JPS6137834Y2 - - Google Patents

Info

Publication number
JPS6137834Y2
JPS6137834Y2 JP17239179U JP17239179U JPS6137834Y2 JP S6137834 Y2 JPS6137834 Y2 JP S6137834Y2 JP 17239179 U JP17239179 U JP 17239179U JP 17239179 U JP17239179 U JP 17239179U JP S6137834 Y2 JPS6137834 Y2 JP S6137834Y2
Authority
JP
Japan
Prior art keywords
vane
passage
pressure
check valve
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17239179U
Other languages
Japanese (ja)
Other versions
JPS5690490U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17239179U priority Critical patent/JPS6137834Y2/ja
Publication of JPS5690490U publication Critical patent/JPS5690490U/ja
Application granted granted Critical
Publication of JPS6137834Y2 publication Critical patent/JPS6137834Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案はエアコン、カークーラー等、冷媒圧縮
に用いられるベーン型圧縮機に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a vane compressor used for compressing refrigerant in air conditioners, car coolers, etc.

〔従来の技術〕[Conventional technology]

この種のベーン型圧縮機においては従来、第
3,5,6図に示す如く、ロータ2に設けられた
複数のベーン溝21と該ベーン溝に摺動自在に装
着されたベーン3の底面31とにより形成される
ベーン溝空間211に対して吸入、圧縮行程にあ
つては、吸入口4よりセンタハウジング5及びサ
イドハウジング6に設けた導入通路7を介し、最
終的にサイドハウジング内壁面に形成されたバラ
ンス溝8より吸入流体圧を供給することによつ
て、ベーン底面31に圧力をかけ、ベーン溝空間
211が負圧になることを防止し、ベーンの飛び
出しを良好にすることが行なわれている。
Conventionally, in this type of vane type compressor, as shown in FIGS. 3, 5, and 6, a plurality of vane grooves 21 are provided in the rotor 2, and a bottom surface 31 of the vane 3 is slidably attached to the vane grooves. During suction and compression strokes in the vane groove space 211 formed by By supplying suction fluid pressure from the balanced groove 8, pressure is applied to the vane bottom surface 31, preventing the vane groove space 211 from becoming negative pressure, and improving the vane protrusion. ing.

一方、吐出行程に於ては、吐出口9より、セン
タハウジング5及びサイドハウジング6に設けた
導入通路7を介し、最終的にサイドハウジング内
壁面に形成されたバランス溝81より、吐出流体
圧をベーン溝空間211に供給することが行なわ
れる。このように構成することによつて、ベーン
が作動室12内の圧縮流体により、ベーン溝内に
押し込められることが防止され、もつて、流体の
漏洩を防止し、圧縮効率が向上することを期待し
ているものである。
On the other hand, in the discharge stroke, the discharge fluid pressure is applied from the discharge port 9, through the introduction passage 7 provided in the center housing 5 and the side housing 6, and finally from the balance groove 81 formed on the inner wall surface of the side housing. Supply to the vane groove space 211 is performed. With this configuration, it is expected that the vane will be prevented from being forced into the vane groove by the compressed fluid in the working chamber 12, thereby preventing fluid leakage and improving compression efficiency. This is what we are doing.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかし、このような従来の構成をもつてしても
依然として欠陥を有することがわかつた。
However, it has been found that even such conventional configurations still have deficiencies.

すなわち、吸入行程においてはベーン溝空間2
11の負圧は解消されるけれども、吸入圧力以上
の圧力を作用させることはできず、ベーン3とセ
ンタハウジング内壁面の間のシール性が不十分で
あつた。
That is, in the suction stroke, the vane groove space 2
Although the negative pressure at 11 was eliminated, a pressure higher than the suction pressure could not be applied, and the sealing performance between the vane 3 and the inner wall surface of the center housing was insufficient.

また、圧縮行程に入りベーン3がベーン溝21
に沈むにつれてベーン溝空間211が小さくなる
ために底面31に作用する圧力が過大となり、従
つてベーン3とセンタハウジング内壁面の間で異
常摩耗が起こつたり、ベーン3が折損することが
起こつた。
Also, the vane 3 enters the compression stroke and moves into the vane groove 21.
As the vane groove space 211 decreases, the pressure acting on the bottom surface 31 becomes excessive, resulting in abnormal wear between the vane 3 and the inner wall surface of the center housing, or breakage of the vane 3. .

