JPH0217195Y2 - - Google Patents

Info

Publication number
JPH0217195Y2
JPH0217195Y2 JP1984121944U JP12194484U JPH0217195Y2 JP H0217195 Y2 JPH0217195 Y2 JP H0217195Y2 JP 1984121944 U JP1984121944 U JP 1984121944U JP 12194484 U JP12194484 U JP 12194484U JP H0217195 Y2 JPH0217195 Y2 JP H0217195Y2
Authority
JP
Japan
Prior art keywords
vane
pressure
rotor
groove
outflow passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984121944U
Other languages
Japanese (ja)
Other versions
JPS6052394U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12194484U priority Critical patent/JPS6052394U/en
Publication of JPS6052394U publication Critical patent/JPS6052394U/en
Application granted granted Critical
Publication of JPH0217195Y2 publication Critical patent/JPH0217195Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Description

【考案の詳細な説明】 本考案は、特にエアコン、カークーラ等に用い
られるベーン型圧縮機に係るものである。
[Detailed Description of the Invention] The present invention relates to a vane type compressor used particularly in air conditioners, car coolers, etc.

この種のベーン型圧縮機は、小型であり、振
動、騒音が少ないと言うことから近時、冷媒圧縮
用の用途が急増している。
This type of vane compressor is small in size and generates little vibration and noise, so its use for compressing refrigerant has been rapidly increasing in recent years.

そして、この種のベーン型圧縮機に於る圧縮効
率を向上させるために、第1,2,3図に示す如
く、ローター2に設けられた複数のベーン溝21
と該ベーン溝に摺動自在に装着されたベーン3の
底面31とにより形成されるベーン溝空間211
の吸入行程域に、吸入口4より及びサイドハウジ
ング6に設けた導入通路7及び逆止弁11を介
し、最終的にサイドハウジング内壁面に形成され
た円弧状溝8より吸入流体圧力を供給することに
よつて、ベーン底面31に圧力をかけ、ベーン溝
空間211が負圧になることを防止し、ベーンの
摺動を良好にし、圧縮効率を向上させるととも
に、ローターハウジング内壁面の異常摩耗を防止
することが行なわれている。なお、第2図では経
路が明確に表現されていないため第3図に経路図
として示した。
In order to improve the compression efficiency of this type of vane type compressor, a plurality of vane grooves 21 provided in the rotor 2 are used as shown in FIGS. 1, 2, and 3.
and a vane groove space 211 formed by the bottom surface 31 of the vane 3 slidably mounted in the vane groove.
Suction fluid pressure is supplied to the suction stroke region from the suction port 4, through the introduction passage 7 and check valve 11 provided in the side housing 6, and finally from the arcuate groove 8 formed on the inner wall surface of the side housing. This applies pressure to the vane bottom surface 31, prevents the vane groove space 211 from becoming negative pressure, improves the sliding of the vane, improves compression efficiency, and prevents abnormal wear on the inner wall surface of the rotor housing. Prevention is being done. Note that since the route is not clearly expressed in Figure 2, it is shown as a route diagram in Figure 3.

ところが、この従来の解決手段には下記の如く
欠陥を有することが明らかとなつた。
However, it has become clear that this conventional solution has the following deficiencies.

即ち、吸入行程に於て、吸入口4よりサイドハ
ウジング6に設けた導入通路7及び逆止弁11を
介して、最終的にサイドハウジング内壁面に形成
された円弧状溝8より吸入流体圧力を供給するこ
とにより、ベーン底面31に圧力をかけるわけで
あるが、ローターの回転によりベーン3が吸入行
程を通過して圧縮行程に入つた場合、吸入行程で
ベーン溝空間211に供給された吸入流体圧力が
吐出行程に至るまでに非常に高くなり、ベーン底
面31に加わる圧力が大きくなりベーン3が異常
摩耗を起こす場合があり、ひいてはベーン3が折
損してしまうと言う欠陥を有していた。特に潤滑
タイプのベーン型圧縮機の場合、冷媒ガスとして
のフレオンガスと共に油を混入して吸入、圧縮、
吐出をさせ潤滑を行なうため、上述の欠陥が顕著
にあらわれていた。
That is, during the suction stroke, suction fluid pressure is applied from the suction port 4 through the introduction passage 7 and check valve 11 provided in the side housing 6, and finally through the arcuate groove 8 formed on the inner wall surface of the side housing. When the vane 3 passes through the suction stroke and enters the compression stroke due to the rotation of the rotor, the suction fluid supplied to the vane groove space 211 during the suction stroke The pressure becomes very high by the time the discharge stroke is reached, and the pressure applied to the bottom surface 31 of the vane becomes large, which may cause abnormal wear of the vane 3, and the vane 3 may break. In particular, in the case of a lubricated vane compressor, oil is mixed with Freon gas as a refrigerant gas for suction, compression, and
Since lubrication is performed by discharging, the above-mentioned defects were noticeable.

