JPH0576145B2 - - Google Patents
Info
- Publication number
- JPH0576145B2 JPH0576145B2 JP62011976A JP1197687A JPH0576145B2 JP H0576145 B2 JPH0576145 B2 JP H0576145B2 JP 62011976 A JP62011976 A JP 62011976A JP 1197687 A JP1197687 A JP 1197687A JP H0576145 B2 JPH0576145 B2 JP H0576145B2
- Authority
- JP
- Japan
- Prior art keywords
- steel material
- temperature
- heating
- heating furnace
- induction heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010438 heat treatment Methods 0.000 claims description 143
- 229910000831 Steel Inorganic materials 0.000 claims description 106
- 239000010959 steel Substances 0.000 claims description 106
- 239000000463 material Substances 0.000 claims description 102
- 230000006698 induction Effects 0.000 claims description 56
- 238000002485 combustion reaction Methods 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 13
- 238000002791 soaking Methods 0.000 claims description 4
- 238000009529 body temperature measurement Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- General Induction Heating (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、誘導加熱炉において鋼材を長手方向
に均一に加熱する加熱制御方法に関するもので、
さらに詳言すれば、燃焼加熱炉で加熱された赤熱
鋼材をさらに高温にかつ均一に加熱する誘導加熱
制御方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heating control method for uniformly heating steel materials in the longitudinal direction in an induction heating furnace.
More specifically, the present invention relates to an induction heating control method for uniformly heating red-hot steel heated in a combustion furnace to a higher temperature.
誘導加熱炉内で鋼材をバツチ的に加熱する場合
の問題としては、次の二点がある。
There are two problems when batch heating steel materials in an induction heating furnace.
その一としては、誘導加熱炉への投入電力をい
くらにするかであり、その二としては、誘導加熱
炉の加熱電力周波数をいくらにするかである。 One of these is how much power should be input to the induction heating furnace, and the second is how much heating power frequency should be set for the induction heating furnace.
この誘導加熱炉の投入加熱電力の値、およびこ
の加熱電力の周波数の値により、鋼材の加熱温度
分布、加熱時間が決定され、加熱材料である鋼材
の品質確保、加熱効率、その他に影響を与える。
従つて、処理しようとする鋼材の形状、加熱工程
に対して最適な値を選定する必要がある。 The value of the heating power input to the induction heating furnace and the frequency of this heating power determine the heating temperature distribution and heating time of the steel material, which affect the quality assurance of the steel material, heating efficiency, etc. .
Therefore, it is necessary to select the optimum value for the shape of the steel material to be treated and the heating process.
特に、燃焼加熱炉で加熱し、さらに誘導加熱炉
でさらに高温にかつ均一に加熱する加熱プロセス
においては、鋼材の誘導加熱炉への装入時に、燃
焼加熱炉から誘導加熱炉までの搬送時における自
然放冷のために、この鋼材には長手方向の温度分
布が生じてしまうので、この温度分布の生じた鋼
材全体が均一な温度となるように加熱する必要が
ある。 In particular, in the heating process where steel is heated in a combustion heating furnace and then heated evenly to a higher temperature in an induction heating furnace, when the steel material is charged into the induction heating furnace, and when it is transported from the combustion heating furnace to the induction heating furnace, Due to natural cooling, a temperature distribution occurs in this steel material in the longitudinal direction, so it is necessary to heat the entire steel material in which this temperature distribution occurs to a uniform temperature.
