined value has been changed. From the temperature of the material to be heated at , the target temperature of the material to be heated after a certain period of time, and the temperature gradient in the length direction of a predetermined material to be heated by heat conduction analysis that relates the slab surface temperature and the slab average temperature, This is a furnace temperature setting method for a heating furnace in which the furnace temperature in the furnace width direction is derived and set.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

各図面において同一符号は同一もしくは相当部分とする
In each drawing, the same reference numerals represent the same or corresponding parts.

第2図に表わす加熱炉を進行しているスラブとある帯を
八−Aoで切った断面図を第3図に示す。
FIG. 3 shows a sectional view taken along line 8-Ao of the slab and a certain band moving through the heating furnace shown in FIG.

ただし、説明を簡単にするだめ、この帯の上部と下部の
炉温は等しい考え、第3図では上部のみを表わしている
However, in order to simplify the explanation, it is assumed that the furnace temperatures at the upper and lower parts of this belt are equal, and only the upper part is shown in Figure 3.

第3図に示すように、炉幅方向に炉温制御装置61.6
2が2台ある。
As shown in Fig. 3, the furnace temperature control device 61.6 is placed in the furnace width direction.
There are two 2s.

いま、設定炉温θ七2が    −−−  与えられる
と炉内温度計51、減算器91及び炉温制御装置61に
よりバーナ21を操作し2、炉内温度がθ・glに保た
れる。設定炉温θ数1が与えられた場合にも同様に、炉
内温度計52、減算器92及び炉温制御装置62により
バーナnを操作し、炉内温度θg2に保たれる。従って
、2台の炉温制御装置1f61 、62に、各々炉温設
定値θ讐v。θζyを与えれば、炉幅方向に炉温勾配を
つくることができる。
Now, when the set furnace temperature θ72 is given, the burner 21 is operated by the furnace thermometer 51, the subtractor 91, and the furnace temperature control device 61, and the furnace temperature is maintained at θ·gl. Similarly, when the set furnace temperature θ number 1 is given, the burner n is operated by the furnace thermometer 52, the subtractor 92, and the furnace temperature control device 62, and the furnace temperature is maintained at θg2. Therefore, the two furnace temperature control devices 1f61 and 1f62 each have a furnace temperature set value θv. By giving θζy, it is possible to create a furnace temperature gradient in the furnace width direction.

しかして、炉内温度計51及び52の直下にあるスラブ
1上の位置をスラブ先端部よりxl及びx2とし、スラ
ブ上位置x1におけるスラブ上表面温度をθl11、同
位置におけるスラブ厚さ方向の平均温度(以後、単に平
均温度とは厚さ方向の平均温度街いう)をθ98、スラ
ブ上位置x2におけるスラブ上表面温度を06□、同位
置における平均温度をθ7□とする。
Therefore, the positions on the slab 1 directly below the furnace thermometers 51 and 52 are defined as xl and x2 from the tip of the slab, and the slab upper surface temperature at the slab upper position x1 is θl11, the average in the thickness direction of the slab at the same position. The temperature (hereinafter, average temperature is simply referred to as the average temperature in the thickness direction) is θ98, the slab upper surface temperature at position x2 on the slab is 06□, and the average temperature at the same position is θ7□.

スラブ長さ方向の温度勾配は、スラブ上位置x1におけ
る平均温度θM1と位置ス2における平均温度θM2を
結ぶスラブ長さ方向の勾配である。
The temperature gradient in the slab length direction is a gradient in the slab length direction that connects the average temperature θM1 at the position x1 on the slab and the average temperature θM2 at the position S2.

従って、スラブ長さ方向の温度勾配は、スラブ上位置X
、における平均温度θヶ□と位置x2における平均温度
θ4□の差(以後、スラブ長さ方向の温度差という)Δ
θヶできまる。すなわち、スラブ長さ方向の温度勾配を
所定の値に確保することは、このスラブ長さ方向の温度
差Δθヶを所定の値に確保することである。
Therefore, the temperature gradient in the slab length direction is
, the difference between the average temperature θ□ at position x2 and the average temperature θ4□ at position x2 (hereinafter referred to as the temperature difference in the slab length direction) Δ
Determined by θ. That is, ensuring the temperature gradient in the slab length direction at a predetermined value means ensuring that the temperature difference Δθ in the slab length direction is at a predetermined value.