また、特に潤滑タイプのベーン型圧縮機の場合
には前述した如くベーン溝空間に於る異常圧力に
よる弊害とともに作動室に於る異常圧力の問題が
ある。即ち、圧縮行程作動室に於て、潤滑の為の
油が圧縮されることによつて該作動室内圧力が異
常に上昇し、ベーンの折損等の悪影響を及ぼすこ
とである。
In addition, particularly in the case of a lubricated vane type compressor, as mentioned above, there are problems caused by abnormal pressure in the vane groove space as well as abnormal pressure in the working chamber. That is, as the oil for lubrication is compressed in the compression stroke working chamber, the pressure inside the working chamber increases abnormally, causing adverse effects such as vane breakage.

従つて、この種の潤滑タイプのベーン型圧縮機
にあつては前述したベーン溝空間の問題解決とと
もに圧縮行程作動室の圧力異常上昇も解決する必
要がある。
Therefore, in this type of lubrication type vane compressor, it is necessary to solve the problem of the vane groove space mentioned above as well as the abnormal pressure increase in the compression stroke working chamber.

本考案はこれらの点を巧みに解決しようとする
ものである。
The present invention attempts to skillfully solve these problems.

以下、本考案を添付図面に沿つて詳細に説明す
る。第4図は第2図に相当する本考案の断面図を
示すものであるが、説明上複雑となり解りにくい
ため第5,6図に示す経路図をもつて説明する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 4 shows a sectional view of the present invention corresponding to FIG. 2, but since the explanation is complicated and difficult to understand, the route diagram shown in FIGS. 5 and 6 will be used for explanation.

先ず、吸入行程においては第5図に示す如く導
入通路7を介して吸入口4と円弧状溝8が連通し
ている。ここまでは、従来技術と何んら差異はな
い。本考案の特徴とするところは、圧縮行程域の
ベーン溝空間211と対応するサイドハウジング
内壁面に円弧状溝81を設け、且つ該円弧状溝8
1より吐出口9に至る圧力流出路71が形成さ
れ、この圧力流出路71の途中に流出用逆止弁1
1′を設けたところに特徴がある。このように構
成することによつて、吸入行程でベーン溝空間2
11に供給され封じ込められた吸入流体圧力が非
常に高くなり、ベーン底面31に加わる圧力が異
常に高くなりベーン3に悪影響を及ぼす(この場
合吐出圧力より非常に高くなつた時、つまり特に
潤滑タイプの場合、冷媒ガスとしてのフレオンガ
スと共に油を混入して吸入、圧縮、吐出をさせ潤
滑を行なう時顕著にあらわれる。)に至つた場合
のみ流出用逆止弁11′が開き円弧状溝81より
圧力流出通路71を介して吐出口9に流出され
る。従つて、ベーン溝空間内の異常圧力は防止さ
れるため、従来の多発していたベーンの折損等の
悪影響は解決されるものである。なお、逆止弁1
1′を設けるのは吐出口9の吐出力が流出通路7
1を通り円弧状溝81を介してベーン溝空間21
1に高出力に吐出圧力が供給されてしまい、ベー
ン3に対して悪影響を及ぼすのを防止するもので
ある。
First, during the suction stroke, the suction port 4 and the arcuate groove 8 communicate with each other via the introduction passage 7, as shown in FIG. Up to this point, there is no difference from the conventional technology. The features of the present invention are that an arcuate groove 81 is provided on the inner wall surface of the side housing corresponding to the vane groove space 211 in the compression stroke region;
A pressure outflow path 71 is formed from 1 to the discharge port 9, and an outflow check valve 1 is provided in the middle of this pressure outflow path 71.
The feature is that 1' is provided. With this configuration, the vane groove space 2 is reduced during the suction stroke.
The pressure of the suction fluid supplied to and confined in the vane 11 becomes very high, and the pressure applied to the bottom surface 31 of the vane becomes abnormally high, which has an adverse effect on the vane 3 (in this case, when it becomes much higher than the discharge pressure, especially in the lubricated type) In this case, the outflow check valve 11' opens only when oil is mixed with Freon gas as a refrigerant gas and is suctioned, compressed, and discharged for lubrication. It flows out to the discharge port 9 via the outflow passage 71. Therefore, abnormal pressure within the vane groove space is prevented, and the adverse effects such as vane breakage, which frequently occurred in the past, are resolved. In addition, check valve 1
1' is provided so that the discharge force of the discharge port 9 is connected to the outflow passage 7.
1 and the vane groove space 21 via the arcuate groove 81.
This prevents a high discharge pressure from being supplied to the vanes 1 and having an adverse effect on the vanes 3.