第5図に、この燃焼加熱炉で加熱した鋼材を引
続き誘導加熱炉で加熱する加熱プロセスの概要を
示す。燃焼加熱炉2で或る温度まで均一に加熱さ
れた鋼材1は、この燃焼加熱炉2から搬出された
後に直ちに誘導コイル4を有する誘導加熱炉3に
装入されてさらに高温に加熱されるのであるが、
燃焼加熱炉2から誘導加熱炉3に搬送する間に自
然放冷されることによつて、中央部1bよりも端
部1aの温度の方が低下する。この鋼材1の自然
放冷の状態を、第2図に示した鋼材1の長手方向
xに沿つた中央部分である測温部分1Aに沿つて
測温すると、得られる温度分布Θは第3図のごと
くとなる。 FIG. 5 shows an outline of a heating process in which the steel material heated in this combustion heating furnace is subsequently heated in an induction heating furnace. The steel material 1 that has been uniformly heated to a certain temperature in the combustion heating furnace 2 is immediately charged into the induction heating furnace 3 having an induction coil 4 after being carried out from the combustion heating furnace 2, and is further heated to a high temperature. Yes, but
By being allowed to cool naturally while being transported from the combustion heating furnace 2 to the induction heating furnace 3, the temperature of the end portions 1a is lower than that of the center portion 1b. When the temperature of the steel material 1 is measured while the steel material 1 is allowed to cool naturally along the temperature measuring portion 1A, which is the central portion along the longitudinal direction x of the steel material 1 shown in FIG. 2, the obtained temperature distribution Θ is shown in FIG. 3. It becomes as follows.
この第3図から明らかなごとく、鋼材1の温度
分布Θは、端部1aの部分で温度勾配が生じてい
るが、中央部1bではほぼ均一な温度となつてお
り、端部1aはその鋼材端AおよびBの温度が最
も低くなつており、中央部1bに近づくに従つて
温度が上昇している。 As is clear from FIG. 3, the temperature distribution Θ of the steel material 1 has a temperature gradient at the end portion 1a, but the temperature is almost uniform in the center portion 1b; The temperatures at the ends A and B are the lowest, and as they approach the center portion 1b, the temperature increases.
このように、燃焼加熱炉2から誘導加熱炉3に
供給される鋼材1には、ほぼ一定の形態で温度分
布Θが生じている、すなわち放冷時間の長さに応
じて、時間大の時は温度差が大、時間小の時は温
度差が小となる一定の形態の温度分布Θが生じて
いるので、誘導加熱炉3では、この温度分布Θを
なくして鋼材1全体を均一に加熱昇温させる必要
がある。このため、誘導加熱炉3における鋼材1
の加熱制御形態としては、鋼材1の中央部1bよ
りも端部1aに対する加熱が大きくなるように、
加熱電力の周波数を高い値に選定する手段が採ら
れている。 In this way, the steel material 1 supplied from the combustion heating furnace 2 to the induction heating furnace 3 has a temperature distribution Θ in an almost constant form. Since there is a certain temperature distribution Θ where the temperature difference is large and the temperature difference is small when the time is short, the induction heating furnace 3 eliminates this temperature distribution Θ and heats the entire steel material 1 uniformly. It is necessary to raise the temperature. For this reason, the steel material 1 in the induction heating furnace 3
The heating control mode is such that the end portion 1a of the steel material 1 is heated more than the center portion 1b.
Measures are taken to select a high frequency of heating power.
この加熱制御手段の代表的な従来技術として特
願昭60−240420号がある。この特願昭60−240420
号に示された技術は、均熱期において加熱電力の
周波数を高い値に変更するものであつて、第6図
に示すように、鋼材1の鋼材端1Aの箇所1Lと
中央部1bの表面の箇所1Hと中央部1bの肉厚
中央部分の箇所1Cとを測温し、箇所1Hの温度
ΘHが予定している鋼材1の加熱最高温度に達し
たならば、第7図に示すごとく、加熱電力Wを低
下させ、この温度ΘHが一定レベルまで低下した
時点で加熱電力Wを再度低下させると共に、加熱
電力Wの周波数を高くして鋼材1の端部1aに対
する加熱力を鋼材1の中央部1bに対する加熱力
よりも増大させる。この端部1aに対する加熱力
の増大および鋼材1全体に対する加熱電力Wの減
少による中央部1bの温度低下は、鋼材1の中央
部1bの肉厚中央の箇所1Cの温度ΘCと一致す
るように制御され、温度ΘHおよびΘLを所定の
値となつた温度ΘCと等しくすることにより、鋼
材1全体の目標温度への均一加熱が達成されるの
である。 Japanese Patent Application No. 60-240420 is a typical conventional technique for this heating control means. This patent application 1986-240420
The technology shown in the No. 1 changes the frequency of heating power to a high value during the soaking period, and as shown in FIG. Measure temperatures at point 1H and point 1C in the thick central part of central portion 1b, and when temperature ΘH at point 1H reaches the planned maximum heating temperature of steel material 1, as shown in Fig. 7, The heating power W is decreased, and when the temperature ΘH has decreased to a certain level, the heating power W is decreased again, and the frequency of the heating power W is increased to reduce the heating power to the end 1a of the steel material 1 to the center of the steel material 1. The heating power is increased more than the heating power for portion 1b. The temperature drop in the central portion 1b due to the increase in the heating power for the end portion 1a and the decrease in the heating power W for the entire steel material 1 is controlled to match the temperature ΘC of the central portion 1C of the wall thickness of the central portion 1b of the steel material 1. By making the temperatures ΘH and ΘL equal to the temperature ΘC which has reached a predetermined value, uniform heating of the entire steel material 1 to the target temperature is achieved.