本発明は、このスラブ長さ方向の温度差Δθ、を所定の
値に保つ炉温設定値、、RE!F及び、、TLEFを求
gl      g2 めることKある。
The present invention provides a furnace temperature setting value that maintains this temperature difference Δθ in the longitudinal direction of the slab at a predetermined value, RE! It is necessary to find gl g2 and F and TLEF.

ここで、時間の経過にともなうスラブ温度の変化が第4
図に示す場合を考える。
Here, the change in slab temperature over time is the fourth
Consider the case shown in the figure.

現在時刻t。におけるスラブ上位置x1での表面温度を
08、(to)、平均温度をθMl(tO)とし、スラ
ブ上位置Xにおける表面温度をθ52(to)、平均源
度を0M2(tO)とする。
Current time t. The surface temperature at position x1 on the slab is 08, (to), the average temperature is θMl (tO), the surface temperature at position X on the slab is θ52 (to), and the average source power is 0M2 (tO).

一定時間Δを後に、スラブ長さ方向の温度差Δθヶを所
定の温度差Δθヤ にし、スラブ上位置x2における平
均温度θM2(tO+Δt)を目標温度θ[P″に確保
する場合を考える。すなわち、スラブ上位置x2におけ
る平均温度θM2をスラブの温度の代表点とする。
Consider the case where after a certain period of time Δ, the temperature difference Δθ in the slab length direction is reduced to a predetermined temperature difference Δθ, and the average temperature θM2 (tO+Δt) at the slab top position x2 is maintained at the target temperature θ[P″. , the average temperature θM2 at the position x2 on the slab is taken as a representative point of the temperature of the slab.

ところで、所定のスラブ長さ方向の温度差KF Δθ  は加熱炉抽出後の工程における温度降下を]’
tEF 考慮して与えられるものであり、目標温度θヶは抽出時
刻に抽出目標温度が確保され、省エネルギーを考慮した
スラブ温度昇温パターンより、炉内スラブ位置毎に与え
られるものであ名。
By the way, the temperature difference KF Δθ in the predetermined slab length direction is the temperature drop in the process after extraction in the heating furnace]'
The target temperature θ is given in consideration of tEF, and the target temperature θ is given for each slab position in the furnace based on the slab temperature heating pattern that ensures the extraction target temperature at the extraction time and takes energy saving into consideration.

時間(to+Δt)における平均温度θMl(’O+Δ
t)は、炉温θ、、からの伝熱tq□1および炉温θ3
゜からの伝熱lq2□を受けて θMl(tO+Δ1)=θMl (tO) +−(q1
1+q;g)・山Cρh ・・・・・・・・・(1式) ql、=・Φ1□(θ7□2−θslk”O”・・・・
・・・・・(2式)q2.=σΦ21(6g2k ”e
lk(tO) l ”・・・・・・・(3式)%式% σはステファンボルツマン定数、 Cは比熱、 ρけ密度、 hは厚み、 Φ1□は炉温θ2、からスラブ上位置X、への実験等に
より求められる熱吸収率、 Φ2、は炉温θ3゜からスラブ上位ft’l、 X 2
への実験等により求められる熱吸収率、 kは絶対温度を示す添字、 である。
Average temperature θMl('O+Δt) at time (to+Δt)
t) is the heat transfer from the furnace temperature θ, , tq□1 and the furnace temperature θ3
Upon receiving heat transfer lq2□ from °, θMl (tO+Δ1) = θMl (tO) +-(q1
1+q;g)・Mountain Cρh・・・・・・・・・(1 formula) ql,=・Φ1□(θ7□2−θslk”O”・・・・
...(2 formulas) q2. =σΦ21(6g2k ”e
lk(tO) l ”・・・・・・(3 formula)% formula% σ is Stefan Boltzmann constant, C is specific heat, ρ density, h is thickness, Φ1□ is furnace temperature θ2, and position on the slab from X , the heat absorption rate, Φ2, determined by experiments etc. from the furnace temperature θ3° to the upper slab ft'l, X 2
The heat absorption rate is determined by experiments, etc., where k is the subscript indicating the absolute temperature.