この圧縮行程域に設ける円弧状溝を形成するに
さいしては第6図に示す如く複数の円弧状溝8
1′,81′に分割して設けそれぞれの円弧状溝8
1′に圧力流出通路71、逆止弁11′を設けるこ
とがベーンの背面に適切な圧力を加える上から望
ましい。また複数の円弧状溝81′に分割して設
けるときの円弧状溝81′と円弧状溝81′の間隔
及び圧縮行程域の円弧状溝81と吸入行程域の円
弧状溝8との間隔は5゜〜35゜の間隔をもつて設定
する必要がある。即ち、角度θが5゜未満の時円弧
状溝同士があまりにも近接しすぎて、ベーン溝空
間211に供給する圧力が吸入、圧縮行程のどの
行程でも同じになりベーン3に対して適正な背圧
にかけることにはならず、ベーン溝空間211に
供給する流体圧力の応答性も悪化する。また角度
θが35゜を超えると隣接する円弧状溝の間隔が開
きすぎ、ローター2に設けられたベーン溝21に
装着されたベーン3が吸入行程域の円弧状溝8か
ら圧縮行程に設けられている円弧状溝81に至る
までの間でベーン溝空間211に封じ込められた
流体圧力が高くなり、ベーン背圧が適正でなくな
つてしまうために5゜〜35゜の間隔を設定する必要
がある。
When forming the arcuate grooves provided in this compression stroke region, a plurality of arcuate grooves 8 are formed as shown in FIG.
Each arcuate groove 8 is divided into 1' and 81'.
1' is preferably provided with a pressure outflow passage 71 and a check valve 11' in order to apply appropriate pressure to the back surface of the vane. Furthermore, when the grooves 81' are divided into a plurality of circular grooves 81', the distance between the circular grooves 81' and the distance between the circular grooves 81 in the compression stroke region and the circular grooves 8 in the suction stroke region are as follows. It is necessary to set them at intervals of 5° to 35°. That is, when the angle θ is less than 5 degrees, the arcuate grooves are too close to each other, and the pressure supplied to the vane groove space 211 is the same in every stroke of the suction and compression strokes, resulting in an appropriate backing against the vane 3. Therefore, the responsiveness of the fluid pressure supplied to the vane groove space 211 also deteriorates. Furthermore, when the angle θ exceeds 35°, the distance between adjacent arcuate grooves becomes too large, and the vane 3 installed in the vane groove 21 provided in the rotor 2 is moved from the arcuate groove 8 in the suction stroke area to the compression stroke. The fluid pressure confined in the vane groove space 211 increases until the arcuate groove 81 is reached, and the vane back pressure becomes inappropriate, so it is necessary to set an interval of 5° to 35°. be.

又、第4図に示す如く圧縮行程域の作動室に対
応するサイドハウジング内壁面より吐出口9に至
る圧力流出通路72を設け、この圧力流出通路の
途中に流出用逆止弁11′が設けられている。従
つて潤滑の為の油が圧縮され異常に圧力上昇した
場合には、前記圧力流出通路72の途中に設けら
れた逆止弁11′を押し開き吐出口9に流出する。
しかして、圧縮行程域に於る作動室の圧力異常上
昇は顕著に防止され、従来欠陥であつたベーンの
折損等の悪影響は全て解決されることとなる。
Further, as shown in FIG. 4, a pressure outflow passage 72 is provided from the inner wall surface of the side housing corresponding to the working chamber in the compression stroke region to the discharge port 9, and an outflow check valve 11' is provided in the middle of this pressure outflow passage. It is being Therefore, when the oil for lubrication is compressed and the pressure rises abnormally, the check valve 11' provided in the middle of the pressure outflow passage 72 is pushed open and the oil flows out to the discharge port 9.
As a result, an abnormal rise in pressure in the working chamber in the compression stroke region is significantly prevented, and all the conventional defects such as vane breakage and the like are resolved.