この均一加熱手法は、誘導加熱炉3による鋼材
1に対する加熱を、初期には加熱電力Wの周波数
をできるだけ低周波とすることによつて、鋼材1
内部の温度上昇を達成し、均熱期には加熱電力W
の周波数を高くして鋼材1の中央部1bよりも端
部1aに対する加熱効率を高くしている。 This uniform heating method heats the steel material 1 using the induction heating furnace 3 by initially setting the frequency of the heating power W as low as possible.
Achieves internal temperature rise and reduces heating power W during soaking period
The frequency is increased to make the heating efficiency for the end portion 1a of the steel material 1 higher than for the center portion 1b.
また、鋼材1の端部1aの温度降下がなけれ
ば、鋼材1の端部1aに対する熱補償を必要とし
ないので、特公昭52−47179号公報に示されてい
るように、鋼材1を燃焼加熱炉2から誘導加熱炉
3に搬送する時に、着脱自在な断熱材製のカバー
7を鋼材1の端部に装着(第8図参照)する手段
が考えられている。 Furthermore, if there is no temperature drop at the end 1a of the steel material 1, there is no need for heat compensation for the end 1a of the steel material 1, so as shown in Japanese Patent Publication No. 52-47179, the steel material 1 is heated by combustion. A method has been considered in which a removable cover 7 made of a heat insulating material is attached to the end of the steel material 1 (see FIG. 8) when the steel material 1 is transported from the furnace 2 to the induction heating furnace 3.
したしながら、特願昭60−240420号に示された
手段は、鋼材1の端部1aの温度を上昇させる均
熱期における誘導加熱炉3の加熱電力が低いため
に、この加熱電力の周波数を高くしても端部1a
の昇熱は遅く、このため端部1aの温度回復に長
い時間が必要となつてしまう。特に、誘導加熱開
始時における端部1aの温度低下が著しい場合に
は、この端部1aの昇熱の遅れは顕著となる。
However, the means shown in Japanese Patent Application No. 60-240420 has a problem in that the heating power of the induction heating furnace 3 during the soaking period for increasing the temperature of the end portion 1a of the steel material 1 is low. Even if the end 1a
The heat rise is slow, and therefore a long time is required for the temperature of the end portion 1a to recover. Particularly, if the temperature of the end portion 1a decreases significantly at the start of induction heating, the delay in heating up the end portion 1a becomes significant.
また、特公昭52−47179号公報に示された手段
は、カバー7の鋼材1に対する着脱装置が複雑と
なり、鋼材1に対するカバー7の着脱のための新
たな作業工程が必要となる等のことから、実施の
可能性は極めて低い。 In addition, the means disclosed in Japanese Patent Publication No. 52-47179 requires a complicated device for attaching and detaching the cover 7 to the steel material 1, and requires a new work process for attaching and detaching the cover 7 to the steel material 1. , the possibility of implementation is extremely low.