このとき、表面温度θsl (tO+ハ)は、本発明に
おいて解明された表面温度とスラブ内部平均温度を関係
づけその平均温度を制御するための熱伝導角子右目でよ
り θsl”Q+Δ1)=θMl(’O+Δt)+に、 (
q、、”q21)・・・・・・・・・(4式) ここに、klはスラブ1により決る定数である。
At this time, the surface temperature θsl (tO+c) can be calculated from the right eye of the heat conduction angle, which relates the surface temperature and the average internal temperature of the slab and controls the average temperature, which has been elucidated in the present invention. O+Δt)+, (
q,,"q21) (Formula 4) Here, kl is a constant determined by slab 1.

と表わすことができる。It can be expressed as

全く同様に、スラブ上位置X2については、・・・・・
・・・・(5式) q12=σΦ12(θglk−08□k(1o))=−
・・・−(6式)q22=σΦ2□(0g2に一θ52
k(tO))・・・・・・・・・(7式)ただし、 Φ1゜は炉温θg1からスラブ上位置X2−・の熱吸収
率、 Φ2□は炉温θg2からスラブ」二位置X2への熱吸収
率、 である。
In exactly the same way, regarding position X2 on the slab...
...(5 formula) q12=σΦ12(θglk-08□k(1o))=-
...-(Equation 6) q22=σΦ2□ (0g2 - θ52
k (tO)) ...... (Formula 7) However, Φ1゜ is the heat absorption rate from the furnace temperature θg1 to the slab top position X2-・, Φ2□ is the slab top position X2 from the furnace temperature θg2 The heat absorption rate to is .

まだ、 θ52(tO+Δ1)=θM2(’O+Δt)十に1(
q1□+q2□)・・・・・・・・・(8式) ここで、時刻(to+Δt)における、所定のスラブ長
さ方向の温度差をΔθや とすればθMl(tO+Δ1
)=θM2(tO+Δt)+ΔθRFF・・−(9式)
の関係にあり、時刻(to十Δt)に目標温度θヶに加
熱するためスラブ上位置X2における平均温度θM2(
’O+Δt)は RF′F      ・・・・・・・・・(10式)%
式%) とおく。このとき(9式)と(10式)より、スラブ−
上位置X における平均温度θMl (’O+Δt)は
θ (t+Δ1)=θ +Δθ   ・・・・・・・・
・(11式)%式% となる。従って(2式)、(3式)及び(14式)を(
1式)に代入したものと、(6式)、(7式)及び(1
0式)を(5式)に代入したものを連立して、炉温θ 
と炉温θ3゜について解くと、l ・・・・・・・・・(12式) ・・・・・・・・・(13式) となる。
Still, θ52 (tO + Δ1) = θM2 ('O + Δt) 1/10 (
q1□+q2□)・・・・・・・・・(Equation 8) Here, if the temperature difference in the predetermined slab length direction at time (to+Δt) is Δθ, then θMl(tO+Δ1
)=θM2(tO+Δt)+ΔθRFF...-(Equation 9)
The average temperature θM2(
'O+Δt) is RF'F ・・・・・・・・・(Formula 10)%
Formula %). At this time, from (Equation 9) and (Equation 10), the slab -
The average temperature θMl ('O+Δt) at the upper position X is θ (t+Δ1)=θ +Δθ ・・・・・・・・・
・(Formula 11)% Formula %. Therefore, (Equation 2), (Equation 3), and (Equation 14) are (
(1), (6), (7), and (1)
By substituting (Equation 0) into (Equation 5), we can calculate the furnace temperature θ
Solving for the furnace temperature θ3°, we get l...(Equation 12)...(Equation 13).