すなわち吸入、圧縮行程においてベーン3とセ
ンタハウジング内壁面との間の摩擦力が一定にな
らず安定した作動が行なわれていなかつた。
That is, during the suction and compression strokes, the frictional force between the vane 3 and the inner wall surface of the center housing was not constant, and stable operation was not performed.

また更に圧縮、吐出行程において、作動室内に
吸入された流体が圧縮されるにつれて、ベーン溝
側面22と該側面と対応するベーンの側面32と
のクリアランスを経て、ベーン溝空間211に至
り、次いで、バランス溝8、導入通路7を経て吸
入口4に戻る如く逆流通路が形成され、流体がこ
の通路を循環するため効率低下をきたすととも
に、流体の循環によつて温度上昇を生ずる欠陥を
有していることがわかつた。
Furthermore, in the compression and discharge strokes, as the fluid sucked into the working chamber is compressed, it reaches the vane groove space 211 through the clearance between the vane groove side surface 22 and the corresponding vane side surface 32, and then, A backflow passage is formed so as to return to the suction port 4 via the balance groove 8 and the introduction passage 7, and as the fluid circulates through this passage, efficiency decreases and the temperature rises due to the circulation of the fluid. I found out that there was.

従つて本考案の目的は、ベーンの出没を円滑に
するとともに、圧縮流体の逆流による効率低下を
防止することにある。
Therefore, an object of the present invention is to make the vanes move smoothly in and out, and to prevent a decrease in efficiency due to backflow of compressed fluid.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため、本考案によれば、吸
入、圧縮行程のベーン溝空間と吸入口とを連結す
る如く導入通路と該導入通路に続くサイドハウジ
ング内壁面の第1バランス溝を設け、吐出行程域
のベーン溝空間と吐出口とを連結する如く導出通
路と該導出通路に続くサイドハウジング内壁面の
第2バランス溝を設けたベーン型圧縮機であつ
て、前記導入通路には流入用と流出用の逆止弁を
設け、前記導出通路には流出用の逆止弁を設けた
ベーン型圧縮機が提供される。
In order to achieve the above object, according to the present invention, an introduction passage and a first balance groove on the inner wall surface of the side housing following the introduction passage are provided so as to connect the vane groove space of the suction and compression strokes and the suction port. The vane type compressor is provided with a lead-out passage and a second balance groove on the inner wall surface of the side housing following the lead-out passage to connect the vane groove space in the stroke region and the discharge port, and the lead-in passage has an inlet and a second balance groove. A vane compressor is provided in which an outflow check valve is provided, and the outflow check valve is provided in the outlet passage.

あるいはまた、上記構成に加えて、吐出行程域
の作動室と吐出口とを連結する如く第2の導出通
路を、流出用の逆止弁を付属して設けたベーン型
圧縮機が提供される。
Alternatively, in addition to the above configuration, a vane type compressor is provided in which a second outlet passage is provided with a check valve for outflow so as to connect the working chamber in the discharge stroke area and the discharge port. .

〔実施例〕〔Example〕

以下、本考案の実施例を添付図面に基いて説明
する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1〜3図に示すように、吸入、圧縮行程域に
おいては、吸入口4より分岐した導入通路7がセ
ンタハウジング5とサイドハウジング6の内部に
設けられ、この導入通路7の末端でサイドハウジ
ング内壁面に円弧状の第1バランス溝8を設け
る。この第1バランス溝8はベーン溝空間211
に通じてあり、従つて吸入口4とベーン溝空間2
11とは連通している。
As shown in FIGS. 1 to 3, in the suction and compression stroke regions, an introduction passage 7 branching from the suction port 4 is provided inside the center housing 5 and the side housing 6, and the end of this introduction passage 7 is connected to the side housing. An arcuate first balance groove 8 is provided on the inner wall surface. This first balance groove 8 is a vane groove space 211
Therefore, the intake port 4 and the vane groove space 2
It communicates with 11.