本発明は、上記した従来例における欠点および
不満点を解消すべく創案されたもので、誘導加熱
炉における加熱電力の周波数の相違による鋼材に
対する加熱形態の相違を利用して、加熱力の強い
時期に鋼材の温度分布形態に応じて、加熱電力の
周波数を選択選定することにより、鋼材の端部に
対する加熱電力を鋼材の中央部に対する加熱電力
よりも大きくして、供給された鋼材全体を早期に
均一に加熱することをその技術的課題とする。 The present invention was devised to eliminate the drawbacks and dissatisfied points of the conventional examples described above, and utilizes the difference in the heating form for steel materials due to the difference in the frequency of heating power in an induction heating furnace. By selecting the frequency of the heating power according to the temperature distribution form of the steel material, the heating power for the edges of the steel material is greater than the heating power for the center of the steel material, and the entire supplied steel material can be heated quickly. The technical challenge is to achieve uniform heating.
以下、第1図ないし第4図を参照しながら本発
明による誘導加熱制御方法を説明する。
Hereinafter, the induction heating control method according to the present invention will be explained with reference to FIGS. 1 to 4.
本発明の手段は、
燃焼加熱炉2で加熱された鋼材1をさらに高温
かつ均一に誘導加熱炉3により加熱する技術に関
するものであること、
誘導加熱炉3の誘導コイル4に与えられる加熱
のための電力の周波数を高い周波数の所定値に選
定すること、
この加熱電力の周波数の選定は、誘導加熱炉2
に鋼材1が装入される時の鋼材1の長手方向に沿
つた温度分布に基づいて、鋼材1の中央部1bと
端部1aとの温度差を零とする値に選定されるこ
と、
この鋼材1の温度分布に基づいて選定された周
波数の加熱電力による鋼材1の加熱は、誘導加熱
炉3に与えられる加熱電力が大きい時期に行われ
ること、
にある。 The means of the present invention relates to a technique for heating the steel material 1 heated in the combustion heating furnace 2 at a higher temperature and uniformly in the induction heating furnace 3; and for heating given to the induction coil 4 of the induction heating furnace 3. The frequency of the electric power of the induction heating furnace 2 is selected to be a predetermined high frequency value.
Based on the temperature distribution along the longitudinal direction of the steel material 1 when the steel material 1 is charged, the value shall be selected to make the temperature difference between the center portion 1b and the end portion 1a of the steel material 1 zero; The heating of the steel material 1 with the heating power of the frequency selected based on the temperature distribution of the steel material 1 is performed at a time when the heating power given to the induction heating furnace 3 is large.
誘導加熱炉3の誘導コイル4に与えられる加熱
電力の周波数を選定するための基礎となる、鋼材
1の端部1aと中央部1bとの温度差は、この鋼
材1が誘導加熱炉3に装入された時の端部1aと
中央部1bの温度差を基準に選定されるのである
が、鋼材1が誘導加熱炉3に装入された時は、鋼
材1の端部1aの温度が最も低下している時期で
あるので、鋼材1の端部1aと中央部1bとの温
度差は最も大きい状態にある。 The temperature difference between the end portion 1a and the center portion 1b of the steel material 1, which is the basis for selecting the frequency of the heating power applied to the induction coil 4 of the induction heating furnace 3, is determined when the steel material 1 is installed in the induction heating furnace 3. The steel material 1 is selected based on the temperature difference between the end portion 1a and the center portion 1b when the steel material 1 is charged into the induction heating furnace 3, and the temperature at the end portion 1a of the steel material 1 is the highest. Since this is the period when the temperature is decreasing, the temperature difference between the end portion 1a and the center portion 1b of the steel material 1 is at its largest.
このため、本発明方法による鋼材1の加熱は、
鋼材1の中央部1bに対する加熱よりも端部1a
に対する加熱の方がはるかに強力となる。 For this reason, the heating of the steel material 1 by the method of the present invention is as follows:
The end portion 1a of the steel material 1 is heated more than the central portion 1b of the steel material 1.
heating is much more powerful.