すなわち、現在時刻t。におけるスラブ上位置x1の平
均温度θや□(1o)と表面温度Osl”O)、位置x
2の平均温度θM2(to)と表面温度θ8□(1o)
及び所定のスラブ長さ方向の温度差Δθ  と目標温度
θ2”より、(12式)と(13式)で炉温θg1と炉
温θg2を求め、各々、炉幅jテ向の炉温制御装貿Fi
l 、 fi2の設定値をθ  、θ  とすれば、現
在時刻’Qよりgl     g2 Δを時間で所定のスラブ長さ方向温度勾配をつけること
ができ、かつ、スラブ温度を目標温度に確保することが
できる。
That is, the current time t. The average temperature θ and □(1o) at the position x1 on the slab and the surface temperature Osl”O) at the position x
2 average temperature θM2 (to) and surface temperature θ8□ (1o)
From the temperature difference Δθ in the longitudinal direction of the slab and the target temperature θ2'', the furnace temperature θg1 and the furnace temperature θg2 are determined using equations (12) and (13), respectively, and the furnace temperature control system for the furnace width j direction is calculated. Trade Fi
If the set values of l and fi2 are θ and θ, it is possible to create a predetermined temperature gradient in the longitudinal direction of the slab in time gl g2 Δ from the current time 'Q, and to ensure that the slab temperature is at the target temperature. I can do it.

以上は、スラブ1本の長さ方向に温度勾配をつける方法
である。
The above is a method of creating a temperature gradient in the length direction of one slab.

連続加熱炉では、スラブ1本の長さが短い場合には炉幅
方向に2本のスラブを装入するいわゆる2列装入が行な
われる。この2列装入の場合に前述の炉幅方向の炉内温
度勾配の考え方を利用すれば、炉幅方向に炉温勾配をつ
けることによって、2木のスラブを独立に目標温度に加
熱することが可能である。
In a continuous heating furnace, when the length of one slab is short, so-called two-row charging is performed in which two slabs are charged in the width direction of the furnace. In the case of this double row charging, if we use the concept of temperature gradient inside the furnace in the width direction of the furnace, we can independently heat the two wooden slabs to the target temperature by creating a furnace temperature gradient in the width direction of the furnace. is possible.

μ下、第5図を用いてこの本発明の他の実施例を具体的
に説明する。
Another embodiment of the present invention will be specifically described below with reference to FIG.

炉幅方向に2本のスラブS 1+ 82が装入されてい
る場合を考え、スラブS1&一定時間Δt1で目標温度
θ  に加熱し、スラブS を一定時間Ml     
                2Δt2で目標温度
θM2に加熱するための炉幅方向の炉温を求めることに
する。
Considering the case where two slabs S 1+ 82 are charged in the width direction of the furnace, the slab S1 is heated to the target temperature θ for a certain period of time Δt1, and the slab S is heated to the target temperature θ for a certain period of time Δt1.
The furnace temperature in the furnace width direction for heating to the target temperature θM2 at 2Δt2 is determined.

!Pず、現在時刻t。におけるスラブS1の平均温度を
θM+(’O)、表面温度をθ8. (1o)とし、ス
ラブS2の平均温度をθ4□(1o)、表面温度θ8゜
(1o)とする。
! P, current time t. The average temperature of slab S1 at θM+('O) and the surface temperature at θ8. (1o), the average temperature of the slab S2 is θ4□ (1o), and the surface temperature is θ8° (1o).

い寸、スラブS1を311時間で、炉温θ8.にて加熱
し2だとすると、時刻(1o+Δ竜、)におけるスラブ
S、の平均温度は、(2式)と(3式)の伝熱険Qll
l 921を用いて ・・・・・・・・・(14式) ただし、 clはスラブS、の比熱、 ρ1はスラブS1の密度、 hlはスラブS1の厚み、 となる。
Slab S1 was heated for 311 hours at a furnace temperature of θ8. 2, the average temperature of the slab S at time (1o + Δ) is the heat transfer risk Qll of (Equation 2) and (Equation 3).
Using l921 (Formula 14), cl is the specific heat of the slab S, ρ1 is the density of the slab S1, and hl is the thickness of the slab S1.

同様に、スラブS2を42時間で、炉温θ3□にて加熱
したとすると時刻(1o+Δ12)におけるスラブS2
の平均温度は(6式)と(7式)の伝熱惜q1゜・q2
゜を用いて ・・・・・・・・・(15式) ただし、 C2はスラブS2の比熱、 ρ はスラブS2の密度、 h2はスラブS2の厚み、 となる。
Similarly, if slab S2 is heated at furnace temperature θ3□ for 42 hours, slab S2 at time (1o+Δ12)
The average temperature of (Equation 6) and (Equation 7) is the heat transfer difference q1゜・q2
Using °... (Formula 15) Where, C2 is the specific heat of slab S2, ρ is the density of slab S2, and h2 is the thickness of slab S2.