しかるに導入通路7の中間部分には流入用逆止
弁10と流出用逆止弁11が設けられ、流入用逆
止弁10は流入流体圧力(吸入流体圧力)で開
き、一方、流出用逆止弁11は流入流体圧力より
も高い圧力(この流入流体圧力よりも高い圧力は
ベーン底面31に作用させる圧力を定めるもので
あるため、機種によつてそれぞれ最適の圧力を設
定する)に達した時のみ開くように、それらの抗
力(臨界開放圧力)が設定される。
However, an inflow check valve 10 and an outflow check valve 11 are provided in the middle part of the introduction passage 7, and the inflow check valve 10 is opened by the inflow fluid pressure (suction fluid pressure), while the outflow check valve 10 is opened by the inflow fluid pressure (suction fluid pressure). When the valve 11 reaches a pressure higher than the inflow fluid pressure (this pressure higher than the inflow fluid pressure determines the pressure applied to the vane bottom surface 31, the optimum pressure is set depending on the model). Their drag force (critical opening pressure) is set so that they only open.

一方、吐出行程域においては、まずベーン溝空
間211に通じる如く円弧状の第2バランス溝8
1がサイドハウジング内壁面に設けられ、これは
サイドハウジング内の導出通路20を介して吐出
口9に通じている。導出通路の途中には流出用逆
止弁110が設けられ、これはベーン3が円滑に
没し難い程にベーン溝空間211内の圧力が過大
となつたときに開いて過大な圧力を吐出口9へ逃
がすようにその抗力が調整される。
On the other hand, in the discharge stroke region, first, the arc-shaped second balance groove 8 is connected to the vane groove space 211.
1 is provided on the inner wall surface of the side housing, and communicates with the discharge port 9 via a lead-out passage 20 inside the side housing. An outflow check valve 110 is provided in the middle of the outlet passage, and this opens when the pressure in the vane groove space 211 becomes too excessive to the extent that the vane 3 is difficult to sink smoothly. The drag force is adjusted so that it escapes to 9.

第2バランス溝81は第4図に示す如く、小さ
なものを複数個設け、それに応じて導出通路70
も複数個とすれば過大な圧力に対する応答性が増
大する。
As shown in FIG. 4, the second balance groove 81 is provided with a plurality of small ones, and the lead-out passage 70 is arranged accordingly.
If more than one is used, the responsiveness to excessive pressure will increase.

望ましくは、同じく吐出行程域において作動室
12と吐出口9とを連結する如く第2の導出通路
71がサイドハウジング内に設けられ、その出口
には流出用逆止弁110が設置される。この逆止
弁110は作動室内で圧縮された流体の圧力が過
大となつてベーン溝側面22とベーン側面32と
のクリアランス、ベーン溝空間211、第1バラ
ンス溝8、導入通路7を経て吸入口4に戻るよう
な逆流通路が形成されないように過大な圧力を吐
出口9へ逃がすようにその抗力が調整される。
Preferably, a second outlet passage 71 is provided in the side housing to connect the working chamber 12 and the discharge port 9 in the discharge stroke region, and an outflow check valve 110 is installed at the outlet of the second outlet passage 71. This check valve 110 is activated when the pressure of the fluid compressed in the working chamber becomes excessive, and the fluid passes through the clearance between the vane groove side surface 22 and the vane side surface 32, the vane groove space 211, the first balance groove 8, and the introduction passage 7, and then passes through the suction port. The resistance force is adjusted so that excessive pressure is released to the discharge port 9 so that a backflow path such as returning to the discharge port 4 is not formed.

〔作用〕[Effect]

圧縮機のロータ2が回転すると(第3図の矢印
方向)吸入行程域においてはベーン3が次第に外
に出てベーン溝空間211に負圧が生じるように
なるが、このとき吸入口4から導入通路7、流入
用逆止弁10、及び第1バランス溝8を経てベー
ン溝空間211に吸入流体が供給される。これに
よつて負圧は解消されるが、ベーン底面31に吸
入流体圧力よりも高い圧力を作用させてベーン3
をよりいつそう容易にセンタハウジング内壁に向
けて強い力で摺接させるために流出用逆止弁11
は流入用逆止弁10よりも高い圧力で開くように
設定されている。従つて、流体はベーン溝空間2
11に溜められて一定の高い圧力になつたときに
のみ第1バランス溝8、流出用逆止弁11、導入
通路7を経て吸入口4に戻される。
When the rotor 2 of the compressor rotates (in the direction of the arrow in Fig. 3), the vanes 3 gradually move out in the suction stroke region and negative pressure is generated in the vane groove space 211. Suction fluid is supplied to the vane groove space 211 via the passage 7, the inflow check valve 10, and the first balance groove 8. Although the negative pressure is eliminated by this, a pressure higher than the suction fluid pressure is applied to the vane bottom surface 31 and the vane 3
The outflow check valve 11 is designed to more easily slide against the inner wall of the center housing with a strong force.
is set to open at a higher pressure than the inflow check valve 10. Therefore, the fluid flows into the vane groove space 2
11 and is returned to the suction port 4 via the first balance groove 8, the outflow check valve 11, and the introduction passage 7 only when it reaches a certain high pressure.