また、誘導加熱炉3の加熱電力の周波数を上記
のごとく設定しての鋼材1の加熱は、誘導加熱炉
3に与えられる加熱電力が大きい時期に実施され
るものであるので、鋼材1の端部1aに対する加
熱程度はさらに強力なものとなり、このため本発
明方法の実施により誘導加熱炉3に供給された鋼
材1の端部1aは急速に高い温度まで加熱される
ことになる。 In addition, since the heating of the steel material 1 by setting the frequency of the heating power of the induction heating furnace 3 as described above is carried out at a time when the heating power given to the induction heating furnace 3 is large, the end of the steel material 1 is heated. The degree of heating of the portion 1a becomes even more intense, and therefore the end portion 1a of the steel material 1 fed to the induction heating furnace 3 is rapidly heated to a high temperature by carrying out the method of the present invention.
一般に、誘導加熱炉3においては、供給された
鋼材1を急速に所望する高い温度まで短時間で加
熱すべく加熱の初期に大電力が供給され、しかる
後供給電力を低下させて目的温度に均熱するので
あるから、本発明方法は、誘導加熱炉3による鋼
材1の加熱操作の初期に実施されることになる。 Generally, in the induction heating furnace 3, a large amount of electric power is supplied at the beginning of heating in order to rapidly heat the supplied steel material 1 to a desired high temperature in a short time, and then the supplied electric power is reduced to equalize the target temperature. Since the steel material 1 is heated, the method of the present invention is carried out at the beginning of the heating operation of the steel material 1 by the induction heating furnace 3.
この誘導加熱炉3における鋼材1装入時は、鋼
材1の全体温度が最も低く、かつ鋼材1の端部1
aと中央部1bとの温度差が最も大きい状態にあ
るので、鋼材1の端部1aに対する誘導加熱炉3
の加熱は極めて効率良く達成されることになり、
その昇温は短時間で達成できる。 When the steel material 1 is charged into the induction heating furnace 3, the overall temperature of the steel material 1 is the lowest, and the end portion 1 of the steel material 1 is the lowest.
Since the temperature difference between a and the central portion 1b is the largest, the induction heating furnace 3 for the end portion 1a of the steel material 1
heating will be achieved extremely efficiently,
This temperature increase can be achieved in a short time.
鋼材1の端部1aの所望温度までの昇温が達成
されたならば、以下、従来からの誘導加熱炉3に
おける加熱制御法に従つて、加熱電力の周波数お
よび加熱電力の値を制御すれば良い。 Once the temperature of the end portion 1a of the steel material 1 has been raised to the desired temperature, the frequency and value of the heating power are controlled in accordance with the conventional heating control method in the induction heating furnace 3. good.
〔実施例〕
第1図図示実施例の場合、誘導加熱炉3装入時
の鋼材1の温度分布Θ、すなわち鋼材1の長手方
向の温度差ΔΘを、鋼材1の燃焼加熱炉2から誘
導加熱炉3への搬送路6の誘導加熱炉3入口直前
に配置された放射温度計5で測定している。この
温度計5による鋼材1の温度測定は、第2図に示
すごとく、鋼材1の短手辺の中央の長手辺方向に
沿つた部分である測温部分1Aで行われるのが安
定した測温を得ることができる。[Example] In the case of the example shown in FIG. 1, the temperature distribution Θ of the steel material 1 when charging into the induction heating furnace 3, that is, the temperature difference ΔΘ in the longitudinal direction of the steel material 1, is determined by induction heating of the steel material 1 from the combustion heating furnace 2. The temperature is measured by a radiation thermometer 5 placed on the conveyance path 6 to the furnace 3 just before the entrance of the induction heating furnace 3 . As shown in FIG. 2, the temperature measurement of the steel material 1 by the thermometer 5 is carried out at the temperature measurement part 1A, which is the part along the longitudinal direction of the center of the short side of the steel material 1, for stable temperature measurement. can be obtained.