従って、一定時間Δt1でスラブS1を目標温度EF θ  に焼くために I RFF    ・・・・・・・・・(16式)%式%) 同様に、一定時間ハ、でスラブS2を目標温度EF θ  に焼くために 2 旺F   ・・・・・・・・・ (17式)%式%) ここで(2式)、(3式)及び(16式)を(14式)
に代入したものと、(6式)、(7式)及び(17式)
を(15式)に代入したものを連立して、炉?n Og
 I+03□について解くことができる。
Therefore, in order to bake the slab S1 to the target temperature EF θ for a certain period of time Δt1, I RFF . In order to bake to θ, 2 O F ...... (17 formula) % formula %) Here, (2 formula), (3 formula) and (16 formula) are converted to (14 formula)
and (Equation 6), (Equation 7) and (Equation 17)
Substitute into (Equation 15) and create a furnace? n Og
We can solve for I+03□.

すなわち、第5図でスラブS を411時間で目l 槽温度θ4□ に加熱し、かつ、スラブS2を712時
間で目標温度θ  に加熱するには、上述の手段2 で決った炉温θg1と炉温θ2□を各々炉温制御装置6
1と62の炉温設定値01F′50REF、!ニジで与
えてやgl     g2 ればよい。
That is, in FIG. 5, in order to heat the slab S to the target temperature θ4 in 411 hours and to heat the slab S2 to the target temperature θ in 712 hours, the furnace temperature θg1 determined by means 2 described above must be The furnace temperature θ2□ is controlled by the furnace temperature control device 6.
1 and 62 furnace temperature set value 01F'50REF,! Just give it to me gl g2.

これらは、スラブ上の炉温を独立に設定するととにより
始めて可能となるもので、2列装入時のスラブ温度を各
々独立に確保できる点では極めて有効な方法である。
These methods are only possible by setting the furnace temperatures on the slabs independently, and are extremely effective methods in that they can independently ensure the temperature of each slab during two-row charging.

第6図は本発明の一実施例の構成を示すブロック図であ
る。
FIG. 6 is a block diagram showing the configuration of an embodiment of the present invention.

Gは本発明の起動信号でスラブ1を加熱炉から抽出する
とき生起する抽出信号を使用しても一定周期信号でもよ
い。信号Gの起動がかかるとまずスラブ温度演算装置7
で現在時刻t。における対象スラブ1のスラブ上位置X
 とx2の平均温度θMl(’O)、θhtz(t(1
)及び表面温度θsl”O”θs2”0)を計算する。
G is the activation signal of the present invention, and may be an extraction signal generated when the slab 1 is extracted from the heating furnace, or may be a constant periodic signal. When signal G is activated, first the slab temperature calculation device 7
The current time is t. Slab position X of target slab 1 in
and x2 average temperature θMl('O), θhtz(t(1
) and surface temperature θsl''O''θs2''0).

このスラブ平均温度と表面温度のit Wは(1式)〜
(8式)の関係を用いて計v4[2てもよいt2、周知
の熱伝導方稈式を引算機による数値言1■可能な形にし
て時々刻々計算してもよい。
The slab average temperature and surface temperature it W are (equation 1) ~
Using the relationship of (8), the total v4[2 may be t2, and the well-known heat conduction method formula may be converted into a form that can be expressed numerically using a subtraction machine and calculated moment by moment.

次に、スラブ温度演算装置7の出力つまりスラブに1位
ff4’、 x tにおける平均温度θMl(’O)1
 表面温度θ (1)と、位置X における平均温度θ
M2(、。)。
Next, the output of the slab temperature calculation device 7, that is, the average temperature at the slab ff4', x t, θMl('O)1
Surface temperature θ (1) and average temperature θ at position
M2(,.).