一方、圧縮、吐出行程域に至ると、ベーン溝空
間211内の圧力が次第に大きくなるが、これが
必要以上に大きくなる前に、ベーン溝空間211
内の圧力は第2バランス溝81、導出通路70、
流出用逆止弁110を経て吐出口9へ開放され
る。
On the other hand, when the compression and discharge stroke regions are reached, the pressure within the vane groove space 211 gradually increases, but before this becomes unnecessarily large, the vane groove space 211
The pressure inside the second balance groove 81, the outlet passage 70,
It is opened to the discharge port 9 via the outflow check valve 110.

また、第2の導出通路71が形成されている場
合は、作動室12の流体圧力が必要以上に大きく
なる前に第2の導出通路71、流出用逆止弁11
0を経て吐出口9へ作動室12の流体が逃がされ
る。
In addition, when the second outlet passage 71 is formed, the second outlet passage 71 and the outflow check valve 11 are
The fluid in the working chamber 12 is released to the discharge port 9 through the discharge port 9.

〔考案の効果〕[Effect of idea]

本考案のベーン型圧縮機は以上のように構成さ
れていて、吸入、圧縮行程域においてはベーン溝
空間の負圧が解消されるのみならず、高い圧力を
ベーン底面に作用させることが可能である。また
吐出行程においてはベーン溝空間の過大な圧力を
緩和してベーンをベーン溝に没し易くすることが
できる。また同じく吐出行程域において作動室の
過大な圧力を吐出口に逃がして圧縮流体の逆流を
防止することができる。
The vane type compressor of the present invention is constructed as described above, and in the suction and compression stroke regions, it is possible not only to eliminate the negative pressure in the vane groove space but also to apply high pressure to the bottom surface of the vane. be. Further, during the discharge stroke, excessive pressure in the vane groove space can be alleviated to make it easier for the vane to sink into the vane groove. Similarly, excessive pressure in the working chamber can be released to the discharge port in the discharge stroke region to prevent backflow of the compressed fluid.

従つて4つの逆止弁の抗力を適度に調整するこ
とによつて、ベーンが円滑に出没してサイドハウ
ジング内壁との摺動摩擦が全行程を通じて一定で
圧縮効率の高い圧縮機が得られる。
Therefore, by appropriately adjusting the drag forces of the four check valves, a compressor with high compression efficiency can be obtained in which the vanes move in and out smoothly and the sliding friction with the inner wall of the side housing is constant throughout the entire stroke.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の圧縮機のサイドハウジング内
壁面の正面図、第2図は本考案の圧縮機の縦断側
面図、第3図は本考案のセンタハウジングとロー
タとベーンの位置関係を示す正面図(従来におい
ても同様)、第4図は本考案の圧縮機のサイドハ
ウジング内壁面の変形例を示す正面図、第5図は
従来の圧縮機の縦断側面図、第6図は従来の圧縮
機のサイドハウジング内壁面の正面図である。 211……ベーン溝空間、4……吸入口、6…
…サイドハウジング、7……導入通路、8……第
1円弧状供給孔、81……第2円弧状供給孔、9
……吐出口、70……導出通路、71……第2の
導出通路、10……流入用逆止弁、11,110
……流出用逆止弁、12……作動室。
Fig. 1 is a front view of the inner wall surface of the side housing of the compressor of the present invention, Fig. 2 is a vertical side view of the compressor of the present invention, and Fig. 3 shows the positional relationship between the center housing, rotor, and vane of the present invention. 4 is a front view showing a modified example of the inner wall surface of the side housing of the compressor of the present invention, FIG. 5 is a vertical sectional side view of the conventional compressor, and FIG. 6 is the conventional compressor. FIG. 3 is a front view of the inner wall surface of the side housing of the compressor. 211... Vane groove space, 4... Suction port, 6...
...Side housing, 7...Introduction passage, 8...First arc-shaped supply hole, 81...Second arc-shaped supply hole, 9
...Discharge port, 70... Outlet passage, 71... Second outlet passage, 10... Inflow check valve, 11,110
...Outflow check valve, 12...Working chamber.