温度計5で測定した鋼材1の温度分布Θの例を
第3図に示す。この第3図において、測定開始点
である鋼材端Aおよび測定完了点である鋼材端B
が最も温度が低く、端部1aの温度は中央部1b
に近づくに従つて上昇していることが分かる。 An example of the temperature distribution Θ of the steel material 1 measured with the thermometer 5 is shown in FIG. In this Fig. 3, steel material end A is the measurement start point and steel material end B is the measurement completion point.
has the lowest temperature, and the temperature at the end 1a is the lowest at the center 1b.
It can be seen that the value increases as the value approaches .
温度差ΔΘは、鋼材1の厚みt、燃焼加熱炉2
から誘導加熱炉3までの搬送時間、その他により
変化するものであるが、第4図に示した、加熱時
間を一定に設定した状態での鋼材1の板厚別の温
度差ΔΘ対周波数の関係から、板厚t3で温度
差ΔΘの時は、誘導加熱炉3における加熱電力の
周波数は3Hzと決定することができる。この時の
加熱電力の周波数が3Hz以下であると、鋼材1の
端部1aの温度を充分に上昇させることができ
ず、反対に加熱電力の周波数が3Hz以上である
と、端部1aを焼き過ぎてしまい、場合によつて
は溶解、その他を生じる結果となる。 The temperature difference ΔΘ is the thickness t of the steel material 1, the combustion heating furnace 2
Although it varies depending on the transportation time from the to the induction heating furnace 3 and other factors, from the relationship between the temperature difference ΔΘ of the steel material 1 depending on the plate thickness and the frequency when the heating time is set constant as shown in Fig. 4. , when the plate thickness is t3 and the temperature difference is ΔΘ, the frequency of the heating power in the induction heating furnace 3 can be determined to be 3 Hz. If the frequency of the heating power at this time is 3 Hz or less, the temperature of the end 1a of the steel material 1 cannot be raised sufficiently, and on the other hand, if the frequency of the heating power is 3 Hz or more, the end 1a will be fried. This may result in dissolution or other problems.
なお、鋼材1の長手方向に沿つた温度分布Θを
測定する手段としては、温度計5により直接得る
のではなく、この鋼材1の温度分布Θが、燃焼加
熱炉2から誘導加熱炉3までの鋼材1の搬送時間
と、鋼材1の燃焼加熱炉2からの搬送時における
温度と雰囲気温度との差とによつて板厚に対して
ほぼ一定したパターンで生じるものであるから、
搬送路6に鋼材1を検出する検出器を設けこの検
出器で検出した鋼材1の搬送時間を基準にして温
度分布Θおよび温度差ΔΘを算出しても良い。こ
の場合、燃焼加熱炉2搬出時の鋼材1温度および
雰囲気温度は既知の数値として与えられることは
云うまでもない。 Note that the means for measuring the temperature distribution Θ along the longitudinal direction of the steel material 1 is not to directly obtain it with the thermometer 5, but to measure the temperature distribution Θ of the steel material 1 from the combustion heating furnace 2 to the induction heating furnace 3. This occurs in an almost constant pattern with respect to the plate thickness due to the transportation time of the steel material 1 and the difference between the temperature during transportation of the steel material 1 from the combustion heating furnace 2 and the ambient temperature.
A detector for detecting the steel material 1 may be provided in the conveyance path 6, and the temperature distribution Θ and the temperature difference ΔΘ may be calculated based on the conveyance time of the steel material 1 detected by the detector. In this case, it goes without saying that the temperature of the steel material 1 and the ambient temperature at the time of conveyance from the combustion heating furnace 2 are given as known values.
第4図に示した加熱電力の周波数と温度差ΔΘ
との関係は、誘導加熱炉3特有の値として、オフ
ライン電磁伝熱解析により決定することが可能で
ある。 Heating power frequency and temperature difference ΔΘ shown in Figure 4
The relationship can be determined by off-line electromagnetic heat transfer analysis as a value specific to the induction heating furnace 3.