sl    O2 表面温度θ52(tO’と、スラブ温jKf−昇温パタ
ーンより決る目標温度θ  と、抽出時に必要ガスラブ
長さ方向の温度勾配から決る対象スラブ炉内位置にはけ
る所定のスラブ長さ方向の温度差Δθ  とから、炉幅
方向に設定すべき炉温θgI 10g2を(12式)、
(13式)を用いて設定炉温演算装置8で計算する。こ
の設定炉温演算装置8の出力が、現在時刻よりΔを時間
の間に設定すべき炉温θ  。
sl O2 surface temperature θ52 (tO'), target temperature θ determined from the slab temperature jKf - temperature increase pattern, and a predetermined slab length direction to be applied to the target slab furnace position determined from the temperature gradient in the length direction of the gas slab required during extraction. From the temperature difference Δθ, the furnace temperature θgI 10g2 to be set in the furnace width direction is determined by (formula 12)
Calculation is performed by the set furnace temperature calculation device 8 using (Equation 13). The output of the set furnace temperature calculation device 8 is the furnace temperature θ to be set for a period of time Δ from the current time.

1 になるよう炉内温度計51及び炉温制御装置filによ
りバーナ2Iが調節される。同様にスラブ上位置x2の
直上炉温がθ  になるよう炉内温度側52及び2 炉温制御装置62によりバーナ22が調節される。
The burner 2I is adjusted by the furnace temperature gauge 51 and the furnace temperature control device fil so that the temperature becomes 1. Similarly, the burner 22 is adjusted by the furnace temperature side 52 and the furnace temperature controller 62 so that the furnace temperature immediately above the slab position x2 becomes θ.

し発明の効’V”s ] かくして、本発明によれば、スラブを加熱炉から抽出時
に、後工程より要求されるスラブ長さ方向の温度勾配を
つけることができる。しかも、計灼機による時々刻々の
スラブ温度の計算を行なっているので、対象スラブの厚
み変化や指定されたスラブ長さ方向の温度勾配の値の変
化に対して、極めて精度よく炉温設定が可能である。こ
のため製品の品質9寸法精度の向上が期待できる。
[Effects of the Invention] Thus, according to the present invention, when the slab is extracted from the heating furnace, it is possible to create a temperature gradient in the longitudinal direction of the slab, which is required in the subsequent process. Since the slab temperature is calculated moment by moment, it is possible to set the furnace temperature with extreme precision in response to changes in the thickness of the target slab or changes in the temperature gradient value in the specified slab length direction. You can expect an improvement in product quality 9 dimensional accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続スラブ加熱炉の全体を表わす概要図、第2
図は加熱炉のある帯の平面図、第3図はそのA−A’に
ついての断面図における本発明の一実施例の説明図、第
4図はその各変数の温度一時間特性図、第5図は本発明
の他の実施例の説明図1.¥−6図は本発明の一実施例
の構成を示すブロック図である。 1 + 81+ 82山スラブ 2、ハ、2?・・・バーナ 3・・・装入口 4・・・抽出口 5.5]、52・・・炉内温度計 6、、61.62・・・炉温制御装置 7・・・スラブ温度演痒装置 8・・・設定炉温演算装置 9.91.92・・・減算器 10・・・炉壁。 出願人代理人   猪  股   清 箪2図 市4図 開開− 壓6図
Figure 1 is a schematic diagram showing the entire continuous slab heating furnace, Figure 2
Figure 3 is a plan view of a zone in which a heating furnace is located, Figure 3 is an explanatory diagram of an embodiment of the present invention in a cross-sectional view taken along line A-A', Figure 4 is a temperature one-hour characteristic diagram of each variable, and Figure 5 is an explanatory diagram 1 of another embodiment of the present invention. Figure 6 is a block diagram showing the configuration of an embodiment of the present invention. 1 + 81 + 82 mountain slab 2, ha, 2? ...Burner 3...Charging port 4...Extraction port 5.5], 52...Furnace thermometer 6, 61.62...Furnace temperature control device 7...Slab temperature control Device 8... Setting furnace temperature calculation device 9.91.92... Subtractor 10... Furnace wall. Applicant's agent Kiyotan Inomata 2 figures city 4 figures opening - 16 figures

Claims (1)