Claims (1)

【実用新案登録請求の範囲】 (1) 吸入、圧縮行程域のベーン溝空間と吸入口と
を連通する如く導入通路と導入通路に続くサイ
ドハウジング内壁面の第1バランス溝を設け、
吐出行程域のベーン溝空間と吐出口とを連通す
る如く導出通路と該導出通路に続くサイドハウ
ジング内壁面の第2バランス溝を設けたベーン
型圧縮機であつて、前記導入通路には流入用と
流出用の逆止弁を設け、前記導出通路には流出
用の逆止弁を設けたベーン型圧縮機。 (2) 前記実用新案登録請求の範囲第1項におい
て、吐出行程域の作動室と吐出口とを連結する
如く第2の導出通路を設け、且つ該第2の導出
通路には流出用の逆止弁を付属したことを特徴
とするベーン型圧縮機。
[Claims for Utility Model Registration] (1) An introduction passage and a first balance groove on the inner wall surface of the side housing following the introduction passage are provided so as to communicate the vane groove space in the suction and compression stroke areas with the suction port;
The vane type compressor is provided with a lead-out passage and a second balance groove on the inner wall surface of the side housing following the lead-out passage so as to communicate the vane groove space in the discharge stroke area and the discharge port, and the lead-in passage has an inflow groove. and an outflow check valve, and the outlet passage is provided with an outflow check valve. (2) In claim 1 of the utility model registration claim, a second outlet passage is provided to connect the working chamber in the discharge stroke area and the discharge port, and the second outlet passage is provided with a reverse outlet for outflow. A vane type compressor characterized by being equipped with a stop valve.
JP17239179U 1979-12-14 1979-12-14 Expired JPS6137834Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17239179U JPS6137834Y2 (en) 1979-12-14 1979-12-14

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17239179U JPS6137834Y2 (en) 1979-12-14 1979-12-14

Publications (2)

Publication Number Publication Date
JPS5690490U JPS5690490U (en) 1981-07-18
JPS6137834Y2 true JPS6137834Y2 (en) 1986-11-01

Family

ID=29683198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17239179U Expired JPS6137834Y2 (en) 1979-12-14 1979-12-14

Country Status (1)

Country Link
JP (1) JPS6137834Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8113804B2 (en) * 2008-12-30 2012-02-14 Hamilton Sundstrand Corporation Vane pump with rotating cam ring and increased under vane pressure
EP2803863B1 (en) * 2012-01-11 2019-04-03 Mitsubishi Electric Corporation Vane-type compressor

Also Published As

Publication number Publication date
JPS5690490U (en) 1981-07-18

Similar Documents

Publication Publication Date Title
KR900003716B1 (en) Multicylinder rotary compressor
JPH0742955B2 (en) Reversible rotary compressor
CN108869284B (en) Scroll compressor and vehicle with same
JPS6137834Y2 (en)
US4498853A (en) Vane-type compressor
CN207830127U (en) The compression mechanism of screw compressor
CN110513293A (en) A kind of draining pressure relief, screw compressor and air conditioner
US4480965A (en) Capacity modulation device for compressor
US4389170A (en) Rotary vane pump with passage to the rotor and housing interface
CN113931844B (en) Compressor gleitbretter subassembly reaches compressor including it
CN111963428B (en) Pump body subassembly, compressor and air conditioner
JPS5856392Y2 (en) vane compressor
JPH10159768A (en) Intake valve device for coolant compressor
JPH0217195Y2 (en)
JPH0737796B2 (en) Rotary compressor
US4516920A (en) Variable capacity vane compressor capable of controlling back pressure acting upon vanes
CN109268271B (en) Fixed scroll and compressor with same
WO2020083310A1 (en) Oil supply mechanism of rotary machine and rotary machine
JPH07103856B2 (en) Multi-cylinder rotary compressor
JPS5879689A (en) Variable displacement type compressor
JPH0422071Y2 (en)
JPS6032989A (en) Vane back pressure controller for vane compressor
CN115163493B (en) Scroll compressor and refrigeration equipment
CN219754799U (en) Scroll compressor and refrigeration equipment
JP3738149B2 (en) Gas compressor