具体例
厚さ200mmの鋼材1を搬送時間10分で燃焼加熱
炉2から誘導加熱炉3に搬送した際における鋼材
1の温度差ΔΘは200℃であつた。この鋼材1を
加熱時間65分で均一に所定温度まで昇温させるに
は、前半加熱時間10分、前半加熱周波数350Hzと
すれば、後半加熱時間55分、後半加熱周波数200
Hzとなる。Specific Example When the steel material 1 with a thickness of 200 mm was transported from the combustion heating furnace 2 to the induction heating furnace 3 in a transport time of 10 minutes, the temperature difference ΔΘ of the steel material 1 was 200°C. In order to uniformly raise the temperature of this steel material 1 to the specified temperature in 65 minutes, if the first half heating time is 10 minutes and the first half heating frequency is 350Hz, the second half heating time is 55 minutes and the second half heating frequency is 200Hz.
Hz.
以上の説明から明らかなごとく、本発明は、鋼
材端部を早期に昇温させることができるので、鋼
材全体を早期に均一な温度とすることができ、こ
れによつて鋼材全体の均一な昇温を良好にかつ円
滑に達成することができ、また加熱初期における
加熱電力の周波数を選定設定するだけで良いので
その操作が簡単であり、さらにこの周波数の選定
設定は精度良く設定できるので、鋼材の温度制御
を正確に達成できる等多くの優れた効果を発揮す
るものである。
As is clear from the above description, the present invention can quickly raise the temperature of the ends of the steel material, so the temperature of the entire steel material can be brought to a uniform temperature quickly, thereby ensuring uniform temperature rise of the entire steel material. The temperature can be achieved smoothly and satisfactorily, and the operation is simple as all you have to do is select and set the heating power frequency at the initial stage of heating.Furthermore, this frequency selection and setting can be set with high precision, making it possible to It exhibits many excellent effects such as being able to accurately control the temperature of the air.
第1図は、本発明方法を実施すべく構成した加
熱プロセスラインの簡略構成図である。第2図
は、鋼材の測温部分の一例を示す、鋼材の各部を
区分け表示した説明図である。第3図は、第2図
に示した測温部における測温結果の一例を示す鋼
材の温度分布である。第4図は、誘導加熱炉にお
ける鋼材の板厚別の温度差−周波数特性を示す線
図である。第5図は、燃焼加熱炉から誘導加熱炉
に鋼材を送り込んで、鋼材をさらに高温にかつ均
一に加熱する加熱プロセスの基本的ライン構成を
示す簡略構成図である。第6図は、従来技術の鋼
材の測温箇所を示す説明図である。第7図は、第
6図に示した従来技術の動作特性を説明するため
の温度特性線図である。第8図は、他の従来技術
を説明するための鋼材端部の斜視図である。
符号の説明、1……鋼材、1a……端部、1b
……中央部、A,B……鋼材端、1A……測温部
分、2……燃焼加熱炉、3……誘導加熱炉、4…
…誘導コイル、5……放射温度計、Θ……温度分
布、ΔΘ……温度差。
FIG. 1 is a simplified diagram of a heating process line configured to carry out the method of the present invention. FIG. 2 is an explanatory diagram showing an example of a temperature measurement part of the steel material, in which each part of the steel material is divided and displayed. FIG. 3 is a temperature distribution of a steel material showing an example of the temperature measurement results in the temperature measuring section shown in FIG. FIG. 4 is a diagram showing the temperature difference-frequency characteristics of steel materials according to plate thickness in an induction heating furnace. FIG. 5 is a simplified configuration diagram showing the basic line configuration of a heating process in which steel is fed from a combustion heating furnace to an induction heating furnace to uniformly heat the steel to a higher temperature. FIG. 6 is an explanatory diagram showing temperature measurement locations of steel materials in the prior art. FIG. 7 is a temperature characteristic diagram for explaining the operating characteristics of the prior art shown in FIG. FIG. 8 is a perspective view of an end of a steel material for explaining another conventional technique. Explanation of symbols, 1... Steel material, 1a... End, 1b
... Central part, A, B ... Steel material end, 1A ... Temperature measurement part, 2 ... Combustion heating furnace, 3 ... Induction heating furnace, 4 ...
...Induction coil, 5...Radiation thermometer, Θ...Temperature distribution, ΔΘ...Temperature difference.