【特許請求の範囲】[Claims] 炉幅方向に温度勾配をつけることが可能な炉温制御装置
と炉幅方向の炉温を検出する温度計を備え、現在時刻よ
り一定時間後に被加熱材料の温度を目標値に確保し、被
加熱材料の炉幅方向である長さ方向の温度勾配を所定の
値にする炉幅方向の炉温を設定する加熱炉の炉温設定方
法において、現在時刻における被加熱材料の温度と、一
定時間後の被加熱材料の目標温度と、所定の被加熱材料
長さ方向の温度勾配から、前記炉幅方向の炉温を%出し
設定するととを特徴とする加熱炉の炉温設定方法。
Equipped with a furnace temperature control device that can create a temperature gradient in the furnace width direction and a thermometer that detects the furnace temperature in the furnace width direction, the temperature of the heated material is maintained at the target value after a certain period of time from the current time. In a furnace temperature setting method for a heating furnace that sets the furnace temperature in the furnace width direction to make the temperature gradient in the length direction, which is the furnace width direction, of the heating material to a predetermined value, A furnace temperature setting method for a heating furnace, characterized in that the furnace temperature in the furnace width direction is set by calculating a percentage from a later target temperature of the material to be heated and a predetermined temperature gradient in the length direction of the material to be heated.
JP11885782A 1982-07-08 1982-07-08 Method for setting temperature of heating furnace Granted JPS599125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11885782A JPS599125A (en) 1982-07-08 1982-07-08 Method for setting temperature of heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11885782A JPS599125A (en) 1982-07-08 1982-07-08 Method for setting temperature of heating furnace

Publications (2)

Publication Number Publication Date
JPS599125A true JPS599125A (en) 1984-01-18
JPH0360887B2 JPH0360887B2 (en) 1991-09-18

Family

ID=14746851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11885782A Granted JPS599125A (en) 1982-07-08 1982-07-08 Method for setting temperature of heating furnace

Country Status (1)

Country Link
JP (1) JPS599125A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254024A (en) * 1985-08-31 1987-03-09 Nippon Steel Corp Method for controlling automatic combustion in heating furnace
JP2012237029A (en) * 2011-05-10 2012-12-06 Nippon Steel Corp Method for heating cast slab
JP2012237028A (en) * 2011-05-10 2012-12-06 Nippon Steel Corp Method for heating cast slab

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254024A (en) * 1985-08-31 1987-03-09 Nippon Steel Corp Method for controlling automatic combustion in heating furnace
JPH0469208B2 (en) * 1985-08-31 1992-11-05 Nippon Steel Corp
JP2012237029A (en) * 2011-05-10 2012-12-06 Nippon Steel Corp Method for heating cast slab
JP2012237028A (en) * 2011-05-10 2012-12-06 Nippon Steel Corp Method for heating cast slab

Also Published As

Publication number Publication date
JPH0360887B2 (en) 1991-09-18

Similar Documents

Publication Publication Date Title
CN103225017B (en) Rod and wire billet heating furnace model control method and apparatus
US4606529A (en) Furnace controls
CN100498622C (en) Temperature control method, temperature controller, heat treatment device and method
JPS599125A (en) Method for setting temperature of heating furnace
JP2010001548A (en) Method for deciding arrangement interval of steel in heating furnace
JPS6254024A (en) Method for controlling automatic combustion in heating furnace
JP3072680B2 (en) Heating furnace temperature control method and apparatus
JPS6411691B2 (en)
JP2023182245A (en) Heat treatment apparatus and heat treatment apparatus control program
JPS6188906A (en) Grinding method of roll
JP2005105291A (en) Steel manufacturing method
JPS6017989B2 (en) Electric heat treatment furnace
JPH0217609B2 (en)
JPS6345454B2 (en)
JP2007222922A (en) Linear heating method and linear heating control system
Chen et al. Numerical simulation and experiment research on temperature field of steel slab in walking beam furnace
JPS6137328B2 (en)
JPS5941489B2 (en) How to set the furnace temperature correction amount for a multi-zone continuous heating furnace
JP2002361701A (en) Method and apparatus for controlling temperature of injection molding machine
JP4549798B2 (en) Mold press molding apparatus and optical element manufacturing method
Epishin et al. Improvement of hot-rolling mill heating furnace efficiency from industrial experiment results
JP2023125248A (en) Correction device and correction method for slab temperature model, furnace temperature control device and furnace temperature control method for heating furnace and manufacturing method of steel plate
JPS62174325A (en) Method for controlling temperature of heating furnace
JPH04276010A (en) Method for conditioning forging
JPS61199020A (en) Method for controlling continuous heating furnace