なお、逆止弁11′を設けるのは、正常に作動
してる場合に吐出圧が圧力流出通路72を経て作
動室に流入し、ベーンに対して悪影響を及ぼすこ
と及びポンプ効率の低下を防止するために設けて
ある。また前記した逆止弁は、製造上最も好まし
いのはリード弁であるが、玉弁またはそれに類す
るものでも良いことは言うまでもない。
The check valve 11' is provided to prevent the discharge pressure from flowing into the working chamber through the pressure outflow passage 72 when the pump is operating normally, thereby preventing the vane from being adversely affected and the pump efficiency from decreasing. It is set up for this purpose. Further, the most preferred check valve mentioned above is a reed valve in terms of manufacture, but it goes without saying that a ball valve or a similar valve may also be used.

以上説明から明らかな如く、本考案ベーン型圧
縮機にあつては圧縮行程域のベーン溝空間に対応
するサイドハウジング内壁面に円弧状溝が形成さ
れ且つ、該円弧状溝より吐出口に至る圧力流出通
路が設けられこの圧力流出通路の途中に逆止弁が
設けられているため、圧縮行程域のベーン溝空間
の圧力異常上昇は顕著に防止され、従来欠陥であ
つたベーンの折損等の悪影響を全て排除しまた、
特に潤滑タイプのベーン型圧縮機にあつては圧縮
行程作動室の圧力異常上昇も、圧縮行程作動室に
対向するサイドハウジング内壁面より吐出口に至
る圧力流出通路を設けてあるため顕著に防止さ
れ、前記したベーン溝空間に施した圧力流出通路
と相まつて、圧力異常上昇が主因となるベーンの
折損等の悪影響は完全に解決され、もつて長時間
にわたり、高性能を維持し得るベーン型圧縮機が
提供できるものであり、本考案の奏する効果は極
めて大きい。
As is clear from the above description, in the vane type compressor of the present invention, an arcuate groove is formed on the inner wall surface of the side housing corresponding to the vane groove space in the compression stroke region, and the pressure that reaches the discharge port from the arcuate groove is Since an outflow passage is provided and a check valve is provided in the middle of this pressure outflow passage, abnormal pressure increases in the vane groove space in the compression stroke region are significantly prevented, and adverse effects such as vane breakage, which were conventional defects, are prevented. Also, eliminate all
In particular, in the case of a lubricated vane type compressor, an abnormal rise in pressure in the compression stroke working chamber is significantly prevented because a pressure outflow passage is provided from the inner wall surface of the side housing facing the compression stroke working chamber to the discharge port. In combination with the above-mentioned pressure outflow passage provided in the vane groove space, the adverse effects such as vane breakage caused mainly by abnormal pressure increase are completely resolved, and the vane type compression can maintain high performance for a long time. This invention can be provided by a machine, and the effects of this invention are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のベーン型圧縮機の断面図、第2
図は第1図のA−A断面図を示し説明のためロー
ター、ベーンなどを2点鎖線にて挿入した。第3
図は説明のための経路図、第4図は本考案の一実
施例を示す断面図、第5図及び第6図は本考案を
説明するための経路図である。 符号の説明、2……ローター、3……ベーン、
4……吸入口、5……ローターハウジング、6…
…サイドハウジング、7……導入通路、71,7
2……圧力流出通路、8……吸入行程円弧状溝、
81……圧縮行程円弧状溝、9……吐出口、1
1′……流出用逆止弁。
Figure 1 is a sectional view of a conventional vane compressor, Figure 2 is a cross-sectional view of a conventional vane compressor.
The figure shows a sectional view taken along the line A-A in FIG. 1, and for explanation purposes, the rotor, vanes, etc. are inserted along the two-dot chain line. Third
4 is a sectional view showing an embodiment of the present invention, and FIGS. 5 and 6 are route diagrams for explaining the present invention. Explanation of symbols, 2...rotor, 3...vane,
4... Suction port, 5... Rotor housing, 6...
...Side housing, 7...Introduction passage, 71, 7
2...Pressure outflow passage, 8...Suction stroke arcuate groove,
81...Compression stroke arcuate groove, 9...Discharge port, 1
1'... Check valve for outflow.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ローターハウジングと一対のサイドハウジング
とにより形成されるローター室内にローターを支
持し、このローターの複数のベーン溝内にそれぞ
れベーンを摺動自在に設け、ローターの回転に伴
うベーン作用により流体の吸入、圧縮、吐出を行
うベーン型圧縮機のベーン溝とベーン底面とによ
り形成されるベーン溝空間の吸入行程域に吸入流
体圧を円弧状溝を介して作用させたベーン型圧縮
機に於て、圧縮行程域のベーン溝空間と対応する
サイドハウジング内壁面に円弧状溝を設け、且つ
該円弧状溝より吐出口に至る圧力流出通路を設け
この圧力流出通路の途中に流出用逆止弁を設ける
とともに、ベーン型圧縮機の圧縮行程域の作動室
に対応するサイドハウジング内壁面より吐出口に
至る圧力流出通路を設け、この圧力流出通路の途
中に流出用逆止弁を設けたことを特徴とするベー
ン型圧縮機。
A rotor is supported in a rotor chamber formed by a rotor housing and a pair of side housings, and vanes are slidably provided in each of a plurality of vane grooves of this rotor, and fluid is sucked by vane action as the rotor rotates. In a vane type compressor, suction fluid pressure is applied via an arcuate groove to the suction stroke area of the vane groove space formed by the vane groove and the bottom surface of the vane. An arc-shaped groove is provided on the inner wall surface of the side housing corresponding to the vane groove space in the stroke region, and a pressure outflow passage is provided from the arc-shaped groove to the discharge port, and an outflow check valve is provided in the middle of this pressure outflow passage. A pressure outflow passage is provided from the inner wall surface of the side housing corresponding to the working chamber of the compression stroke region of the vane type compressor to the discharge port, and an outflow check valve is provided in the middle of this pressure outflow passage. Vane compressor.
JP12194484U 1984-08-10 1984-08-10 vane compressor Granted JPS6052394U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12194484U JPS6052394U (en) 1984-08-10 1984-08-10 vane compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12194484U JPS6052394U (en) 1984-08-10 1984-08-10 vane compressor

Publications (2)

Publication Number Publication Date
JPS6052394U JPS6052394U (en) 1985-04-12
JPH0217195Y2 true JPH0217195Y2 (en) 1990-05-14

Family

ID=30278916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12194484U Granted JPS6052394U (en) 1984-08-10 1984-08-10 vane compressor

Country Status (1)

Country Link
JP (1) JPS6052394U (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008049217A1 (en) * 2008-09-27 2010-04-08 Hydac Filtertechnik Gmbh Device for branching off a fluidic partial flow
US8113804B2 (en) * 2008-12-30 2012-02-14 Hamilton Sundstrand Corporation Vane pump with rotating cam ring and increased under vane pressure
JP5826715B2 (en) * 2011-11-24 2015-12-02 カルソニックカンセイ株式会社 Gas compressor
WO2013077388A1 (en) * 2011-11-24 2013-05-30 カルソニックカンセイ株式会社 Gas compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512015A (en) * 1974-06-21 1976-01-09 Maekawa Seisakusho Kk Atsushukukino hojotoshutsusochi
JPS5314207B2 (en) * 1972-04-18 1978-05-16

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314207U (en) * 1976-07-19 1978-02-06
JPS5653104Y2 (en) * 1977-11-22 1981-12-10

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314207B2 (en) * 1972-04-18 1978-05-16
JPS512015A (en) * 1974-06-21 1976-01-09 Maekawa Seisakusho Kk Atsushukukino hojotoshutsusochi

Also Published As

Publication number Publication date
JPS6052394U (en) 1985-04-12

Similar Documents

Publication Publication Date Title
US5676535A (en) Enhanced rotary compressor valve port entrance
JPH0428918B2 (en)
JPH0217195Y2 (en)
JPH0151913B2 (en)
US4498853A (en) Vane-type compressor
JPS6027834Y2 (en) hermetic compressor
US4389170A (en) Rotary vane pump with passage to the rotor and housing interface
JPH04143483A (en) Compressor with rolling piston
CN107542661B (en) Single-cylinder rotary compressor
KR102004090B1 (en) A Rotary Compressor Having A Reduced Leaking Loss
EP0131157B1 (en) Rotary compressor
JPS5856392Y2 (en) vane compressor
JP4142863B2 (en) Gas compressor
JP3738149B2 (en) Gas compressor
JPS6137834Y2 (en)
JPH01190984A (en) Rotary compressor
CN100375846C (en) Anti-reverse device of vortex compressor
JP2526028Y2 (en) Rotary compressor
JPS647261Y2 (en)
JPH0422071Y2 (en)
JPS61229984A (en) Construction of cylinder vane grooved part of rotary type closed compressor
KR20040023069A (en) Hermetic rotary compressor
JPH04153594A (en) Rolling piston type compressor
JPH0312237B2 (en)
JPS6338554B2 (en)