Claims (1)
つ均一に誘導加熱炉により加熱するに当たつて、
予定加熱温度に加熱する加熱初期の昇温時に加え
る誘導加熱電力を、昇温時以降の均熱時に加える
誘導加熱電力よりも大きくして加熱するに際し、
前記鋼材の加熱初期の昇温時に加える加熱電力の
周波数を、誘導加熱炉装入時の前記鋼材長手方向
の温度分布に基づき、前記鋼材の中央部と端部と
の温度を均一にする高い周波数の数値に選定して
鋼材の加熱を行うことを特徴とする誘導加熱制御
方法。1. When heating steel materials heated in a combustion heating furnace at a higher temperature and uniformly in an induction heating furnace,
When heating by increasing the induction heating power applied during initial temperature rise to the scheduled heating temperature, compared to the induction heating power applied during soaking after temperature rise,
The frequency of the heating power applied during the initial temperature rise of the steel material is determined based on the temperature distribution in the longitudinal direction of the steel material when it is loaded into the induction heating furnace, and is set to a high frequency that makes the temperature of the center and end portions of the steel material uniform. An induction heating control method characterized by heating a steel material by selecting a numerical value of .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1197687A JPS63181290A (en) | 1987-01-21 | 1987-01-21 | Induction heating control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1197687A JPS63181290A (en) | 1987-01-21 | 1987-01-21 | Induction heating control |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63181290A JPS63181290A (en) | 1988-07-26 |
JPH0576145B2 true JPH0576145B2 (en) | 1993-10-22 |
Family
ID=11792634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1197687A Granted JPS63181290A (en) | 1987-01-21 | 1987-01-21 | Induction heating control |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63181290A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4964737B2 (en) * | 2006-11-27 | 2012-07-04 | 新日本製鐵株式会社 | Induction heating method and apparatus for metal material |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4864534A (en) * | 1971-12-08 | 1973-09-06 |
-
1987
- 1987-01-21 JP JP1197687A patent/JPS63181290A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4864534A (en) * | 1971-12-08 | 1973-09-06 |
Also Published As
Publication number | Publication date |
---|---|
JPS63181290A (en) | 1988-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20090115195A (en) | Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor | |
US4500366A (en) | Process for producing a grain-oriented electromagnetic steel strip or sheet | |
JP2009221578A (en) | Method of continuously annealing steel strip having curie point and continuous annealing apparatus therefor | |
JPH0576145B2 (en) | ||
JPH0759722B2 (en) | Induction heating control method during subsequent induction heating of a slab previously gas-heated | |
US4621794A (en) | Apparatus for producing a grain-oriented electromagnetic steel strip or sheet | |
JPH0126156B2 (en) | ||
JPS6254024A (en) | Method for controlling automatic combustion in heating furnace | |
JPS5812325B2 (en) | Control method for continuous heating furnace | |
JP3942285B2 (en) | Hot rolling method and hot rolling equipment | |
JPH0121869B2 (en) | ||
JPH04202714A (en) | Method for precisely inserting pipe | |
JPS6137917A (en) | Method for controlling uniform heating of steel material | |
JP2004283846A (en) | Hot rolling method and its equipment | |
JP2002235112A (en) | Heat treatment method for steel material and heat treatment apparatus | |
JPS63133484A (en) | Induction heater of metal plate and method of heating | |
JPH0722129B2 (en) | Wafer temperature control system in oxidation / diffusion device | |
KR100460662B1 (en) | Method for controling inductive heater | |
JPH05320852A (en) | Alloying controller | |
JPH11108773A (en) | Metal plate temperature measuring equipment and rolling method for heat rolled steel strip | |
JPS6225048B2 (en) | ||
JPH09314216A (en) | Method for rolling hot rolled steel strip and device therefor | |
JP2003119516A (en) | Apparatus and method for heat-treating steel plate | |
JP2021528564A (en) | Methods and systems for controlling steel strip microstructures in heat treatment equipment using electromagnetic sensors | |
SU1611855A1 (en) | Method of controlling thermal duty of electric vacuum furnaces in making of carbon articles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |